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Abstract

Background: Mutation studies of pancreatic ductal adenocarcinoma (PDA) have revealed complicated
heterogeneous genomic landscapes of the disease. These studies cataloged a number of genes mutated at high
frequencies, but also report a very large number of genes mutated in lower percentages of tumors. Taking advantage
of a well-established forward genetic screening technique, with the Sleeping Beauty (SB) transposon, several studies
produced PDA and discovered a number of common insertion sites (CIS) and associated genes that are recurrently
mutated at high frequencies. As with human mutation studies, a very large number of genes were found to be altered
by transposon insertion at low frequencies. These low frequency CIS associated genes may be very valuable to
consider for their roles in cancer, since collectively they might emerge from a core group of genetic pathways.

Result: In this paper, we determined whether the genetic mutations in SB-accelerated PDA occur within a collated
group of biological processes defined as gene sets. The approach considered both genes mutated in high and lower
frequencies. We implemented a case-oriented, gene set enrichment analysis (CO-GSEA) on SB altered genes in PDA.
Compared to traditional GSEA, CO-GSEA enables us to consider individual characteristics of mutation profiles of each
PDA tumor. We identified genetic pathways with higher numbers of genetic mutations than expected by chance. We
also present the correlations between these significant enriched genetic pathways, and their associations with CIS
genes.

Conclusion: These data suggest that certain pathway alterations cooperate in PDA development.

Keywords: Forward genetic screen, Sleeping Beauty transposon, Case-oriented gene set analysis, Pathways
correlations, CIS, Common insertion sites

Background
Themolecular analysis of human cancer cells has revealed
a startling amount of genetic and epigenetic heterogene-
ity. In recent years, forward genetic screens have taken
place in mice using DNA transposons, primarily Sleeping
Beauty (SB) [1]. The SB-based approach has been success-
fully employed to induce many different forms of cancer
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such as brain tumors, sarcomas, hematopoietic malignan-
cies, and carcinomas [2, 3] via insertional mutagenesis. A
large number of of loci recurrently mutated by insertion of
SB transposons called common insertion sites (CIS) have
been identified [4]. The general impression from these
studies is one of tremendous genetic complexity.
Recent large-scale analyses of human cancer genomes

mirrors these results in general. Most types of human can-
cer harbor a small number of genes that are altered in a
high percentage of cases, so called “mountains”, and a large
number of genes altered in a low percentage of cases, so
called “hills”. In addition, two patients diagnosed with the
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same type of cancer often show distinct genetic alterna-
tions, however, the disrupted pathways tend to be similar
among patients [5].
Conventional pathway analysis approaches usually

obtain gene-based scores by summarizing data across
tumor cases, then calculating pathway statistics using
the scores of the genes in the pathway. However, these
approaches could potentially lose information regarding
whether multiple mutations in a pathway are from a single
patient or multiple cases with a single mutation at various
genes in the pathway. In contrast, case-oriented gene set
analysis (CO-GSEA) can consider the two situations dif-
ferently and hence can incorporate heterogeneity of each
tumor case into the analysis. This approach provides a
case-based score for each pathway and further enhances
the study of correlation of mutation events between path-
ways, as well as between genes and pathways. It has
recently been applied to the analysis of human tumors [6].
Pancreatic ductal adenocarcinoma (PDA) is the fourth

leading cause of death due to cancer, with over a 98 % case-
fatality rate. The crucial molecular events, required for
progression from a pre-invasive and non-life threatening
state to an invasive andmetastatic lethal condition, are not
well-understood. We previously reported the results of a
SB transposon-based forward genetic screen for drivers of
PDA in mice expressing the KrasG12D oncogene in epithe-
lial cells of the pancreas [7]. Our screen revealed new
candidate genes for PDA and confirmed the importance
of many genes and pathways previously implicated in
human PDA. The most commonly mutated gene was the
X chromosome-linked deubiquitinase Usp9x, which was
inactivated in over 50 % of the tumors. In addition, sev-
eral hundred candidate PDA genes were identified as CIS
in this screen.
In this paper, we report analyses intended to determine

whether a core group biological processes or pathways are
populated by genes from CIS. We applied a less stringent
criterion to consider CIS associated genes that mutated
both at high frequencies (mountains) and at lower fre-
quencies (hills). Secondly, we determined whether non-
random associations between alteration of genes in cer-
tain pathways or biological pathways exist by analysis of
CIS from individual tumors.

