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Abstract

Background: Alzheimer's disease (AD) is one of the most common neurodegenerative diseases that causes problems
related to brain function. To some extent it is understood on a molecular level how AD arises, however there are a lack
of biomarkers that can be used for early diagnosis. Two popular methods to identify AD-related biomarkers use
genetics and neuroimaging. Genes and neuroimaging phenotypes have provided some insights as to the potential for
AD biomarkers. While the field of imaging-genomics has identified genetic features associated with structural and
functional neuroimaging phenotypes, it remains unclear how variants that affect splicing could be important for
understanding the genetic etiology of AD.

Methods: In this study, rare variants (minor allele frequency < 0.01) in splicing regulatory element (SRE) loci from whole
genome sequencing (WGS) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, were used to identify
genes that are associated with global brain cortical glucose metabolism in AD measured by FDG PET-scans.
Gene-based associated analyses of rare variants were performed using the program BioBin and the optimal
Sequence Kernel Association Test (SKAT-O).

Results: The gene, EXOC3L4, was identified as significantly associated with global cortical glucose metabolism
(FDR (false discovery rate) corrected p < 0.05) using SRE coding variants only. Three loci that may affect splicing
within EXOC3L4 contribute to the association.

Conclusion: Based on sequence homology, EXOC3L4 is likely a part of the exocyst complex. Our results suggest
the possibility that variants which affect proper splicing of EXOC3L4 via SREs may impact vesicle transport, giving
rise to AD related phenotypes. Overall, by utilizing WGS and functional neuroimaging we have identified a gene
significantly associated with an AD related endophenotype, potentially through a mechanism that involves splicing.
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Background
Late-onset Alzheimer’s disease (LOAD) is a progressive
common neurodegenerative disorder that causes problems
with memory, thinking, and behavior and pathologically
characterized by the presence of amyloid deposition and
neurofibrillary tangles in the brain [1, 2]. 5.5 million
Americans are estimated to have AD in 2017 and the
number of Americans with AD is rapidly increasing be-
cause of the growing number of older adults [1]. Cur-
rently, there is no available cure for AD. As a result,
without earlier diagnosis and early disease-modifying
intervention, the total number of individuals with AD is
predicted to quadruple by 2050, causing a great economic
and social burden [1]. Furthermore, a biomarker for early
diagnosis could benefit clinical trials for AD by precisely
classifying prognosis, stage, and determining a clinical
endpoint [3]. Thus, AD related research is increasingly
important, especially as it relates to early diagnosis.
Genetic variation may play an essential role in AD patho-
genesis [4]. Recently, a large-scale genome-wide association
study (GWAS) identified and validated more than 22 sus-
ceptibility genes for LOAD [5]. After the success of GWAS
for common SNPs, large-scale whole exome and genome
sequencing studies have successfully identified several
rare risk variants for LOAD [6-9]. Recently, the genetics
of AD has been investigated in the context of imaging
data. By combining information from genetic architecture,
functional neuroimaging, and multi-omics data, genetic
variation associated with AD-related imaging biomarkers
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have been identified and thus the potential influence of
genetic variation on brain structure and function related
to AD pathophysiology [10, 11]. Furthermore, imaging
endophenotypes can substantially increase statistical de-
tection power of genetic association analysis through the
use of quantitative traits as phenotypes [12].

Rare and low-frequency variants play an important
role in the heritability of disease. However, the spurious
nature of rare variants makes them difficult to run an as-
sociation test. With so few occurrences of the variant at a
given loci most tests will be underpowered [13]. In
order to overcome this problem, variants can be grouped
together by prior biological knowledge, such as genes,
conserved loci, and pathways [14—16]. This strategy will
accumulate effects of rare variants within a knowledge-
driven region and reduce the number of statistical tests,
thereby increasing the power to detect an association.
Additionally, focusing on specific types of variants, such
as those that lead to non-synonymous changes can also
reduce the multiple testing burden and provide a potential
explanation for the gene associated with the phenotype
[17]. An attractive category of variant for studying AD are
those that impact splicing.

