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Development and validation of GMI
signature based random survival forest
prognosis model to predict clinical
outcome in acute myeloid leukemia
Mingguang Shi* and Guofu Xu

Abstract

Background: Acute myeloid leukemia (AML) is a disease with marked molecular heterogeneity and a high early
death rate. Our aim was to investigate an integrated Gene expression, Mirna and miRNA-mRNA Interactions (GMI)
signature for improving risk stratification of AML.

Methods: We identified differentially expressed genes by pooling a large number of 861 human AML patients and 75
normal cases. We then used miRWalk to identify the functional miRNA-mRNA regulatory module. The GMI signature
based random survival forest (RSF) prognosis model was developed from training data set and evaluated in
independent patient cohorts from The Cancer Genome Atlas (TCGA) dataset (N = 147). Univariate and multivariate Cox
proportional hazards regression analyses were applied to evaluate the prognostic value of GMI signature.

Results: We identified 139 differentially expressed genes between normal and abnormal AML samples. We discovered
the functional miRNA-mRNA regulatory module which participate in the network of cancer progression. We named 23
differentially expressed genes and 16 validated target miRNAs as the GMI signature. The RSF model-based scores
separated independent patient cohorts into two groups with significantly different overall survival (C-index = 0.59,
hazard ratio [HR], 2.12; 95% confidence interval [CI], 1.11–4.03; p = 0.019). Similar results were obtained with reversed
training and testing datasets (C-index = 0.58, hazard ratio [HR], 2.08; 95% confidence interval [CI], 1.02–4.24; p = 0.038).
The GMI signature score contributed more information about recurrence than standard clinical covariates.

Conclusion: The GMI signature based RSF prognosis model not only reflects regulatory relationships from identified
miRNA-mRNA module but also informs patient prognosis. While in the TCGA data set the GMI signature score
contributed additional information about recurrence in comparison to standard clinical covariates, further studies are
needed to determine its clinical significance.
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Background
Acute myeloid leukemia (AML) is a malignant disease of
the bone marrow and typically represents functionally and
phenotypically various cells in the same patient. Gene mu-
tations identified distinct cytogenetically defined subsets
of AML and unraveled the heterogeneous disorder in
terms of genetic basis. Karyotype [1], mutations in the
transcription factor CCAAT/enhancer-binding protein
alpha (CEBPA) [2, 3], internal tandem duplications of the
fms-related tyrosine kinase 3 (FLT3-ITD) [4], recurrent le-
sions in the nucleophosmin gene (NPM1) [5], GATA bind-
ing protein 2(GATA2) mutations [6], and Wilms tumor 1
(WT1) mutations [7] are related with patient relapse,
prognosis and survival outcome. Although these guide-
lines for clinical treatment have improved the prognosis,
AML is curable in about 35% of patients under 60 years
old and 10% over 60 years old [8]. Hence, it is crucial to
develop a reliable method for identifying new biomarkers
and developing prognosis model to guide individual treat-
ment of patients.
Several methods have been developed for the analysis of

multiple molecular data to identify cancer-driven signa-
tures and predict clinical outcome. Previous studies have
demonstrated that microRNA signatures were identified
to be associated with cytogenetics, prognosis and thera-
peutic targets in AML [9–11] and microRNA expression-
based model could predict event-free survival in AML [12,
13]. Moreover, distinct molecular subgroups that reflect
discrete paths in the evolution of AML was identified to
inform disease classification and prognostic stratification
[14]. High-throughput proteomics data, such as Reverse
Phase Proteomic Arrays (RPPA), was utilized to develop
the prognosis model and bridge the gap between the
underlying genetic alterations and functional cellular
changes [15]. With the advances in next-generation se-
quencing (NGS) studies, integration of multiple molecular
data and genomic knowledge improved the understanding
of molecular pathogenesis and underlying biology in can-
cer [16]. Integrative data analysis methods led to the iden-
tification of novel microRNA-target gene interactions of
potential relevance [17] and the discovery of NPM1
mutation-modulated miRNA-mRNA regulation pairs [18]
for AML treatment. However, the sample size is still rela-
tively small and the prognosis model has not been men-
tioned for patient stratification.
To address these questions, we collected 25 publicly

available gene expression data sets containing 861 human
AML patients and 75 normal cases. By pooling such a
large amount of data, we aimed to identify differentially
expressed genes for describing different gene expression
patterns between normal samples and AML samples. Fur-
thermore, we wanted to discover the functional regulatory
networks for identifying potential regulations between
mRNA and miRNA in biological processes. Based on the

observation that miRNA-mRNA interactions were bio-
logically relevant, we hypothesized that a functional
miRNA-mRNA regulatory module could better represent
underlying biological characteristics and may lead to a
more powerful prognosis model. Moreover, we tried to de-
velop Random survival forest (RSF) model using The Can-
cer Genome Atlas (TCGA) dataset based on prognostic
miRNA/mRNA signatures. The results demonstrated that
the model-based patient stratification provided useful pre-
dictive information for AML patient subgroups.