Results and discussion
Certain pathways are enriched in CIS-associated genes
We collected insertional mutatgenesis data of tumor
samples from 146 KrasLSL-G12D; Pdx1-cre; T2/Onc; Rosa26-
LSL-SB13 mice. To determine whether a core group of
pathways were enriched with CIS-associated genes than
reported previously [7], we analyszed 968 CIS with uncor-
rected p value < 10−4 from TapDance. Among these, 239
genes were mapped an grouped into 281 KEGG curated
pathways categories. After excluding pathways with less

than 6 genes, 272 KEGG pathways remain in the following
analysis.
Using the CO-GSEA described in the Method Section,

we found 95 KEGG pathways that are enriched with CIS-
associated genes with permutated p value < 10−7 listed
in Table 1 (more details about the disrupted genes in each
pathway can be found in Additional file 1). In Table 1,
“# of genes” records the number of genes defined in the
pathway from KEGG; “# of CIS” (third column) reports
the number of CIS genes in the pathway; and “# of
mutated cases” (fourth column) records the number of
cases that the pathway was disrupted. A histogram of the
sizes of each of the KEGGpathways is shown inAdditional
file 2. In Figs. 1 and 2, we plotted the KEGG diagrams of
two pathways that are enriched CIS-associated genes.
The genetic screen was designed to discover genes

that when altered would cause acceleration of PDA in
pancreatic ductal epithelial cells expressing an activated
form of the Kras oncogene, KrasG12D. As such it was
not surprising that KEGG pathways with the strongest
statistical support for CIS associated gene enrichment
were many cancer associated pathways. As expected, we
found some of the same pathways previously reported and
which were expected [7, 8]. An informal prior analysis
[7] suggested that TGFβ signaling was enriched in CIS-
associated genes and indeed we found that this KEGG
pathway is enriched. Similarly, Rb1/p16Inka4a pathway
was suggested to be recurrently altered by CIS-associated
genes [7]. Indeed, we found that the KEGG pathway
CELL CYCLE was enriched in CIS-associated genes.
Many other cancer-associated pathways were enriched
in CIS-associated genes including the RAS, PI3K-
AKT, HIPPO, VEGF, HEDGEHOG, MAPK, FOXO1, and
MTOR pathways. Moreover, the human disease KEGG
pathway PANCREATIC CANCER and several other
human cancer pathways were enriched in CIS-associated
genes.
In addition to these expected KEGG pathways, many

involving metabolism have not been strongly linked
to pancreatic cancer development or cancer develop-
ment in general. However, recent studies revealed evi-
dence of metabolic reprogramming to sustain tumor sur-
vival in KRAS-mutated PDA tumors [9]. For example,
KRAS-dependent tumor cells compensated the energy
loss through increasing glycolysis, amino acid and lipid
biosynthesis [10]. In particular, TERPENOID BIOSYN-
THESIS, LYSINE DEGRADATION and the SULFUR
RELAY SYSTEM are significantly altered in the SB-
accelerated tumor models. To date KRAS remains a
poorly druggable target, hence, targeting the downstream
metabolic regulation could be effective alternatives in
inhibiting tumor growth.
Several organismal systems KEGG pathways were

also enriched in CIS-associated genes despite not
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Table 1 Pathways that are enriched with CIS-associated genes (permuted p value < 10−7)