Alternative splicing (AS) is an important gene regula-
tory mechanism underlying neurological function and
development [18]. While motifs along splice junctions
have been well studies, the effect of genetic variants in
splicing regulatory elements (SREs) is less understood in
the context of AD. There are multiple types of SREs that
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Fig. 1 Workflow describing rare SRE variant association test using imaging phenotype data. Diagram of how rare variants (RV) from whole-genome
sequencing (WGS) data were tested for an association with ADNI imaging data. WGS variants were annotated with VEP then filtered for those that
reside in SRE lodi (i.e, ESE, ESS, and ISE). Variants were then binned into genes using annotations from LOKI. SKAT-O was then used to test genes for an
association with the ADNI imaging endophenotype
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Table 1 Summary statistics of variables used as covariates in
association study

Demographics and Covariates Values (N = 695)
Sex (M/F) 391/304
Age in years (Mean/Std) 7295 (+/— 7.05)

can impact splicing in different ways including intronic
splicing enhancers (ISE), intronic splicing silencers (ISS),
exonic splicing enhancers (ESE), and exonic splicing si-
lencers (ESS) [19]. However, the significance of SRE in
relation to AD related phenotypes remains unknown. In
this study, an imaging genomics approach was taken to
investigate AD by identifying rare variants within SREs
associated with a neuroimaging phenotype using ADNI
data. The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) has provided publically available whole-genome
sequencing (WGS) data, along with imaging phenotypes.
BioBin, an open-source program that was developed to
group or bin the variants using information from multiple
databases, was employed to bin rare variants from ADNI
WGS data [14]. Gene-based analyses were performed
using the optimal Sequence Kernel Association Test
(SKAT-0O), which maximizes power by adaptively using the
data to optimally combine the burden test and dispersion
test.

Methods

Study sample

All whole-genome sequencing (WGS) and imaging data
came from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) cohort. The cohort used here was made up of
participants with cognitive normal (CN), early mild cogni-
tive impairment (EMCI), late MCI (LMCI), and AD. The
demographic data, along with sequencing and imaging
data were downloaded from the ADNI data repository
(http://www.loni.usc.edu/ADNI/). All participants pro-
vided written informed consent and study protocols were
approved by participating sites’ Institutional Review
Board. WGS was performed using blood-derived genomic
DNA samples from ADNI participants. Sequencing was
performed using 100 bp paired-end reads on the Illumina
HiSeq2000 platform (www.illumina.com). As previously
described using Broad GATK and BWA-mem, reads were
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mapped and aligned to the human genome (build 37),
then variants were called [8, 20].

Neuroimaging analysis

Pre-processed ['®F] FDG PET scans were downloaded
from the LONI (http://loni.usc.edu). As previously de-
scribed in detail, these FDG scans (Co-registered, Aver-
aged, Standardized Image and Voxel Size, Uniform
Resolution) were already averaged, aligned to a standard
space, re-sampled to a standard image and voxel size (2 x
2 x 2 mm), smoothed to a uniform resolution, and inten-
sity normalized [21]. The pre-processed images were
aligned to each individual’s MRI scan at the same visit
and normalized to MNI space using SPM8 as previ-
ously described [22]. The intensity of the resulting
scans was re-scaled to a pons reference region and then
the final [**F] FDG standardized uptake value ratio
(SUVR) images were created. A global cortical glucose
metabolism measured from ['®F] FDG-PET scans was
used as an AD-related quantitative endophenotype with
age at baseline and sex as covariates.

Variant annotation

The VCF file containing 695 non-Hispanic Caucasian
participants with imaging phenotype, covariates and
genomic data was annotated using the variant effect pre-
dictor (VEP) package [23]. The variant_effect_predictor.pl
script was applied to the VCF file using cache, refseq, and
pick flags. Variants were then selected if they were also an-
notated with an SRE element. Sequences and organization
of SREs in humans were identified using previously devel-
oped method [19, 24] which required the use of dbSNP
version 137 and hgl9 reference genome [25, 26]. In brief,
this method predicts hexamer motifs associated with the
following types of SREs associated with exon skipping
events: intronic splicing enhancer (ISE), exonic splicing
enhancer (ESE), and exonic splicing silencer (ESS). The
program twoBitToFa was used to find the genome se-
quences surrounding the SNPs of interest with hgl9
reference [27]. 11-mer sequences were interrogated sur-
rounding the SNPs (5 bp on each side) using the hex-
amer motifs. While ESE and ESS were coding SNPs,
the ISE were defined as intronic SNPs. Using the pub-
lished methods [19], an SRE was counted if there was a
match between a hexamer motif and any part of the

Table 2 Top 5 genes associated with imaging phenotype using ISE variants only

Gene Unique Loci Variants across cohort SKAT-O p-value FDR corrected p-value
TNFAIP2 7 10 247E-05 0.123
STK35 56 148 3.09E-05 0.123
PWRN1 34 101 4.15E-05 0.123
EXOC3L4 8 21 6.11E-05 0.123
TMEM182 23 67 6.22E-05 0.123
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Table 3 EXOC3L4 gene is associated with imaging phenotype using ESE/ESS variants only

Gene Unique Loci

Variants across cohort

SKAT-O p-value FDR corrected p-value

EXOC3L4 4 16

748E-06 0.038

11-mer, and associated with exon skipping. ISE SNPs
were included based on the exons bordering the intron
in which the SNP was located.