Methods
Study design
Figure 1 illustrated the overview of the overall study design.
Microarray gene expression data on AML were collected
and processed. Differential gene expression analysis was
performed to identify differentially expressed genes. MiR-
Walk was then used to discover miRNAs that target the
prioritized genes and further identify the functional
miRNA-mRNA regulatory module. Specifically, the list of
differentially expressed 23 genes and 16 target-validated
miRNAs were named as the GMI signature because it inte-
grated information from Gene expression, Mirna and
miRNA-mRNA Interactions. Random survival forest (RSF)
method were used with GMI signature to develop progno-
sis model in training cohort and then evaluated on the test
dataset. We used RNA-seq and miRNA expression dataset
on AML cases from TCGA as training and validation co-
hort. The gained RSF-based score was applied for patient
stratification and survival analysis.

Sample collection of AML datasets
We searched PubMed (https://www.ncbi.nlm.nih.gov/
pubmed) with the terms “acute myeloid leukemia”, “gene
expression”, “prognosis” and “signature” for published arti-
cles. This search retrieved the relevant Gene Expression
Omnibus (GEO) database for further analysis. Raw micro-
array data were obtained from publicly available AML gene
expression datasets in NCBI GEO. We collected AML
samples of 25 gene expression datasets with Affymetrix Hu-
man Genome U133 plus 2.0 microarrays. The
normalization was conducted on all samples in a single set
using Robust MultiChip Analysis (RMA) algorithm [19]
and Quantile Normalization and thus ensured the inde-
pendence of processed datasets. Signal intensities were log2
transformed and probe set values summarized using Me-
dian Polish Summarization Method [20]. Probe set identi-
fiers (IDs) were mapped to gene symbols based on the
mapping from the GEO database. To resolve redundancies,
multiple probes were mapped to unique Entrez Gene IDs
by their median expression level. To make expression level
comparable across genes, expression values for each gene
were standardized using a Z-score transformation. An ex-
perimental group including 861 AML samples and a
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Fig. 1 (See legend on next page.)
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control group containing 75 normal bone marrow samples
were used for the prioritization of gene expression signa-
tures. The information of the source datasets of all AML
samples is shown in the Table 1.

TCGA samples for training and validation cohorts
Transcriptomic data from the AML cohort were down-
loaded from the TCGA site (https://portal.gdc.cancer.
gov/). We collected the mRNA sample data (N = 187, 24,
991 genes), the miRNA sample data (N = 301, 1882
miRNA) and the clinical sample data (N = 993) of AML
from TCGA database. Log transformation (base 2) was
used to re-scale mRNA and miRNA expression, followed
by a Z-score transformation. Transcriptomic data of GMI
signature were obtained and processed from TCGA. Spe-
cifically, 147 AML samples were selected based on the
present expression values of 23 gene expression signatures
from 187 RNA-seq expression dataset and 16 miRNAs
from 301 miRNA expression dataset.
Data collection and process was shown in Fig. 1. We

split the tissue samples into TCGA Part One (TCGAPO,
N = 74) and TCGA Part Two (TCGAPT, N = 73) cohorts
for further analysis. TCGAPO cohort includes 41 sam-
ples (alive) and 33 samples (dead) for overall survival
(OS) of patients. At the same time, TCGAPT cohort
contains 33 samples (alive) and 40 samples (dead) for
OS of cancer patients. Each dataset was used as a
training-set in turn and developed models were evalu-
ated against the other dataset. Table 2 illustrated the
clinical characteristics of TCGA AML cohort.

Differential gene expression analysis
To identify differentially expressed genes, differential ex-
pression analysis was used to assess differences in gene ex-
pression between an experimental group and a control
group assessed by two-tailed Student’s t-tests and cor-
rected by Benjamini-Hochberg [44]. The false discovery
rate (FDR) of multiple testing was controlled using the
Benjamini and Hochberg method. Significantly differen-
tially expressed genes were selected with the FDR-
adjusted p-values < 0.01. Adjusted statistical significance
was then set at q-values < 0.01 with FDR correction for
multiple testing where relevant. Fold Change value of 2.5
was further used as a cut-off to identify up- and down-
regulated genes.