KEGG id Pathway name # of genes # of CIS # of mutated cases

Cellular Processes

1 4110 Cell cycle 126 9 101

2 4530 Tight junction 136 10 127

3 4810 Regulation of actin cytoskeleton 217 13 121

4 4510 Focal adhesion 207 13 123

5 4540 Gap junction 87 3 67

6 4520 Adherens junction 74 11 122

Human Diseases

7 5164 Influenza A 170 11 117

8 5034 Alcoholism 199 5 85

9 5169 Epstein-Barr virus infection 212 17 120

10 5203 Viral carcinogenesis 229 14 116

11 5160 Hepatitis C 136 7 97

12 5010 Alzheimer’s disease 173 12 121

13 5016 Huntington’s disease 182 14 125

14 5200 Pathways in cancer 323 23 134

15 5211 Renal cell carcinoma 67 6 84

16 5206 MicroRNAs in cancer 270 10 108

17 5152 Tuberculosis 176 11 114

18 5166 HTLV-I infection 277 11 106

19 5100 Bacterial invasion of epithelial cells 77 7 103

20 5412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 74 7 96

21 5202 Transcriptional misregulation in cancer 178 12 121

22 5133 Pertussis 74 6 84

23 5142 Chagas disease (American trypanosomiasis) 103 7 87

24 5161 Hepatitis B 145 10 107

25 5205 Proteoglycans in cancer 226 11 115

26 5214 Glioma 65 6 95

27 5216 Thyroid cancer 29 3 66

28 5210 Colorectal cancer 64 8 105

29 5212 Pancreatic cancer 66 6 74

30 5213 Endometrial cancer 52 8 111

31 5215 Prostate cancer 89 10 117

32 5218 Melanoma 71 4 86

33 5219 Bladder cancer 38 2 46

34 5220 Chronic myeloid leukemia 73 9 95

35 5221 Acute myeloid leukemia 57 6 82

36 5223 Non-small cell lung cancer 56 5 77

37 5222 Small cell lung cancer 85 7 95

38 5217 Basal cell carcinoma 55 3 65

Environmental Information Processing

39 4151 PI3K-Akt signaling pathway 351 22 130
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Table 1 Pathways that are enriched with CIS-associated genes (permuted p value < 10−7) (Continued)

40 4390 Hippo signaling pathway 154 14 123

41 4066 HIF-1 signaling pathway 111 7 91

42 4012 ErbB signaling pathway 87 7 100

43 4014 Ras signaling pathway 228 13 119

44 4310 Wnt signaling pathway 143 16 126

45 4350 TGF-beta signaling pathway 82 11 119

46 4010 MAPK signaling pathway 253 14 118

47 4015 Rap1 signaling pathway 216 14 134

48 4370 VEGF signaling pathway 60 4 68

49 4340 Hedgehog signaling pathway 49 3 61

50 4330 Notch signaling pathway 49 4 68

51 4070 Phosphatidylinositol signaling system 81 4 78

52 4068 FoxO signaling pathway 135 7 101

53 4150 mTOR signaling pathway 61 4 86

Metabolism

54 4141 Protein processing in endoplasmic reticulum 169 8 111

55 670 One carbon pool by folate 19 2 45

56 3015 mRNA surveillance pathway 96 8 95

57 4120 Ubiquitin mediated proteolysis 139 14 118

58 00250 Alanine, aspartate and glutamate metabolism 34 2 53

59 3020 RNA polymerase 29 2 50

60 510 N-Glycan biosynthesis 50 3 69

61 3018 RNA degradation 77 5 83

62 310 Lysine degradation 51 6 95

63 512 Mucin type O-Glycan biosynthesis 28 2 46

64 900 Terpenoid backbone biosynthesis 21 2 54

65 563 Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 25 2 46

66 4122 Sulfur relay system 10 3 59

67 4062 Chemokine signaling pathway 196 13 124

68 4722 Neurotrophin signaling pathway 123 12 118

69 4670 Leukocyte transendothelial migration 121 9 106

70 4728 Dopaminergic synapse 133 8 105

71 4270 Vascular smooth muscle contraction 137 8 104

72 4713 Circadian entrainment 98 5 93

73 4723 Retrograde endocannabinoid signaling 103 4 88

74 4724 Glutamatergic synapse 114 5 93

75 4725 Cholinergic synapse 113 5 93

76 4726 Serotonergic synapse 133 5 94

77 4910 Insulin signaling pathway 142 8 95

78 4650 Natural killer cell mediated cytotoxicity 146 5 73

79 4917 Prolactin signaling pathway 74 7 98

80 4611 Platelet activation 131 9 111

81 4912 GnRH signaling pathway 89 5 80

82 4914 Progesterone-mediated oocyte maturation 87 4 68

83 4915 Estrogen signaling pathway 98 6 92
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Table 1 Pathways that are enriched with CIS-associated genes (permuted p value < 10−7) (Continued)

84 4916 Melanogenesis 100 9 111

85 4921 Oxytocin signaling pathway 158 9 108

86 4360 Axon guidance 129 10 117

87 4919 Thyroid hormone signaling pathway 118 11 114

88 4960 Aldosterone-regulated sodium reabsorption 40 2 49

89 4720 Long-term potentiation 66 6 91

90 4660 T cell receptor signaling pathway 105 9 113

91 4662 B cell receptor signaling pathway 73 6 91

92 4730 Long-term depression 61 3 67

93 4664 Fc epsilon RI signaling pathway 70 4 68

94 4666 Fc gamma R-mediated phagocytosis 88 6 86

95 4320 Dorso-ventral axis formation 22 2 60

being strongly linked to pancreatic cancer development.
These include OXYTOCIN SIGNALING, CHOLINER-
GIC SYNAPSE, andMELANOGENESIS. Our recent work
helped show that the AXON GUIDANCE pathway is
enriched for CIS-associated genes, a result which led to
the discovery that these genes and the pathways they par-
ticipate in are altered in human PDA [8]. This result was
reproduced in this current analysis. Thus, it is clear that
the broadened definition of CIS allows for the identifica-
tion of many known and novel candidate cancer pathways.
These data suggest many new hypotheses to be tested in
PDA development.

Analysis of individual tumor reveals significant co-altered
pathways
We and others have published results of SB screens in
which we found that individual CIS tended to be co-
mutated by transposon insertion more than expected
by chance (e.g. [11]). We wondered whether an analy-
sis of individual tumors would reveal that specific path-
ways would be co-altered in this same manner. Figure 3
shows a heat map of adjusted correlation between pair of
pathways, which are co-altered by transposon insertions
within/near genes in those pathways. We observed that
there are two major clusters of strongly co-altered path-
ways.Within these clusters certain specific pathways show
strong associations, being altered by transposon insertion
in the same tumors more often than would be expected
by chance. These data provide the basis for developing
specific hypotheses about pathways that interact to cause
cancer. Thus, alterations of one pathway may allow the
other pathway to exert its full oncogenic effects.
A careful analysis of some of the associations reveals

pairs of pathways thatmight be predicted to interact based
on what is known about their functions and regulation
already. For example, block 1, labeled in Fig. 3, con-
tains strong associations between the ubiquitin processing
pathway and several pathways including ErbB, Insulin and

mTOR signaling. It is known that cell signaling pathways
that transmit signals from the extracellular space into the
cell cytoplasm and nucleus are regulated by the abun-
dance and stability of certain proteins. In many cases, the
stability of these proteins is regulated by ubiquitination
and degradation by the proteosome. Well known exam-
ples, include NFκB and Wnt/β-catenin signaling path-
ways. Work shows that members of the ErbB family of
receptors are downregulated by ubiquitination involving
the E3 ubiquitin ligase Cbl [12]. Ubiquitination also reg-
ulates Akt-mTOR signaling in multiple myeloma [13] and
Akt-mTOR is activated by insulin signaling [14].
Block 2, labeled in Fig. 3 contains several other intrigu-

ing pathway-pathway associations. For example, we see
a strong association between cell cycle control and miR-
NAs known to be involved in cancer. Indeed, there are
several well studied examples of miRNAs that regulate
the mRNA transcripts of cell cycle regulators such as
MYC [15], RB1 [16] and CCND1 [17]. Also in block 2, we
see evidence for TGFβ pathway and MAPK pathway co-
dysregulation. Abundant evidence for crosstalk between
these pathways has been published [18, 19]. Thus, it is
entirely plausible that co-alteration between these path-
ways is specifically selected for during PDA progression.
Specific hypotheses can, or have been, tested in the lab-
oratory. For example, MAPK activation, via expression of
the KrasG12D oncogene, cooperates strongly with Smad4
inactivation, which alters/inactivates TGFβ signaling, in
a mouse model of PDA [20]. This functionally confirms
the observation from the analyses done here. We can thus
predict, that many other pathway-pathway associations
observed in Fig. 3 can be functionally validated. More
speculative, but of tremendous therapeutic significance, is
the idea that targeting one pathway of a pathway-pathway
pair observed in Fig. 3 would alter the ability of the
second pathway to exert its oncogenic effects. Indeed, co-
targeting both of such pairs of altered pathwaysmay be the
most effective way to treat individual cases of PDA. These
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Fig. 1 Frequently mutated genes in ubiquitin mediated proteolysis pathway. Darker red color indicates higher mutation frequencies in mice

ideas wait functional testing in the laboratory using model
systems.

Association of CIS-associated genes and enriched pathways
Several of the most commonly altered genes in the PDA
screen (i.e. the top ranked CIS-associated genes) have lit-
tle published functional data.We speculate that by finding
which pathways they most often interact with, something
could be learned about their function in general and

in PDA development. The associations between the top
ranked CIS and enriched pathways are shown in Fig. 4.
In Fig. 4, several CIS-associated genes such as Stag2,
Arhgap5, Usp9x, Magi1, Arid1a have few connections to
enriched pathways then other CIS-associated genes. In
Additional file 3, we listed these connections and corre-
sponding estimates from regression model, p values and
FDR. For example, in Additional file 1,Usp9x is associated
with PI3K-AKT signaling pathway, DOPAMINERGIC
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Fig. 2 Frequently mutated genes in ErbB signaling pathway. Darker color indicates higher mutation frequencies in mice

SYNAPSE, HIPPO signaling, and TIGHT JUNCTION
pathways. Thus, it seems likely that Usp9x mutation or
down regulation has to cooperate with alterations in these
other pathways in order for PDA to develop. The CIS-
associated genes that also demonstrated association with
the these Usp9x-associated pathways are Gsk3b, Ctnna1,
Mll5, Pten, Arfip1,Magil.

Conclusion
In this work, we demonstrate the non-random enrichment
of CIS-associated genes from a transposon-based screen
for PDA into certain KEGG signaling pathways, disease
states and biological processes.

Methods
To assess whether a pathway harbors more CIS-associated
genes than expected by chance, we use CO-GSEA
approach. For each tumor sample, we considered a path-
way is altered (coded: 1) if at least 1 gene in the pathway
was mutated; coded zero if it’s not. A score for each
pathway was calculated to be the number of tumors in

which the pathway is altered. We assessed whether the
score of a pathway was statistically significant through
random permutation. For example, if a mouse tumor
contains 100 mutations, we randomly assigned the 100
mutations to 100 different genes. A score for each pathway
can be obtained by counting the number of altered tumor
samples after the permutation. We repeated the permu-
tation 107 times to obtain the distribution of score under
the null for each pathway and calculated a p value based
on the permuted null distribution. A similar approach was
also applied in mutation analysis of human tumor samples
in [6].
The ability to detect a significant pathway using the

CO-GSEA approach depends on the background muta-
tion rate and the size of the pathway under consideration.
The relationship between the number of total cases, and
the expected score of a given pathway under random per-

