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Abstract

Background: RNA-seq is the most commonly used sequencing application. Not only does it measure gene expression
but it is also an excellent media to detect important structural variants such as single nucleotide variants (SNVs),
insertion/deletion (Indels) or fusion transcripts. However, detection of these variants is challenging and complex from
RNA-seq. Here we describe a sensitive and accurate analytical pipeline which detects various mutations at once for
translational precision medicine.

Methods: The pipeline incorporates most sensitive aligners for Indels in RNA-Seq, the best practice for data
preprocessing and variant calling, and STAR-fusion is for chimeric transcripts. Variants/mutations are annotated, and key
genes can be extracted for further investigation and clinical actions. Three datasets were used to evaluate the
performance of the pipeline for SNVs, indels and fusion transcripts.

Results: For the well-defined variants from NA12878 by GIAB project, about 95% and 80% of sensitivities were
obtained for SNVs and indels, respectively, in matching RNA-seq. Comparison with other variant specific tools showed
good performance of the pipeline. For the lung cancer dataset with 41 known and oncogenic mutations, 39 were
detected by the pipeline with STAR aligner and all by the GSNAP aligner. An actionable EML4 and ALK fusion was also
detected in one of the tumors, which also demonstrated outlier ALK expression. For 9 fusions spiked-into RNA-seq
libraries with different concentrations, the pipeline was able to detect all in unfiltered results although some at very
low concentrations may be missed when filtering was applied.

Conclusions: The new RNA-seq workflow is an accurate and comprehensive mutation profiler from RNA-seq. Key or
actionable mutations are reliably detected from RNA-seq, which makes it a practical alternative source for personalized
medicine.
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Background
Somatic mutations are a hallmark of a tumor and inherited
mutations cause certain genetic disorders. Characterization
of these mutations and exploration of their clinical rele-
vance constitute a critical part of personalized medicine.
Mutations present in multiple forms and common ones in-
clude single nucleotide variants (SNVs), short insertions/de-
letions (indels), or fusion transcripts. SNVs or indels are
primarily detected from DNA sequencing such as whole-
genome, exome-sequencing, targeted sequence or ampli-
con. However, RNA-seq is the most popular sequencing ap-
plication as it contains much richer genomic information.
Not only does it measure gene expression but it also can
detect important structural variants such as SNVs, indels or
fusion transcripts, some of which are known actionable
mutations for tumor treatment. A good example of this is
EGFR single base mutation (L858R) in exon 21 and
in-frame deletions (ranging from 12 to 18 bases) in exon
19, both can be targeted by EGFR tyrosine kinase inhibi-
tors, such as gefitinib and erlotinib with clear clinical bene-
fits to patients [1]. Although fusion transcript detection
from RNA-seq is commonly used [2–4], use of RNA-seq
for SNV or Indel mutation detection in clinical settings is
still rare, which is contributed by several reasons. Detection
of structural variants from RNA-seq is much more challen-
ging. RNA transcripts are spliced molecules from different
parts of genome and exon-exon junction aware alignment
is needed. This alignment causes difficulty for variant call-
ing tools, which are mostly developed for DNA-sequencing.
As the primary goal of RNA-seq is gene expression profil-
ing, commonly used RNA-seq mapping programs often
conduct ungapped mapping and sequence reads with inser-
tion or deletion are un-mappable and these variants would
be ignored [5]. Even for the same alignment, variant calling
tools perform differently, particularly for Indel detection
[5]. Another concern for RNA-seq based mutation detec-
tion is differential gene expression, which leads to variable
coverage between genes and affects variant detection for
genes expressed at low level. This is highly relevant and im-
portant for mutation discovery. Meanwhile, data also show
that key or driver mutations often occur in expressed genes
and tend to be conserved and easily detectable in RNA-seq
[6], which makes RNA-seq based mutation detection a po-
tential cost effective alternative if it can be used for multiple
information profiling simultaneously.
Many RNA-seq workflows have been developed [7–9],

but they mostly perform a particular function in research
settings. MAP-RSeq [8] is a comprehensive analytical pipe-
line with gene expression quantification, fusion transcript
and SNV detection, but it cannot detect indels. PRADA [7]
focuses fusion detection and annotation. A recent tool
Opossum [10] conducts comprehensive RNA-seq align-
ment pre-processing before variant calling by either Platy-
pus [11] or GATK Haplotype Caller [12] but only SNVs are

evaluated. As continuation of our previous work in detect-
ing Indels from RNA-seq, we have developed an inte-
grated RNA-seq pipeline “PanMutsRx” with goal of
reporting common and clinical important mutations
(SNVs, indels, fusion transcript) at once. PanMutsRx im-
plements RNA-seq alignment programs that conduct
gapped and junction aware mapping, performs rigourous
pre-processing steps unique to RNA-seq before variant
calling, incorporates selected best performing single sam-
ple variant and paired somatic mutation callers, and op-
tionally reports mutations for a list of genes in interest.
Using a sample from Genome in a Bottle Consortium
where variants are well defined from multi-platform
DNA-sequencing, we demonstrated its good performance
in SNV and Indel detection. We also tested a set of clinical
samples with known mutations and fusion transcripts and
showed that important mutations were almost all detect-
able, which makes it a potential application for clinical
applications.

Methods
Pipeline implementation
PanMutsRx is implemented modularly using Python 3
and shell scripts for various operations such as input/out-
put file operations, log file management, submitting jobs
to cluster (optional), tool execution and integration. The
main operation of the workflow is summarized in Fig. 1a.

A. Sequence read alignment: This pipeline includes
two aligners i.e. GSNAP [13] and STAR [14], with
STAR as default (or both can be run at the same
time). STAR is an ultrafast RNA-Seq junction aware
aligner which uses sequential maximum mappable
seed search, seed clustering and stitching. A two-
step alignment is implemented to increase the ac-
curacy; in the first step splice junctions are detected
and are used to guide in the second alignment.
STAR is not only superfast but also very sensitive
for Indel detection as demonstrated in our previous
work [5]. GSNAP is another junction aware and fast
aligner which is tolerant to complex genomic events
like variants and indels and was shown more sensi-
tive for longer indels when sequence reads are short
[5]. Read group information is added and duplicate
reads are tagged with SAMBLASTER tool [15].

B. Aligned read preprocessing for SNV/Indel
detection: RNA-Seq variant calling is much com-
plex than DNA-seq and the gapped alignment also
causes incompatibility with existing variant callers.
This module prepares the aligned bam file for next
variant calling step. SplitNCigar, Indel Realignment
and Base Recalibration are done by GATK tool kit
[12]. In the SplitNCigar step, reads are split into
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Fig. 1 PanMutsRx workflow. a workflow diagram. b output structure
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exon segments and sequences which overhang in
the intronic region are hard clipped.

C. Variant/somatic mutation Calling: Our previous
work showed GATK [12] haplotype caller performed
superiorly for single sample mode SNV and indel
detection, and Strelka [16] was better for paired
tumor/normal somatic mutation calling in RNA-seq
[5]. They are implemented as SNV and somatic caller,
respectively.

D. Variant annotation: Functional annotation is a key
step for identified variants to understand the potential
clinical impacts. Annovar [17] is a lightweight, simple
to use, and efficient tool to annotate variants. Annovar
is integrated as part of workflow for variant
interpretation.

E. Fusion Transcripts: Fusion transcripts are
characteristic of tumors and highly relevant to
targeted therapy [18, 19]. It is important to detect
potentially targetable fusions for guided therapy. To
provide seamless integration, STAR-Fusion is incor-
porated for this function.

F. Gene Expression: The gene level quantification is
done using featureCounts software [20]. The gene
expression data can be used for outliner gene
expression detection or differential expression
analysis where both raw digital read count and
normalized RPKM expression are generated.

G. Summary Report and output structure: The
output file structure is illustrated in Fig. 1b. The
read alignment files are provided in the BAM file
format and are indexed to view in the IGV, Single
sample variant and somatic variant calls are in the
VCF format, Fusion transcripts are provided in tab
separated files and gene expression is represented as
raw counts and RPKM values in tab separated files.

The workflow has flexibility to execute individual mod-
ules separately and appropriate log files are generated for
troubleshooting. Additional options are provided to run
the workflow in the open grid engine parallel cluster en-
vironment, but depending on the other grid engine types
changes may need to be made. Parameters used for all
steps are provided in Additional file 1: Table S1.

Test data and pipeline evaluation
To evaluate the performance of PanMutsRx in SNV/
Indel and fusion detection, we used 3 datasets.

Hapmap NA12878 RNA-Seq and DNA-Seq dataset
Genome in a Bottle (GIAB) consortium released a
benchmark SNP and indel dataset for sample NA12878
by integrating multiple DNA sequence data sets includ-
ing whole genome sequencing [21]. For the same sam-
ple, RNA-seq was performed through ENCODE project.

We downloaded the raw RNA-seq data (https://www.en-
codeproject.org/; ENCFF377UIC with 147 million
pair-end reads at 100 bp read length) and analyzed
through our pipeline for SNVs and Indels and compared
with the benchmark DNA variants. As variants from
RNA-seq are only possible from coding regions and only
expressed genes can be assessed, the comparison was
limited to the genomic positions with at least 10X cover-
age in the RNA-seq where variants are reported in the
reference dataset from GIAB. The sensitivity was calcu-
lated as the percent of correct calls in RNA-seq at these
positions in comparison with variants in DNAs (SNVs or
indels separately). For specificity, we extracted all posi-
tions in RNA-seq with at least 10X coverage but there
are no variants in DNA as defined in GIAB benchmark
set (true negatives or TN). Any variants in these posi-
tions reported from RNA-seq were considered as false
positives (FP) and the specificity was obtained by the
formula: TN/(TN + FP).
We also run sample ENCFF377UIC by other public

tools and compared the relative performances for the
SNV and Indel detection. Opossum is a RNA-seq prepro-
cessing tool before variant calling by either Platypus or
GATK haplotype caller and demonstrates a good perform-
ance in SNV detection [10]. In addition to the GATK best
practices for RNA-seq variant calling [22], which Pan-
MutRx follows, Opossum merges overlapping reads and
modifies the base qualities at the ends of these reads be-
fore splitting them. Opossum can use Tophat or STAR
alignment but we used the latter as the former does not
allow Indel detection. RVBoost along with MAP-RSeq [8]
is a RNA variant prioritization method with demonstrated
better performance [23]. It uses several attributes unique
for RNA-seq and a boosting method to train a model with
reliable variants and then prioritizes the RNA SNV vari-
ants based on the trained model.

Lung cancer adenocarcinoma RNA-seq datasets with known
oncogenic or targetable mutations
Lung cancer is one of tumors harboring a high number of
mutations [24] and some of the mutations are sensitive to
targeted therapy such as EGFR single nucleotide mutation
at exon 21 (L858R) and intermediate indels (12 to 18
bases) at exon 19 [25] targeted by tyrosine kinase inhibi-
tors [1] and EML4-ALK fusion targeted by kinase inhibi-
tor Crizotinib [26]. The diverse cancer mutations and high
yield targeted therapy provide an excellent use case to
demonstrate the usability of PanMutsRx pipeline. To this
end, we downloaded a lung adenocarcinoma dataset from
SRA (ERP001058) consisting of 77 tumor and normal
pairs with RNA-seq performed [27] where all of the afore-
mentioned mutations are known to be present. The
RNA-seq was sequenced at pair ends of 101 cycles and
was analyzed in the paired mode for somatic mutations
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(comparing each tumor with its paired normal sample
from each patient). The somatic mutations were com-
pared with the known mutations.

Synthetic spike-in cancer gene fusions of mRNA-seq data
This publicly available dataset is created for the commu-
nity to evaluate fusion detection algorithm where 9 well
known oncogenic fusion transcripts were spiked into
RNA-seq libraries at wide range of molarities [28]. We
downloaded and evaluated 6 samples at the concentra-
tion of − 3.47, − 4.17, − 5.87, − 6.17, − 6.87, and − 8.57
through our pipeline. To reduce high false positives, we
applied the filters that require combined normalized
split and spanning fragment reads greater than 0.1 FFPM
(J_FFPM + S_FFPM > 0.1, i.e., fusion fragments per mil-
lion total reads) and the split reads are supported with at
least 25 bases at both sides of a putative breakpoint.
(“LargeAnchorSupport”==“YES_LDAS”).

Results
Comparison of SNVs and Indels detected from RNA-seq
with golden standard DNA-seq of Hapmap NA12878
It took about 20 h for PanMutsRx to complete all the
processing and analyses for the sample with 150 million
reads (Additional file 1: Table S2). For GIAB reference
variants detected from DNA, 6488 and 93 positions are
covered with at least 10 reads for SNVs and Indels, re-
spectively, in the RNA-seq library of ENCFF377UIC by
the STAR alignment. PanMutsRx correctly detected
94.84% of SNVs and 79.57% of Indels (Fig. 2a). The simi-
lar results were observed from the alignment by GSNAP.
A slightly higher concordance for SNPs was observed
with STAR alignment whereas GSNAP was slightly more
sensitive to indels, as overserved previously [5]. High
concordance was also obtained for the variant calls be-
tween STAR and GSNAP alignments (Fig. 2b). About
98% SNVs and Indels called by either were common and
consistent between the two aligners. As STAR is much
faster than GSNAP and its alignment can be used for fu-
sion transcript detection, our comparison hereafter used
STAR alignment only.

Performance comparison with other RNA-seq variant calling
tools
We compared the variant results of PanMutsRx, which
uses STAR alignment with GATK best practices prepro-
cessing and GATK haplotype caller (STAR_GATKPRE_-
GATK), with STAR alignment by Opossum preprocessing
and GATK haplotype caller (STAR_OPOSSUM_GATK),
STAR alignment by Opossum preprocessing and PLATY-
PUS variant calling (STAR_OPOSSUM_PLATYPUS), and
MAP-RSeq with RVBoost (MAPRSeq_RVBoost). MAP-
RSeq use Tophat alignment and GATK unified genotyper.
As Tophat is gapless alignment and RVBoost only works

with SNVs, our comparison with this was limited to
SNVs only. PanMutsRx obtained very similar sensitiv-
ities for both SNVs and Indels with more complexed
Opossum pre-processing along with GATK haplotype
caller (95% and 80% for SNVs and Indels, respect-
ively). Opossum along with Platypus demonstrated the
lowest sensitivities for SNVs and Indels, 86% and 75%
respectively (Fig. 3). Although all combinations had
very high specificity (> 99.98%), MAP-RSeq with
RVBoost had the lowest number of false positive SNVs,

Fig. 2 SNV and Indel detection by STAR and GSNAP alignment from
PanMutsRx. a SNV and Indel detection sensitivities by STAR and
GSNAP alignment. The sensitivity was based on the golden truth set
in DNA from GIAB with > = 10X coverage in RNA-seq. b Overlap SNV
and Indel calls between STAR and GSNAP alignment algorithm. STAR
detected more true SNVs and GSNAP detected more true Indels
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which is not surprising as it applies more stringent filter-
ing. The lower number of false positives for SNVs from
Opossum preprocessing and PLATYPUS may explain its
low sensitivity. Surprisingly, it also had the highest num-
ber of false positive Indels while its sensitivity was also the
lowest (Fig. 4).

Lung cancer adenocarcinoma RNA-seq dataset with
known targetable/oncogenic mutations
The lung adenocarcinoma dataset SRA ERP001058
contains 41 tumors with known targetable or oncogenic
mutations in 6 genes: EGFR, KRAS, NRAS, MET, BRAF
and CTNNB1. The most notable are EGFR micro deletion
at exon 19 (7 tumors) and single nucleotide substitution

Fig. 3 SNV and Indel sensitivity comparisons with other RNA-seq
variant calling programs. STAR alignment was used for all except
MAPRSeq_RVBoost, which used Tophat alignment. STAR alignment
was pre-processed by PanMutsRx or Opossum and then variants were
called by either GATK haplotype caller or Platypus. MAPRSeq_RVBoost
variants were called by GATK unified genotyper. Default settings were
used for variant calling and filtering. Sensitivity was calculated by
dividing the number of correct calls in RNA by the total number DNA
variants with 10X coverage in RNA-seq

Fig. 4 SNV and Indel specificity comparisons with other RNA-seq
variant calling programs. STAR alignment was used for all except
MAPRSeq_RVBoost, which used Tophat alignment. STAR alignment
was pre-processed by PanMutsRx or Opossum and then variants were
called by either GATK haplotype caller or Platypus. MAPRSeq_RVBoost
variants were called by GATK unified genotyper. Default settings were
used for variant calling and filtering. Specificity was calculated by TN/
(TN + FP). TNs are the genomic positions with > = 10X coverage in
RNA-seq calls but no variants present in DNA
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L858R at exon 21 (13 tumors) as they are targetable clinic-
ally. Among the 41 mutations, 39 were detected by the
PanMutsRx pipeline with STAR aligner. Careful examin-
ation of the two tumors whose mutations were missed
showed that both had very low mutation frequency (one
with 1 and another with 3 mutated reads). As demon-
strated in our previous evaluation, GSNAP is marginally
more sensitive in indel detection compared to STAR, and
this was corroborated using GSNAP for alignment, which
indeed was able to detect both mutations as hypothesized
(Table 1).

Gene fusions
All 9 fusion transcripts were detected at each concentra-
tion from the initial detection output (raw result without
strict filtering, Fig. 5). When filtering was applied, some
fusions were filtered out for the library with a spike-in
concentration below than or at − 6.17 (sensitivity ran-
ging from 44 to 78%, Fig. 5). The trade-off certainly is
between the sensitivity and specificity. For example, at
the lowest concentration of − 8.57, 2 additional fusions
were reported from the filtered result while the raw re-
sult had 16. In real practice, the filter stringency can be
adjusted to balance the sensitivity and specificity.

Gene expression quantification
Gene expression profiling is the most common analysis
for RNA-seq and there is an array of approaches to fur-
ther analyze the data. PanMutsRx generates two expres-
sion matrix files, raw digital read count and normalized
expression by RPKM. The former can be used for differ-
ential expression by read count specific tools such as
DESeq [29] or edgeR [30] and the latter can be used for
linear model or comparing relative expression across
genes. As an illustration, in the lung adenocarcinoma
dataset, we also found a tumor with EML4-ALK fusion.
Examining the expression of ALK across all tumors sam-
ples revealed that tumor had significantly higher expres-
sion of ALK (Fig. 6a), further validating the fusion led to
the activation of ALK and was a potential candidate for
targeted therapy by a protein kinase inhibitor such as

Crizotinib. Another potential application from gene
expression data is to estimate immune cell proportion in
a tumor. Cybersort [31] is a tool using gene expression
data to characterize cell composition of complex tissues.
Based on a pre-built immune cell signature, it can be
used to estimate the immune cell infiltration to a tumor
that may provide useful information for an immune
response status (Fig. 6b).

Discussion
RNA-seq is one of the most commonly used sequencing
applications as it measures the dynamics of genome
transcription activities. Besides research, it also holds
great promise for clinical diagnostics, prognostics and
therapeutic applicability for various diseases, particularly
cancers [32]. To put this into practice, various bioinfor-
matics analyses challenges need to be overcome and to
compile the types of information that can be reliably uti-
lized for clinical applications from RNA-seq. Obviously,
differential expression, alternative splicing, or allele spe-
cific expression are only unique to RNA-seq. RNA-seq is

Table 1 Key known mutations of oncogenic genes detected by
PanMutsRx

Known Detected Sensitivity

BRAF V600E 1 1 1.00

CTNNB1 D32G 1 1 1.00

EGFR micro deletion 7 6 (7) 0.86 (1)a

EGFR SNV 14 13 (14) 0.93 (1)

KRAS SNV 14 14 1.00

MET SNV 1 1 1.00

NRAS SNV 3 3 1.00
aNumbers in parenthesis are from GSNAP alignment

Fig. 5 Fusion detection at different concentration of spike-ins known
fusion transcripts. The fusions were called by STAR-Fusion. All expected
fusions were detected from the raw output but fusions at low
concentration were filtered. The filters applied include normalized split
and spanning fragment reads > 0.1 FFPM, split reads with > = 25 bases
at either side of a putative breakpoint
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also an excellent platform for fusion transcript detection.
The challenges are in detection of single nucleotide variants
or small Indels from RNA-seq. Our previous evaluation
shows that although SNVs can be reliably detected, indels
are ignored by common RNA-seq tools, which calls for a
need to develop a more sensitive pipeline [5]. PanMutsRx is
developed to meet this specific and critical need.
PanMutsRx was designed with the goal of easy usage

and detection of multiple types of mutations simultan-
eously. Our assessment showed its high sensitivity and

specificity to SNVs and small Indels. Fusion transcripts
can be easily detected and gene expression can be used
along for cross validation of fusion transcript or other
applications. In real practice of oncology, only very lim-
ited number of mutations has available drugs and cap-
turing these mutations is of paramount priority. Our
previous and current work suggests that although many
unique mutations can be detected from either DNA-seq
(like exome-seq) or RNA-seq, the important and action-
able mutations are often conserved in RNA-seq. This

Fig. 6 Application examples of gene expression data. a Outlier ALK expression as a result of EMLK4-ALK fusion in a tumor. b Estimation of immune
cell relative proportions in the lung adenocarcinoma by Cibersort. Each stacked bar represents the percentages of immune cells in a tumor
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suggests we can extract useful and relevant information
to reduce the complexity of multi-genomic information
from RNA-seq. We provide a post-processing script to
extract SNVs, Indels, fusion transcripts, or expression
for a list of genes users provide.
Available RNA-seq workflows mostly focus a particular

function for example, gene expression, SNV or fusion
transcript detection, which has its advantages of easy
management. However, conducting analysis for each sep-
arately needs redundant work with significant effort for
the RNA-seq data. PanMutsRx aimed to perform all clin-
ical relevant tasks at once by selecting high performing
tools for each application. RNA-seq alignment by different
aligners makes much less difference for SNVs than for
Indels and our selection of STAR and GSNAP as part of
PanMutsRx was based on our comprehensive comparison
among several tools [5]. Our current data further validated
their good performance. For STAR alignment, it appears
that PanMutsRx pre-processing generated very similar re-
sult as Opossum pre-processing. Results from GATK
Haplotype caller were more sensitive than Platypus for
both SNVs and Indels under the default settings. Param-
eter optimization may be needed to achieve better results.
The slight gain from Opossum in some occasions may jus-
tify its adoption. As PanMutsRx is highly modular, a better
tool can be integrated easily.
The missed calls in RNA-seq can be several reasons.

We found majority of them were caused by insufficient
alternative allele and although could be called but fil-
tered out. These positions can be recovered by reducing
filtering stringency but the trade-off would be increased
false positives. Although Indel detection performs rea-
sonably well, there is room for further improvement.

Conclusion
We have developed a sensitive and comprehensive
RNA-seq analytical pipeline which can capture multiple
mutations simultaneously (single nucleotide, small inser-
tion/deletion, chimeric transcripts or abnormal gene ex-
pression) and can be potentially used in clinical practice
and precision medicine.

Additional file

Additional file 1: Table S1. Parameter Settings used for alignment, data
pre-processing and variant calling. Table S2. PanMutsRx Run time in each
step of processing. (DOCX 18 kb)
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