Variant binning, association test, and analysis

BioBin was used to group rare variants by genic region
(minor allele frequency (MAF) < 0.01). BioBin uses gene
annotations from LOKI (the library of knowledge inte-
gration), which contains a number of widely used publi-
cally available databases such as NCBI Entrez, UCSC
Genome Browser, Kyoto Encyclopedia of Genes and
Genomes (KEGG), Reactome, Genome Ontology (GO)
and others. Association tests were performed using
SKAT-O [28], adjusting for age and sex. The minimum
bin size included in the association test was five variants
across samples. The bins were tested for an association
with global brain cortical glucose metabolism measured
by FDG PET scans (often referred to as the “imaging
phenotype”). For both annotation and BioBin, the
GRCh37 assembly was specified. Finally, the false discov-
ery rate for BioBin output p-values was then calculated in
R using the p.adjust function, using the “FDR” method.
Variant effect analysis using PROVEAN and SIFT was
performed online at http://provean.jcvi.org [29-31].
The UCSC genome browser was used to visualize the
ECO3L4 gene along with splicing isoforms and protein
domains [25].

Results

First, variants from the ADNI WGS study were selected
that were located in the SRE coding and/or ISE loci
(Fig. 1). Next BioBin was employed to bin variants with
minor allele frequency (MAF) less than 0.01 into their
respective genes. SKAT-O was used to test if these rare
variants in each gene were associated with the phenotype
derived from FDG PET scans from ADNI These associa-
tions were adjusted for covariates such as age and sex to
reduce the effect of confounding variables (Table 1). The
p-values were adjusted for multiple testing, and genes with
a false discovery rate (FDR) less than 0.05 were considered
significant, while those with FDR < 0.1 were suggestive of
statistical significance. Using ISE variants, there were no
genes that had a significant association with the imaging
phenotype (Table 2). However, using SRE coding variants
(i.e., ESE and ESS), EXOC3L4 was identified as having a
genome-wide significant (FDR < 5%) association with the
imaging phenotype (Table 3 and Fig. 2). PROVEAN and
SIFT predictions for variants in EXOC3L4 were consid-
ered neutral and tolerated, respectively, which suggests
SRE annotations offer novel insight into the consequence
of rare variants. Also, the sequence homology between
EXOC3L4 and exocyst complex components suggests SRE
sites are within the Sec6 domain, indicating these splicing
elements could have a functional impact on the protein
(uniprot.org). Alternatively, when combining both sets of
variants there were several genes which were only

. EXOC3L4

—logio(p)
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Fig. 2 Manhattan plot of p-values from association between genes and the imaging phenotype using SRE coding variants. Manhattan plot which
shows the results from the association test between the imaging phenotype and each gene tested using SKAT-O. Only variants that fell into SRE
coding loci were used. The blue and red lines represent 0.05 p-value and 0.05 FDR cutoffs, respectively
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Table 4 Top 5 genes associated with imaging phenotype using ESE/ESS and ISE variants

Gene Unique Loci Variants across cohort SKAT-O p-value FDR corrected p-value
TNFAIP2 8 14 1.20E-05 0.094
EXOC3L4 10 35 1.99E-05 0.094
STK35 56 148 3.09E-05 0.094
STEAP4 7 13 3.23E-05 0.094
PWRN1 34 101 4.15E-05 0.097

suggestive of having a significant (FDR < 10%) association
with the imaging phenotype (Table 4). In summary, SRE
coding annotations provided increased power to detect
EXOC3L4 as having an association with the imaging
phenotype.

To investigate the association with EXOC3L4 further,
each of the four loci in EXOC3L4 with rare variants were
interrogated to define their contribution to the associ-
ation. This analysis was performed by removing each
SNP individually then rerunning the association test to
retrieve a p-value for only EXOC3L4 (Table 5). After re-
moving SNPs rs10142287, rs9324055, or rs148718670,
EXOC3L4 had a p-value that was less significant com-
pared to the original p-value of EXOC3L4 with 4 vari-
ants. These effects are unlikely to be caused purely by
the number of variants at each locus removed, as only
one or three variants were removed, suggesting there is
something specific about the loci which leads to the as-
sociation with the phenotype. As shown in the UCSC
genome browser (Fig. 3), there is evidence that alterna-
tive splicing of EXOC3L4 can lead to the existence of a
transcript that skips the second exon which harbors two
SNPs within ESE sites, rs10142287 and rs9324055. The
skipped exon is part of a region encoding the Sec6 domain
(Fig. 3). These results help explain why variability in SRE
sites of EXOC3L4 could impact the phenotype through a
mechanism involving AS. On the other hand, removing the
rs117708804: SNP resulted in an increase in significance as
illustrated by the lower p-value, suggesting that EXOC3L4
can absorb variation at this locus, and that variants here
may be spurious or not important for the context of this
association.

Table 5 Characterization of EXOC3L4 rare variant loci

Discussion

Although very little is known about EXOC3L4 or its
orthologues, BLAST search results using its amino acid
sequence suggests it is likely to be an exocyst complex
component (uniprot.org). This information lends itself
to a number of possible models for how EXOC3L4 may
be involved in AD. In mammals, the exocyst complex is
an eight-subunit complex that is ubiquitously expressed
[32]. The exocyst proteins are important for vesicle traf-
ficking along with SNARE proteins [33, 34]. It has been
suggested that SNARE proteins are important for glucose
uptake in the context of proper neuronal function [35].
And the imaging phenotype from this study, FDG PET-
scans, quantifies global brain cortical glucose metabolism
in AD. Additionally, vesicle transport is used for lysosomal
transport, such as seen in autophagy [36]. AD is defined
by the accumulation of proteins like amyloid plaques, which
can be removed via the autophagy-lysosome pathway [37].
There is evidence that defects in this autophagy process can
lead to AD [38]. Thus, our results suggest a model where
variants in EXOC3L4 that are located in SRE coding loci
may alter the function of the protein through exon skipping,
which may inhibit proper vesicle transport. Moreover, these
variants may lead to AD related phenotypes.

Evidence suggests the exocyst plays important roles in
embryogenesis, neuronal cell polarity, and cell motility
[32]. EXOC3L4 shares high sequence similarity with
M-seq (also known as TNFaip2), a protein that shares
structural similarity to Sec6 (uniprot.org). It has been
suggested that TNFaip2 has a role in filopedia develop-
ment in neurons [32]. Thus, if EXOC3L4 does not carry
out its function through interactions with the exocyst

rsiD Consequence p-value® SRE type Variants across cohort
rs117708804 missense 4.32E-07 ESE, ESS 11

EXOC3L4 7.48E-06" 16

rs10142287 Ssynonymous 1.58E-04 ESE 1

1s9324055 missense 1.59E-04 ESE 1

rs148718670 missense 1.68E-04 ESE 3

#SKAT-O p-value results after removing the variant from EXOC3L4
BSKAT-O p-value result using all variants from EXOC3L4
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complex, there is evidence that exocyst-like proteins are
important for neuronal cell function through an alterna-
tive mechanism.

One limitation of this study is the samples size.
TNFAIP2 was only suggestive of statistical significance,
however it is another protein that is functionally relevant to
SNARE proteins and thus vesicle transport (uniprot.org).
Since only few samples contained the rare variants, it will
be important for this study to be replicated in another inde-
pendent cohort. Additionally, since these are associations it
will be important to perform follow-up experiments to
identify a causal link between EXOC3L4 and AD. None the
less, these results suggest more genes that contain rare vari-
ants in SRE loci, and are important for proper exocytosis
and autophagy, are likely to be identified in studies with in-
creased sample size. In summary, annotating variants as
SRE provides novel insight as to how rare variants may be
useful when finding an association between an imaging
phenotype and genetic variants in the context of AD.

Conclusions

In this study, we set out to find associations between a
neuroimaging phenotype and rare SRE variants from
WGS in AD. While it is common to perform a gene-
wise association test, we hypothesized that the power of
this study could be increased by focusing on functionally
relevant loci such as those that impact splicing. Further-
more, associations with annotated regions can lead to
easier interpretation afterward. Thus, rare variants that
fell into SRE loci from WGS from the ADNI cohort were
collapsed into genes using BioBin. These rare variants
were used in an association test for an imaging phenotype
and EXOC3L4 was identified as having a statistically sig-
nificant association. And while intronic elements did not
detect a statistically significant association, exonic splicing
elements did. In summary, utilizing prior biological

knowledge in the form of splicing elements serves as an
important means to identify genotype-phenotype rela-
tionships with respect to imaging data and AD.
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