MiRWalk identify miRNA-mRNA interactions
To identify miRNA-mRNA interactions, we used the sig-
nificantly differentially expressed genes (mRNAs) as
seeds and identified the target-validated miRNAs from
the miRWalk2.0 database (http://mirwalk.umm.uni-hei-
delberg.de/) [45]. To investigate the biological relevance
of the identified interactions, we used an advanced
search options including miRDB and TargetScan for
miRNAs target selection. The functionally correlated
miRNA-mRNA regulatory module was then identified
and constructed for further analysis.

Survival analysis for GMI signature
The LinkedOmics database (http://www.linkedomics.
org) contains multiple molecular data and clinical data
for different cancer types from the TCGA project, which
systematically interpret and explore the complex rela-
tionships between the vast amount of clinical and mo-
lecular attributes [46]. In addition, Gene Expression
Profiling Interactive Analysis (GEPIA) (http://gepia.can-
cer-pku.cn/) was used for efficiently analyzing the RNA
sequencing expression data from the TCGA data [47]. In
this analysis, we utilized these two analytical tools to
perform validation of AML specific expression and prog-
nosis for the GMI signature.

Statistical analysis
We used random survival forest (RSF) method for devel-
oping a prognosis model [48]. An R implementation of
the rfsrc available in the randomForestSRC package was
used for model development. RSF had two parameters
ntree and mtry, where ntree represented the number of
trees in the forest and mtry was the number of randomly
selected variables for splitting at each node. We used a
grid-search on ntree and mtry using 5-fold cross-
validation. All the pairs of (ntree, mtry) are formed and
the one with the best C-index value is identified as the
optimized parameters. The C-index represents a prob-
ability of the concordance between predicted and ob-
served survival, which is a typical metric for quantifying
the predictive ability of a survival model. The developed
RSF prognosis model based on the optimal parameters
was then evaluated on the independent dataset where
the RSF-based score was derived for each sample.

(See figure on previous page.)
Fig. 1 Outline of the study design. Differentially expressed genes were identified with differential expression analysis. MiRWalk was used to
reconstruct the functional miRNA-mRNA regulatory module. RSF method was then used with GMI signature to develop prognosis model in
training cohort. The developed prognosis model was evaluated on the independent dataset. The gained RSF-based score was applied for survival
analysis and patient stratification. Specifically, we removed 14 genes which were not found in 187 RNA-seq expression dataset and 100 miRNAs
which were not found in 301 miRNA expression dataset. Samples from TCGA with no expression of the signatures genes/miRNAs were filtered
out. One hundred forty-seven AML samples were selected based on the present expression values of 23 gene expression signatures from 187
RNA-seq expression dataset and 16 miRNAs from 301 miRNA expression dataset
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Table 1 AML gene expression datasets used to prioritize the gene expression signatures

Data Set Country Control
group

Experimental
Group

Author Title Journal Reference

GSE14924 United
Kingdom

21 20 (Le et al. 2009) Peripheral blood T cells in acute myeloid
leukemia (AML) patients at diagnosis have
abnormal phenotype and genotype and
form defective immune synapses with AML
blasts

Blood [21]

GSE68172 Germany 5 72 (Schneider et al.
2015)

Leukemic progenitor cells are susceptible
to targeting by stimulated cytotoxic T cells
against immunogenic leukemia-associated
antigens

International Journal of
Cancer

[22]

GSE84881 Germany 4 19 (Ek et al. 2016) Molecular alterations in bone marrow
mesenchymal stromal cells derived from
acute myeloid leukemia patients

Leukemia [23]

GSE14858 Italy 20 20 (Bresolin et al.
2010)

Gene expression-based classification as an
independent predictor of clinical outcome
in juvenile myelomonocytic leukemia

Journal of Clinical
Oncology

[24]

GSE12662 USA 15 91 (Payton et al.
2009)

High throughput digital quantification of
mRNA abundance in primary human acute
myeloid leukemia samples

Journal of Clinical
Investigation

[25]

GSE10746 USA 3 8 (Mougeot et al.
2011)

Microarray analyses of oral punch biopsies
from acute myeloid leukemia (AML)
patients treated with chemotherapy

Oral Surgery Oral
Medicine Oral
Pathology Oral
Radiology &
Endodontology

[26]

GSE17054 USA 4 9 (Majeti et al.
2009)

Dysregulated gene expression networks in
human acute myelogenous leukemia stem
cells

Proceedings of the
National Academy of
Sciences of the United
States of America

[27]

GSE8023 USA 3 9 (Krejci et al.
2008)

p53 signaling in response to increased
DNA damage sensitizes AML1-ETO cells to
stress-induced death

Blood [28]

GSE17061 Netherlands 0 35 (Silva et al.
2009)

Gene expression profiling of minimally
differentiated acute myeloid leukemia: M0
is a distinct entity subdivided by RUNX1
mutation status

Blood [29]

GSE70124 Germany 0 46 (Papaemmanuil
et al. 2016)

Genomic Classification and Prognosis in
Acute Myeloid Leukemia

New England Journal
of Medicine

[14]

GSE10258 Austria 0 15 (Zatkova et al.
2009)

AML/MDS with 11q/MLL amplification
show characteristic gene expression
signature and interplay of DNA copy
number changes

Genes Chromosomes &
Cancer

[30]

GSE35159 Japan 0 12 (Saito et al.
2011)

CD52 as a molecular target for
immunotherapy to treat acute myeloid
leukemia with high EVI1 expression

Leukemia [31]

GSE50928 France 0 13 (Khaznadar et
al. 2015)

Defective NK Cells in Acute Myeloid
Leukemia Patients at Diagnosis Are
Associated with Blast Transcriptional
Signatures of Immune Evasion

Journal of Immunology [32]

GSE34885 France 0 14 (Khaznadar et
al. 2015)

Defective NK Cells in Acute Myeloid
Leukemia Patients at Diagnosis Are
Associated with Blast Transcriptional
Signatures of Immune Evasion

Journal of Immunology [32]

GSE52891 Netherlands 0 23 (Bachas et al.
2015)

Gene Expression Profiles Associated with
Pediatric Relapsed AML

Plos One [33]

GSE22056 Netherlands 0 98 (de Jonge et al.
2010)

High VEGFC expression is associated with
unique gene expression profiles and
predicts adverse prognosis in pediatric and
adult acute myeloid leukemia

Blood [34]

GSE59808 USA 0 32 (Guo et al. PIM inhibitors target CD25-positive AML Blood [35]
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The calculated C-index values evaluated the association
between the RSF-based score and real prognosis of the pa-
tients. Standard Kaplan–Meier survival curves were gener-
ated for different risk patient groups on the basis of the
RSF-based scores. The median score was used to stratify
patients into high-risk and low-risk score groups, and the
log-rank test was utilized to assess the survival difference
between two different risk groups. The statistical test was
two-sided and the estimated p value less than 0.05 was
considered statistically significant.

Results
The prioritized gene expression signatures
In the microarray analysis, 139 genes were found to be
differentially expressed between 75 normal bone marrow
samples and 861 AML samples (Additional file 1: Table
S1). All the 139 genes suggested higher expression levels

with statistical significance in AML cases than in con-
trols. We illustrated the volcano plot by analyzing genes
with differential expressions between 861 AML samples
and 75 normal cases for mRNA microarrays (Add-
itional file 2: Figure S1). It showed the significant inter-
actions with −log 10(p-value) as a function of the log2
fold-change in the gene expression of AML.

The functional miRNA-mRNA regulatory module
MiRWalk2.0 is a publicly available comprehensive archive,
providing an array of experimentally verified and pre-
dicted miRNA-mRNA interaction pairs. It has been
proved that miRNA-mRNA interactions play critical roles
in diverse biological processes and pathologies [49].
We used the above 139 differential expressed genes

(mRNAs) to identify the correlated miRNAs which may
target them. We then identified 37 mRNAs with matched

Table 1 AML gene expression datasets used to prioritize the gene expression signatures (Continued)

Data Set Country Control
group

Experimental
Group

Author Title Journal Reference

2014) cells through concomitant suppression of
STAT5 activation and degradation of MYC
oncogene

GSE12326 China 0 10 (Cheung et al.
2009)

A comparative study of bone marrow and
peripheral blood CD34+ myeloblasts in
acute myeloid leukaemia

British Journal of
Haematology

[36]

GSE44857 United
Kingdom

0 18 (Leonard et al.
2014)

Sequential Treatment with Cytarabine and
Decitabine Has an Increased Anti-Leukemia
Effect Compared to Cytarabine Alone in
Xenograft Models of Childhood Acute
Myeloid Leukemia

Plos One [37]

GSE30903 Italy 0 24 (Salvestrini et al.
2012)

Purinergic signaling inhibits human acute
myeloblastic leukemia cell proliferation,
migration, and engraftment in
immunodeficient mice

Blood [38]

GSE22845 Netherlands 0 154 (Taskesen et al.
2011)

Prognostic impact, concurrent genetic
mutations, and gene expression features of
AML with CEBPA mutations in a cohort of
1182 cytogenetically normal AML patients:
further evidence for CEBPA double mutant
AML as a distinctive disease entity

Blood [39]

GSE18018 USA 0 19 (Falini et al.
2010)

Multilineage dysplasia has no impact on
biologic, clinicopathologic, and prognostic
features of AML with mutated
nucleophosmin (NPM1)

Blood [40]

GSE21261 USA 0 79 (Miesner et al.
2010)

Multilineage dysplasia (MLD) in acute
myeloid leukemia (AML) correlates with
MDS-related cytogenetic abnormalities and
a prior history of MDS or MDS/MPN but
has no independent prognostic relevance:
a comparison of 408 cases classified as
“AML not otherwise specified” (AML-NOS)
or “AML with myelodysplasia-related
changes” (AML-MRC)

Blood [41]

GSE56237 Denmark 0 10 (Mora-Jensen et
al. 2015)

Cellular origin of prognostic chromosomal
aberrations in AML patients

Leukemia [42]

GSE30442 USA 0 11 (Grossmann et
al. 2011)

Whole-exome sequencing identifies
somatic mutations of BCOR in acute
myeloid leukemia with normal karyotype

Blood [43]
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116 miRNAs (Additional file 2: Figure S2). One hundred
twomRNAs were removed because these mRNAs have no
matched miRNA targets. The functionally correlated
miRNA-mRNA regulatory module (the center of Add-
itional file 2: Figure S2) was then derived with 23 mRNAs

and correlated 97 miRNAs (Fig. 2). Twenty-three differen-
tial expressed genes are then listed in Table 3. Among the
97 miRNAs, only the 16 miRNAs in the AML TCGA
dataset were found and used for further analysis. A panel
of 16 miRNA markers contained hsa-mir-448, hsa-mir-

Table 2 The clinical characteristics of AML patients from TCGA. CR, complete remission; MLL, mixed lineage leukemia

TCGAPO (N = 74) TCGAPT (N = 73)

Age at Diagnosis (year)

median (range) 10.58 (0.40–22.55) 9.04 (0.38–19.12)

Gender

female (n%) 34 (45.95%) 40 (54.79%)

Race

white (n%) 59 (79.73%) 55 (75.34%)

First event

relapse (n%) 51 (68.92%) 54 (73.97%)

CR status

CR (n%) 69 (93.24%) 61 (83.56%)

Primary Cytogenetic

MLL (n%) 10 (13.51%) 18 (24.66%)

Normal (n%) 18 (24.32%) 11 (15.07%)

Other (n%) 14 (18.92%) 20 (27.40%)

t(8;21) 7 (9.46%) 11 (15.07%)

inv.(16) 16 (21.62%) 12 (16.44%)

Cytogenetic Site of Relapse/Induction Failure

Yes (n%) 4 (5.41%) 13 (17.81%)

No (n%) 48 (64.86%) 43 (58.90%)

Not done (n%) 22 (29.73%) 17 (23.29%)

FAB Category

M0,M1,M2,M3,M4,M5,M6,M7,NOS 2 (2.70%),7 (9.46%),19 (25.68%),0 (0.00%),22
(29.73%),15 (20.27%),1 (1.35%),2 (2.70%),5
(6.76%)

2 (2.74%),8 (10.96%),15 (20.55%),0 (0.00%),20
(27.40%),12 (16.44%),1 (1.37%),5 (6.85%),3
(4.11%)

FLT3/ITD

Positive (n%) 8 (10.81%) 5 (6.85%)

Negative (n%) 66 (89.19%) 68 (93.15%)

WBC at Diagnosis

median (range) 53.5 (2.1–302) 34.9 (1.3–519)

NPM mutation

Yes (n%) 4 (5.41%) 2 (2.74%)

No (n%) 66 (89.19%) 70 (95.89%)

CEBPA mutation

Yes (n%) 4 (5.41%) 5 (6.85%)

No (n%) 69 (93.24%) 67 (91.78%)

WT1 mutation

Yes (n%) 4 (5.41%) 6 (8.22%)

No (n%) 67 (90.54%) 66 (90.41%)

Protocol

CCG-2961(n%), AAML03P1(n%), AAML0531(n%) 18 (24.3%),38 (51.4%),18 (24.3%) 0 (0%),0 (0%),73 (100%)
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320a, hsa-mir-378b, hsa-mir-378c, hsa-mir-378f, hsa-mir-
378e, hsa-mir-378 h, hsa-mir-378i, hsa-mir-520b, hsa-mir-
520e, hsa-mir-429, hsa-mir-137, hsa-mir-1193, hsa-mir-
346, hsa-mir-449a, and hsa-mir-107. Specifically, we
named the list of differentially expressed 23 genes and 16
target-validated miRNAs the GMI signature because it in-
tegrated information from Gene expression, Mirna and
miRNA-mRNA Interactions.
Previous studies demonstrated that Sox4 [50],

RasGRP1 [51], RasGRP3 [51], IGF1R [52], CDK6 [53],
and LEF1 [54] are the key oncogenes/tumor suppressor
genes in acute myeloid leukemia. Among the GMI sig-
nature, IGF1R is targeted by hsa-miR-378b, hsa-miR-
378c, hsa-miR-378e, hsa-miR-378f, hsa-miR-378 h, hsa-

miR-378i, and hsa-miR-448 respectively. It suggests that
hsa-miR-378 family members and hsa-miR-448 have
important regulatory functions for AML. In addition,
AKTIP is targeted by hsa-miR-520b and hsa-miR-520e,
CDK6 is targeted by hsa-miR-320a and hsa-miR-449a,
PAG1 is targeted by hsa-miR-429 and hsa-miR-1193,
RORA is targeted by hsa-miR-107 and hsa-miR-137. It
confirms that hsa-miR-520b, hsa-miR-520e, hsa-miR-
320a, hsa-miR-449a, hsa-miR-429, hsa-miR-1193, hsa-
miR-107, and hsa-miR-137 also play important roles in
regulating AML. Moreover, LEF1 is targeted by hsa-
miR-449a, MGAT4A is targeted by hsa-miR-449a,
PLXNC1 is targeted by hsa-miR-320a, and SCML4 is
targeted by hsa-miR-346. It indicates that hsa-miR-

Fig. 2 The functional miRNA-mRNA regulatory module. The module was constructed with 23 mRNAs and 97 correlated miRNAs. The functional
miRNA-mRNA regulatory module are groups of genes and miRNAs with highly correlated expression patterns. It may participate in the network
of cancer progression and have biological implications for AML
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449a, hsa-miR-320a, and hsa-miR-346 may be very sig-
nificant for the regulation of AML.
Collectively, the identified interactions between miR-

NAs and mRNAs suggest that the functional miRNA-
mRNA regulatory module participate in the network of
cancer progression and have biological implications for
AML in common.

GMI signature in survival analysis
To analyze the predictive value of the GMI signature on
survival we used the LinkedOmics tool. We got the sur-
vival analysis curves of each gene and target-validated
miRNA from TCGA tumor samples (Fig. 3 and Add-
itional file 2: Figure S3). Seven genes/miRNAs were
found with statistical significance (p ≤ 0.05) including

Table 3 The 23 differentially expressed genes

Gene
Symbol

Mean Signal of AML Group Mean Signal of Control
Group

t statistic Fold
Change

p-value q-value Gene
Feature

SOX4 9.112336 7.219739 7.675507 3.713032 < 1 × 10–
6

< 1 × 10–
6

up

RASGRP1 5.83589 7.652658 −7.195507 −3.522911 < 1 × 10–
6

< 1 × 10–
6

down

BACH2 4.320585 6.060818 −8.152871 −3.340891 < 1 × 10–
6

< 1 × 10–
6

down

KLF12 6.133251 7.861214 −7.870257 −3.312596 < 1 × 10–
6

< 1 × 10–
6

down

LRIG1 4.728837 6.393224 −9.836949 −3.16979 < 1 × 10–
6

< 1 × 10–
6

down

ETS1 7.934244 9.498425 −7.305467 −2.957097 < 1 × 10–
6

< 1 × 10–
6

down

CA2 7.797592 6.234079 6.061318 2.955725 < 1 × 10–
6

< 1 × 10–
6

up

SGPP1 5.2489 6.809546 −10.216815 − 2.949861 < 1 × 10–
6

< 1 × 10–
6

down

AKTIP 5.928499 7.444547 −11.312356 − 2.860065 < 1 × 10–
6

< 1 × 10–
6

down

MGAT4A 6.147385 7.656076 −6.959608 − 2.845517 < 1 × 10–
6

< 1 × 10–
6

down

IGF1R 5.953049 7.435281 −9.157838 −2.793807 < 1 × 10–
6

< 1 × 10–
6

down

IGF2BP2 8.551588 7.080512 6.331802 2.772285 < 1 × 10–
6

< 1 × 10–
6

up

ATXN1 5.977417 7.443869 −11.143182 −2.763415 < 1 × 10–
6

< 1 × 10–
6

down

PLXNC1 6.920035 8.327643 −7.413724 −2.652969 < 1 × 10–
6

< 1 × 10–
6

down

PLEKHA1 5.191966 6.576699 −6.150913 −2.611237 < 1 × 10–
6

< 1 × 10–
6

down

PAG1 6.025085 7.409445 −6.906294 −2.61056 < 1 × 10–
6

< 1 × 10–
6

down

SNTB2 3.785427 5.155895 −6.769114 −2.585543 < 1 × 10–
6

< 1 × 10–
6

down

IGF2R 6.569925 7.933466 −6.300174 −2.573159 < 1 × 10–
6

< 1 × 10–
6

down

STK38 4.463917 5.809704 −6.984927 −2.541687 < 1 × 10–
6

< 1 × 10–
6

down

CDK6 6.572063 5.241319 9.134775 2.515324 < 1 × 10–
6

< 1 × 10–
6

up

LEF1 6.517115 8.211854 −5.602032 −3.237184 < 1 × 10–
6

0.000002 down

ABLIM1 7.040753 8.373263 −5.375175 −2.518404 0.000001 0.000004 down

RORA 5.041835 6.718816 −5.269869 −3.197582 0.000001 0.000006 down
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ABLIM1, ATXN1, CDK6, IGF2BP2, IGF2R, PLXNC1,
and hsa-mir-107 (Fig. 3). It is worth noting that the
high-risk group has significantly worse overall survival
than the low-risk group for the previous genes/miRNAs.
Similarly, we applied GEPIA for the prognosis of the

GMI signature in AML from TCGA project. The pa-
tients were stratified into different prognosis subsets in a
sample by determining the expression level of markers
(Additional file 2: Figure S4). Survival analysis of three
genes (ABLIM1, p = 0.019; ATXN1, p = 0.029; PLEKHA1,
p = 0.048) revealed patient stratification with statistical
significance on overall survival analysis. Interestingly, we
observed that ABLIM1 and ATXN1 were significantly as-
sociated with overall survival for these different progno-
sis prediction tools.

The GMI signature-based prognosis models improve AML
survival prediction
To test whether the GMI signature can predict AML re-
currence, we developed prognosis model using the iden-
tified signature as features and evaluated performance of
the models in independent cohorts. We developed a RSF
prognosis model with the GMI signature using
TCGAPO dataset. Variable importance (VIMP) is used
to measure the increase (or decrease) in prediction error
for the forest ensemble when a variable is randomly
“noised-up” [55]. VIMP evaluates the predictive

performance of the GMI signature and a large VIMP
value indicates a potentially predictive variable. As
shown in Fig. 4a, SGPP1 and CDK6 are potentially pre-
dictive features with larger positive VIMP values in
model development.
In the RSF prognosis model development, five-fold

cross validation was used to optimize the parameters for
the RSF algorithm, and a full model based on the
complete dataset was developed using the optimal pa-
rameters. The best performing parameters (ntree = 10,
mtry = 20) were selected to build the RSF prognosis
model. RSF-based scores were then calculated for indi-
vidual sample. The calculated RSF-based scores dis-
played 78% concordance (C-index = 0.78) in the light of
the real survival data in the training cohort. Based on
the RSF-based scores, the samples were divided into a
“high-risk” group with above-median scores and a “low-
risk” group with below-median scores. As shown in Fig.
4b, the Kaplan-Meier analyses exhibited highly signifi-
cant differences in time to overall survival between two
different risk groups (hazard ratio [HR], 16.4; 95% confi-
dence interval [CI], 5.68–47.3; p = 1.263e-11). The low-
risk group had 3-year overall survival rate of 100% and
the high-risk group possessed 3-year overall survival rate
of 26%. The developed RSF prognosis model was applied
for the independent test dataset and predictive perform-
ance was evaluated using the cohort TCGAPT. As

Fig. 3 Kaplan–Meier curve analysis of seven expression signatures from GMI with LinkedOmics for the overall survival in AML patients. The
median score for each gene signature is displayed in the panel label. Patients with above-median (red, label 1) and below-median (blue, label 0)
scores have different overall survival rates. Horizontal axis stands for overall survival time, while vertical axis stands for overall survival probability. P
values of less than 0.05 were considered to be statistically significant. A Kaplan-Meier curve of overall survival is derived for (a) ATXN1, (b) CDK6,
(c) ABLIM1, (d) IGF2BP2, (e) IGF2R, (f) PLXNC1 and (g) hsa-mir-107 respectively
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shown in Fig. 4c, the high-risk group showed signifi-
cantly worse overall survival (C-index = 0.59, hazard ra-
tio [HR], 2.12; 95% confidence interval [CI], 1.11–4.03;
p = 0.019) than the low-risk group. The overall survival

at 3 years between low-risk and high-risk group was 63
and 35% respectively.
To further evaluate the effectiveness of the GMI signa-

ture, we reversed the training and testing datasets by

Fig. 4 Testing the TCGAPO-derived RSF prognosis model with GMI signature on the TCGAPT. a Variable importance values derived from random
survival forest analysis. The log-rank splitting rule was used for model development. b Kaplan-Meier survival curves from 5-fold cross-validation
results of the TCGAPO-derived RSF prognosis model. c Testing the TCGAPO-derived RSF prognosis model on independent test dataset TCGAPT.
Kaplan-Meier survival curves derived for the risk stratification of TCGAPT dataset
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constructing RSF prognosis model based on TCGAPT
dataset and testing their performance on TCGAPO data-
set. Analogous results were achieved as shown in Fig. 5.
As shown in Fig. 5a, scores derived from the GMI
signature-based model showed 77% concordance (C-
index = 0.77) when compared to the real survival data
and the patients were seperated into two groups with
significantly different overall survival (hazard ratio [HR],
11.1; 95% confidence interval [CI], 4.98–24.8; p = 2.403e-
12). The 3-year overall survival rate was 81% in the low-
risk group compared with 17% in the high-risk group.

The TCGAPT-derived RSF prognosis model was test
on independent test dataset TCGAPO. As shown in
Fig. 5b, the Kaplan-Meier analyses for overall analysis
illustrated the difference between the high-risk and
low-risk group was highly significant (C-index = 0.58,
hazard ratio [HR], 2.08; 95% confidence interval [CI],
1.02–4.24; p = 0.038). The overall survival at 3 years
was 71% for the low-risk group in comparison with
57% for the high-risk group. These results confirmed
that the GMI signature-based prognosis models could
predict AML recurrence.

Fig. 5 Testing the TCGAPT-derived RSF prognosis model with GMI signature on the TCGAPO. a Kaplan-Meier survival curves from 5-fold cross-
validation results of the TCGAPT-derived RSF prognosis model. b Testing the TCGAPT-derived RSF prognosis model on independent test dataset
TCGAPO. Kaplan-Meier survival curves derived for the risk stratification of TCGAPO dataset
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Prognostic value of the GMI signature score compared to
clinical variable
Samples of TCGAPT were analyzed using univariate and
multivariate analyses with Cox’s proportional hazards re-
gression to evaluate the prognostic value of the GMI sig-
nature score in combination with individual clinical
variables (age, gender, race) and risk factors (WBC
count, NPM mutation, FLT3-ITD mutation, CEBPA mu-
tation, WT1 mutation). The GMI signature-based RSF
model from TCGAPO was developed to test TCGAPT
and achieved the GMI signature score of the samples.
Univariate and multivariate Cox’s regression analyses
were summarized in Table 4. The GMI signature score
was significantly associated with overall survival (p =
0.019) in the univariate analysis and still preserved the
significance (p = 0.02) in the multivariate analysis. As
can be seen from the Table 4, there was a significant dif-
ference in overall survival with WBC count and FLT3-
ITD mutation (p < 0.05), demonstrating the potential
value of two risk factors. The GMI signature score was
more highly prognostic with overall survival than individ-
ual clinical variables and risk factors when the log-rank
p values were observed and compared. In summary, the
GMI signature score represented a prognostic signature
strongly associated with a higher risk of tumor recurrence.

Discussion
MicroRNAs play crucial regulatory roles in mediating
mRNA degradation with a sequence-specific manner
[56]. Most previous work has focused on the experimen-
tal and computational approaches to decipher how miR-
NAs and genes interact in cellular network [57]. The
understanding of modular organization of biological net-
work further provides a global view on the miRNA-
mRNA regulatory relationships. Previous studies have
shown that the increased expression of miR-449 causes

down-regulation of oncogene CDK6 which stimulates
cell proliferation in gastric cancer [58], miR-448 sup-
presses proliferation and invasion by regulating IGF1R in
colorectal cancer cells [59], and miR-378 family mem-
bers target IGF1R, a key signaling molecule in rhabdo-
myosarcoma [60]. