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Abstract

Background: Understanding the effect of human genetic variations on disease can provide insight into phenotype-
genotype relationships, and has great potential for improving the effectiveness of personalized medicine. While some
genetic markers linked to disease susceptibility have been identified, a large number are still unknown. In this paper,
we propose a pathway-based approach to extend disease-variant associations and find new molecular connections
between genetic mutations and diseases.

Methods: We used a compilation of over 80,000 human genetic variants with known disease associations from
databases including the Online Mendelian Inheritance in Man (OMIM), Clinical Variance database (ClinVar), Universal
Protein Resource (UniProt), and Human Gene Mutation Database (HGMD). Furthermore, we used the Unified Medical
Language System (UMLS) to normalize variant phenotype terminologies, mapping 87% of unique genetic variants to
phenotypic disorder concepts. Lastly, variants were grouped by UMLS Medical Subject Heading (MeSH) identifiers to
determine pathway enrichment in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.

Results: By linking KEGG pathways through underlying variant associations, we elucidated connections between the
human genetic variant-based disease phenome and metabolic pathways, finding novel disease connections not
otherwise detected through gene-level analysis. When looking at broader disease categories, our network analysis
showed that large complex diseases, such as cancers, are highly linked by their common pathways. In addition, we
found Cardiovascular Diseases and Skin and Connective Tissue Diseases to have the highest number of common
pathways, among 35 significant main disease category (MeSH) pairings.

Conclusions: This study constitutes an important contribution to extending disease-variant connections and new
molecular links between diseases. Novel disease connections were made by disease-pathway associations not
otherwise detected through single-gene analysis. For instance, we found that mutations in different genes associated
to Noonan Syndrome and Essential Hypertension share a common pathway. This analysis also provides the foundation
to build novel disease-drug networks through their underlying common metabolic pathways, thus enabling new
diagnostic and therapeutic interventions.
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Background
Current repositories of disease-associated human genetic
variants encompass over 4000 genes and 17,000 disease
phenotypes, derived mostly from manual extraction of
literature [1]. Our team has compiled these variants
from sources including the Online Mendelian Inherit-
ance in Man (OMIM) [2], Clinical Variance database
(ClinVar) [3], Universal Protein Resource (UniProt) [4],
and Human Gene Mutation Database (HGMD) [1, 5].
Our compilation contains over 80,000 human genetic
variants and is the largest collection known to date [1].
Yet despite the large number of genetic variants known
to influence disease, only a small percentage of an indi-
vidual genome is expected to map to known variants. To
identify novel disease-variant associations, the functional
context of known variants must be expanded.
In prior studies, human disease networks (e.g., the hu-

man diseasome) have been generated to link genetic dis-
orders with disease genes, supporting disease-specific
functional modules [6]. Genes rarely work alone, often
participating in complex pathways and synergic interac-
tions with other genes, proteins, and environmental fac-
tors that collectively influence the clinical manifestations
of disease [7–9]. Analyzing known disease-associated
variants through a network biology approach can pro-
vide insight into the relationship between diseases and
underlying metabolic pathways, and can expand the
functional context of our variants [10]. This may result
in novel disease associations not otherwise discovered
through single-gene analysis. Existing research has
shown that exploring genetic risk through a modular ap-
proach allows for more stable and robust results and im-
proves the interpretation of molecular mechanisms
underlying disease [8].
The first challenge in identifying disease-pathway asso-

ciations from known variants is to correctly assign each
variant phenotype to an ontology. A standardized ter-
minology provides an accurate mapping of diseases to
disease-specific categories and facilitates the identifica-
tion of enriched pathway associations. Thus, the first
step in this work was to map variant phenotypes to the
Unified Medical Language System (UMLS) [11] to build
a disease phenome. The UMLS [11] leverages the UMLS
Metathesaurus to integrate a wide variety of phenotype
synonyms from terminologies like OMIM [2] and the
Human Phenotype Ontology (HPO) [12]. Once variants
were mapped, they were clustered into higher-level cat-
egories via Medical Subject Heading (MeSH) identifiers,
providing a broader view of the variant relationships.
To identify disease-pathway associations, mapped vari-

ants were linked at both the disease and pathway level.
Our work builds on the approach taken in Goh et al. [6],
expanding gene-based connections to their corresponding
networks of human variant-derived Kyoto Encyclopedia of

Genes and Genomes (KEGG) [13] pathways. Network rep-
resentations were used, illustrating the power of our ap-
proach by providing a more complete view of human
disease-variant associations. Our networks produced over
1300 novel disease associations at the pathway level, not
otherwise connected at the gene level. This provides po-
tential new insight into the relationship between meta-
bolic pathways and interacting drugs, and may lead to
improved drug efficacy and new potential drug targets for
repurposing. [14] These associations will constitute an im-
portant resource in the future development of computa-
tional tools to optimize patient diagnosis and disease
treatment.

Methods
Mapping human variants to UMLS
We mapped the Peterson et al. [1] compilation of over
80,000 human disease variants, which unifies specific gen-
etic data from databases including OMIM [2], ClinVar [3],
UniProt [4], and HGMD [5], to disorder concepts in the
UMLS Metathesaurus. This mapping was performed
using exact and normalized string matching functions
from the UMLS Terminology Server (UTS) Application
Program Interface (API). Variants were categorized by two
different classifications: primarily by Concept Unique
Identifier (CUI) and secondarily by MeSH. Each specific
CUI categorizes all disease phenotypes equivalent to the
same concept, linking those that may use a different
phenotype terminology but ultimately define the same en-
tity [11]. MeSH provides a hierarchical set of descriptors,
allowing for a controlled vocabulary and a broader level of
specificity when searching for disease terms [11]. Both
CUI and MeSH classifications will allow human variants
to be clustered based on their disease descriptions, provid-
ing an important link between genotype and phenotype.
Human variants unable to be mapped automatically to

UMLS [11] were manually curated. Curators used the
UMLS Metathesaurus browser to search unique phenotypes
and variations of their terminology after removing modifiers
and other fragments deemed unessential to the concept.
Phenotypes were then classified into three types, per the
amount of manual manipulation necessary to find a match-
ing CUI (Additional file 1: Figure S1). Variants categorized
as Type I were matched with little to no modification; Type
II categorization required a moderate amount of manipula-
tion; and Type III represents variant phenotypes unable to
be mapped. Once completed, this manual mapping will
allow for Type I and Type II variants to be mapped to a
higher-order MeSH classification, increasing the number of
variants in our further analysis at the pathway level.

Functional enrichment of variants
Mapped human variants were clustered into higher-level
disease categories based on MeSH terms. For each grouping,
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genes mutated in the variants mapped to that MeSH were
statistically enriched in KEGG pathways (one-tailed Fisher
exact test, p < = 0.0001) for groups associated with at least
three genes. MeSH categories enriched in at least three
pathways were selected for network construction.

Network construction
A bipartite graph was constructed using two disjoint sets
of nodes: CUIs and KEGG Pathways (Fig. 1). Each dis-
tinct disease, identified by its UMLS CUI, is linked to a
KEGG pathway if it included genes statistically enriched
in that pathway. Networks linking CUIs were generated
using Cytoscape [15]. In these networks, each node rep-
resented a CUI, and two CUIs were connected if they
shared at least one common KEGG pathway. Addition-
ally, networks linking variants on a pathway level were
generated. For these networks, each node represented a
KEGG pathway, and two pathways were connected if
they shared at least one common CUI enriched in those
pathways. Topical analysis was performed using the Net-
work Analyzer Cytoscape plugin [15]. Separate networks
for each MeSH category were generated, with each node
shaded a various color based on both its mapping to
MeSH and how exclusive the mapping was. Lastly, all
networks of unique MeSH term pairings were compared
for statistically significant overlap of enriched KEGG
pathways, with selected pairs chosen for comparison
network construction.

Results
Mapping of variants to a phenotype ontology
Through UTS API functions, 87% of variants were com-
putationally mapped. Out of 80,686 variants in our data-
base, those unable to be mapped originated from different
source databases (Fig. 2). A manual curation protocol was

developed to rescue unique phenotypes otherwise unable
to be mapped to UMLS [11]. Currently, 56% of variants
unable to be computationally mapped have been manually
curated, with 16% classified as Type I, 23% as Type II, and
61% as Type III.

Pathway enrichment of variants and construction of
networks by MeSH term
Human variants were grouped based on MeSH to pro-
vide a higher-level phenotypic categorization. MeSH
term groupings varied in number of associated genes,
CUIs, and KEGG pathways (Fig. 3). Groups were associ-
ated with between 98 and 1636 genes, 88–1839 CUIs,
and 3–95 KEGG pathways (Fig. 3). The MeSH category
with the largest number of enriched KEGG pathways
was Congenital, Hereditary, and Neonatal Diseases and
Abnormalities (C16), with 95 pathways enriched (79% of
all pathways enriched in MeSH categories combined);
(Fig. 3). Additionally, 69% of human variants were
mapped to this MeSH category. This is likely because
most known, disease-associated human genetic variants
were compiled from databases that encompass inherited
diseases. For more specific MeSH terms, such as Stoma-
tognathic Diseases (C07), fewer KEGG pathways were
enriched. This is likely because only a small number of
genes have a known association to this disease in our
repository.
Separate networks were generated to illustrate the link

between human genetic diseases: one at the disease level
(Fig. 4a), and one at the pathway level (Fig. 4b). Out of
223 CUIs in the disease-level network, 90 (40%) were
not mapped to MeSH, 40 (18%) were mapped to a single
MeSH, and 93 (42%) were mapped to more than one
MeSH term. Out of 121 KEGG pathways in the
pathway-level network, 7 (6%) were not mapped to

Fig. 1 Human Disease Phenome construction. A bipartite graph was constructed, linking diseases to pathways. Each CUI consists of multiple
genes, which are enriched in KEGG pathways (p < = 0.0001). One CUI can link to multiple pathways, and one pathway can be linked to multiple CUIs
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MeSH, 11 (9%) were mapped to a single MeSH, and 103
(85%) were mapped to more than one MeSH term. Sim-
ple parameters of both disease and pathway level net-
works were determined using the Network Analyzer
Cytoscape plugin [15] (Table 1). The pathway-based net-
work was also illustrated using separate networks for
each individual MeSH term. Four of these networks are
illustrated in Fig. 5, shaded based on how exclusive each

mapping is. For example, dark red shading distinguishes
the most exclusive pathways, to which only a single
MeSH is mapped. In contrast, white shading distin-
guishes the least exclusive pathways, to which between
11 and 18 MeSH terms are mapped.
A total of 153 combinations of unique MeSH term pair-

ings were compared, with 35 (23%) exhibiting a significant
overlap (p < = 0.001) of enriched KEGG pathways (Fig. 6,
Additional file 1: Table S1). The pairing between Cardiovas-
cular Diseases and Skin and Connective Tissue Diseases had
the highest overlap of 39 common pathways (p= 6E-32).
When comparing unique MeSH term combinations,

two significant pairings included Cardiovascular Diseases
(C14) versus Skin and Connective Tissue Diseases (C17),
and Hemic and Lymphatic Diseases (C15) versus Immune
System Diseases (C20); (Fig. 7). For each pairing, KEGG
pathways were colored with respect to which MeSH cat-
egories they were enriched in. For example, in the first
pairing of C14 vs. C17 in Fig. 7a, nodes enriched in only
C14 are colored red, those enriched in only C17 are col-
ored blue, and those enriched in both C14 and C17 are
colored purple. Out of a total of 51 pathways enriched in
either C14 or C17, 39 (76%) are enriched in both. Add-
itionally, in Fig. 7b, out of a total of 32 pathways enriched
in either C15 and C20, 16 (50%) are enriched in both.

Discussion
Using UMLS string matching algorithms, we mapped the
Peterson et al. [1] collection of human variants to the

Fig. 2 Fraction of human variants [1] not mapped to UMLS [11],
separated by source database. Number of variants unable to be
mapped, as a percent of total variants curated in each specific
source database combination

Fig. 3 Relative number of genes, CUIs, and KEGG pathways associated with each MeSH term. Categorizations of human variants based on MeSH
classifications were enriched in KEGG pathways (p < = 0.0001). Groups with at least three enriched pathways were analyzed
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UMLS [11] phenotype ontology and built a collection of
almost 70,000 (87%) unique human genetic variants to
disorder concepts. UMLS [11] offers wide coverage of var-
iants and higher-level disease categorization through
MeSH. This allowed us to cluster phenotypes into broader
categories and make inferences about each subgroup.
Unique genetic variants associated with phenotypes other-
wise unable to be mapped to UMLS [11] were run
through a manual curation protocol, through which 56%
of variants have currently been manually curated. Map-
ping to UMLS [11] allowed human variants to be grouped
together based on same and/or similar phenotype,

alleviating many of the difficulties faced due to the lack of
standardization of vocabulary.
Disease-level and pathway-level bipartite networks

were constructed using KEGG pathway enrichment,
linking human genetic variants by common pathways or
CUIs. In both networks, one central cluster of nodes
was the most highly connected. The nodes in this cluster
generally encompassed pathways involved in essential
processes (i.e., reproduction, survival), many of which
may be altered in and/or directly linked to cancer. [10]
Through network analyzation [15] of the pathway-level
network, KEGG Pathways in Cancer was found to have
a high connectivity in the central cluster, with the high-
est node degree of 52 (Table 1).
The disease-level network contained 223 CUIs connected

by 2548 unique disease associations through gene- or
pathway-level analysis. Of these, 1338 (53%) connections
are only observed through disease-pathway associations
and not otherwise connected at the gene-level. Additionally,
461 (18%) connections are observed through disease-gene
associations only, and 741 (29%) connections are observed
through both gene- and pathway-level associations. When
CUIs are connected through both common genes and
common pathways, the resulting disease associations
function as confidence builders with a higher level of evi-
dence to support the connection. Hypoglycaemia, hyperin-
sulinaemic (C1864903) and Diabetes, type 2 (C0011860)
were connected through the genes HNF1A, ABCC8,
HNF4A, and GCK, as well as the KEGG pathway Type II
Diabetes Mellitus. This association is expected, as

= mapped to more than one MeSH

= not mapped to MESH
= mapped to one MeSH

BA

Disease-level Network Pathway-level Network 

Fig. 4 Network graphs showing connections between genetic disorders at the disease (CUI) and pathway (KEGG) levels. Out of 223 CUIs
statistically enriched in at least one KEGG pathway (p < = 0.0001), 213 (96%) can be connected to other CUIs through a common pathway (a).
Out of 121 KEGG pathways, 109 (90%) can be connected to other pathways through a common CUI (b). Both graphs are shaded according to
the number of MeSH categories to which each node maps

Table 1 Simple parameter network analysis [15] of disease-level
and pathway-level networks

Disease-level
Network

Pathway-level
Network

Number of nodes 213 102

Number of edges 2079 857

Clustering coefficient 0.835 0.722

Connected components 15 6

Network diameter 4 5

Shortest paths 19,514 (43%) 6302 (61%)

Characteristic path length 2.322 2.029

Avg. number of neighbors 19.521 16.804

Network density 0.092 0.166

Network heterogeneity 1.042 0.961

The network parameters were calculated from connected nodes only (with at
least one edge)
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hypoglycemia is known to affect type II diabetes patients
near insulin-deficiency [16]. CUI connections made
through pathways but not through genes extend the func-
tional context of variants and provide new potential disease
associations. Noonan Syndrome (C0028326) and Essential
Hypertension (C0085580) were connected through the
KEGG pathway Vascular Smooth Muscle Contraction, des-
pite associated variants not having any common genes in
our repository. A common symptom of Noonan syndrome
is hypertrophic cardiomyopathy [17], which in turn is
highly related to hypertension and often occurs in conjunc-
tion in elderly patients [18], suggesting a logical connection
between Noonan Syndrome and Essential Hypertension
concepts in our network.
As shown in Fig. 7, comparison of Cardiovascular (C14)

and Skin and Connective Tissue (C17) networks shows
high overlap in the largest cluster of KEGG pathways,
which includes basic cellular functions such as cell signal-
ing, growth, and maintenance. Many of these kinds of
pathways are also altered in different types of cancer, as

seen by the connections and enrichment of cancerous
pathways in the main network cluster. A few examples in-
clude Melanoma, MAPK Signaling Pathway, and Path-
ways in Cancer. The high similarity between C14 and C17
is to be expected, as many cardiac disorders involve the
connective tissue within/surrounding the heart, and rela-
tionships have been observed between normal develop-
ment of connective tissue and the cardiovascular system
[19]. Comparison of Hemic and Lymphatic (C15) and
Immune System (C20) networks shows high overlap in a
cluster of immunological KEGG pathways, including
Primary Immunodeficiency, Type I Diabetes Mellitus, and
Autoimmune Thyroid Disease. This intersection is also ex-
pected to be significant, as lymphatic diseases are highly
linked to the immune surveillance and adaption [20].
Our next step is to continue analyzing human genetic

variants at different levels of clustering, expanding our
classifications and extending functional context to find
new disease connections. If a pathway is found to link to
multiple diseases, a drug being used to treat one disease

= KEGG not mapped to this MESH
= mapped to just this MESH (1)
= mapped to 1 other MESH (2)
= mapped to 2 other MESH (3)
= mapped to 3 other MESH (4)
= mapped to 4-9 other MESH (5-10)
= mapped to 10+ other MESH (11+)

A B 

C D

Nervous System Diseases Cardiovascular Diseases 

Nutritional and Metabolic Diseases Immune System Diseases 

Fig. 5 Networks linking genetic disorders to KEGG pathways colored by four separate MeSH terms. Nodes represent KEGG pathways, connected
through underlying links between common CUIs. Networks are colored by MeSH term, specifically Nervous System Diseases (a), Cardiovascular
Diseases (b), Nutritional and Metabolic Diseases (c), and Immune System Diseases (d)
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Fig. 6 Pairwise comparison of MeSH categories. For each of the 135 MeSH pairs, p-values denote the significance of the number of common
pathways. C04 =Neoplasms (D009369); C05 =Musculoskeletal Diseases (D009140); C06 = Digestive System Diseases (D004066); C07 = Stomatognathic
Diseases (D009057); C08 = Respiratory Tract Diseases (D012140); C09 =Otorhinolaryngologic Diseases (D010038); C10 = Nervous System Diseases
(D009422); C11 = Eye Diseases (D005128); C12 =Male Urogenital Diseases (D052801); C13 = Female Urogenital Diseases and Pregnancy Complications
(D005261); C14 = Cardiovascular Diseases (D002318); C15 = Hemic and Lymphatic Diseases (D006425); C16 = Congenital, Hereditary, and Neonatal
Diseases and Abnormalities (D009358); C17 = Skin and Connective Tissue Diseases (D017437); C18 = Nutritional and Metabolic Diseases
(D009750); C19 = Endocrine System Diseases (D004700); C20 = Immune System Diseases (D007154) and C23 = Pathological Conditions, Signs
and Symptoms (D013568)

Cardiovascular vs. Skin and Connective Tissue Hemic and Lymphatic vs. Immune System 

= mapped to C14 and not C17
= mapped to C17 and not C14

= KEGG not mapped to either MESH

A B 

= mapped to both C14 & C17

= mapped to C15 and not C20
= mapped to C20 and not C15

= KEGG not mapped to either MESH

= mapped to both C15 & C20

Fig. 7 Comparison networks between two separate MeSH term categories. Intersection between C14 and C17 networks (a) as well C15 and C20
networks (b) yield statistically significant overlap (p = 1E-28, p = 1E-12, respectively). KEGG pathways colored according to MeSH categorization.
(see abbreviations in Fig. 5)
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could potentially be repurposed to treat another disease
connected at the same pathway level [7]. In addition, if a
disease is found to link to multiple pathways, a patient
with this disease may benefit from a pathway-guided
combination therapy [7]. With the addition of patient
data, variant-based disease-pathway associations can be
compared across individuals and provide a platform for
incorporating new variant data into our database. In the
future, this will allow us to develop computational tools
that facilitate the optimization of personalized diagnosis,
prognosis, and disease treatment.

Conclusions
Expanding our view of the human diseasome to include hu-
man variant-derived KEGG pathway associations allowed for
an extended functional view of disease-variant associations.
Novel disease connections were made by disease-pathway
associations not otherwise detected through single-gene ana-
lysis. This shows that seemingly unrelated disease variants
can be associated at the pathway level. Additionally, this type
of analysis provides new relationships between metabolic
pathways and disease-drug networks, potentially enabling
novel diagnostic and therapeutic interventions.

Additional file

Additional file 1: Figure S1. detailing manual curation protocol and
Table S1. providing MeSH term pairings. (DOCX 27 kb)
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