mutation can be described as: N − �N
i=1

(
G − ni
Ps

)
(

G
Ps

) , where N

is the total number of cases; G is the number of genes
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Fig. 3 Heat map of correlation between pair of pathways. Legend indicates strength of correlation coefficient (red: high correlation; black: weak
correlation). a Heat map of correlation between all pairs of pathways. b Zoom in of block 1 shown in panel a. c Zoom in of block 2 shown in panel a.
Pathway names from left to right (bottom to top): 1: Ubiquitin mediated proteolysis, 2: One carbon pool by folate, 3: Wnt signaling pathway, 4: Cell
cycle, 5: Hippo signaling pathway, 6: Protein processing in endoplasmic reticulum, 7: MAPK signaling pathway, 8: Lysine degradation, 9: RNA
polymerase, 10: N-Glycan biosynthesis, 11: mRNA surveillance pathway, 12: Hedgehog signaling pathway, 13: Dopaminergic synapse, 14:
GPI-anchor, 15: RNA degradation, 16: Terpenoid backbone biosynthesis, 17: Mucin type O-Glycan biosynthesis, 18: Rap1 signaling pathway, 19:
Adherens junction, 20: Leukocyte transendothelial migration, 21: TGF-beta signaling pathway, 22: Axon guidance, 23: MicroRNAs in cancer, 24: Tight
junction, 25: PI3K-Akt signaling pathway, 26: Ras signaling pathway, 27: Chemokine signaling pathway, 28: Serotonergic synapse, 29: Glutamatergic
synapse, 30: Cholinergic synapse, 31: Retrograde endocannabinoid signaling, 32: Circadian entrainment, 33: Sulfur relay system, 34: Notch signaling
pathway, 35: Alanine, aspartate and glutamate metabolism, 36: Aldosterone-regulated sodium reabsorption, 37: Natural killer cell mediated
cytotoxicity, 38: VEGF signaling pathway, 39: Fc epsilon RI signaling pathway, 40: Gap junction, 41: Melanogenesis, 42: FoxO signaling pathway, 43:
HIF-1 signaling pathway, 44: Fc gamma R-mediated phagocytosis, 45: Estrogen signaling pathway, 46: Platelet activation, 47: Oxytocin signaling
pathway, 48: Vascular smooth muscle contraction, 49: PIP, 50: mTOR signaling pathway, 51: Focal adhesion, 52: Regulation of actin cytoskeleton, 53:
Insulin signaling pathway, 54: Thyroid hormone signaling pathway, 55: ErbB signaling pathway, 56: T cell receptor signaling pathway, 57:
Neurotrophin signaling pathway, 58: B cell receptor signaling pathway, 59: Prolactin signaling pathway
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Fig. 4 Associations between CIS and enriched pathways. Red nodes represent CIS associated genes, and blue nodes indicate pathways.
Abbreviations: miRNAs: MicroRNAs in cancer, GPI: Glycosylphosphatidylinositol-anchor biosynthesis, T.J.: Tight junction, Hedgehog: Hedgehog
signaling pathway, PIP: Phosphatidylinositol signaling system, B cell: B cell receptor signaling pathway, Leuk. M.: Leukocyte transendothelial
migration, DA: Dopaminergic synapse, Axon: Axon guidance, Ubiquitin: Ubiquitin mediated proteolysis, F.A: Focal adhesion, M.G.: Melanogenesis,
Lysine D.: Lysine degradation, Protein: Protein processing in endoplasmic reticulum, T cell: T cell receptor signaling pathway, T.H.: Thyroid hormone
signaling pathway, N.T: Neurotrophin signaling pathway, A.J.: Adherens junction, Actin: Regulation of actin cytoskeleton, Ck: Chemokine signaling
pathway

considered in the pathway analysis; ni is the number of
events in sample i and Ps is the number of genes in the
pathway [6].

Analysis of co-altered pathways
To investigate whether a pair of pathways was co-altered
in a significant manner, we remove the CIS-associated
genes that are present in both pathways, and for each
sample, we calculated the mutation frequency in each
pathway using the remaining non-overlapping CIS as:
# of mutations in sample i in the pathway
# of non-overlapping CIS in the pathway . For each pair of path-
ways, Pearson correlations were calculated to present
the correlation between pathways characterized by non-
overlapping CIS using the mutation counts.

Association between top CIS-associated genes and
enriched pathways
Among the top 20 CIS-associated genes previously
reported [7], 12 of them listed do not map to any KEGG
pathways. We conducted association analysis between the
top 20 CIS-associated genes and the enriched KEGG

pathway using quasi-Poisson regressionmodels with over-
dispersion. For each CIS-associated gene, we examined
whether mutation status of the CIS-associated gene
(code 1 if mutated; 0 otherwise) is associated with
higher mutation counts (the number of altered CIS-
associated genes) for a pathway under consideration.
We reported the CIS and pathways associations with
FDR < 0.001.

Additional files

Additional file 1: Significant CIS enriched pathways and disrupted genes.
Number in the parenthesis represents # of cases with the gene mutated.
(CSV 13.4 kb)

Additional file 2: Histogram of gene set sizes. (PNG 25.3 kb)

Additional file 3: CIS and pathways association table. (TXT 3.87 kb)
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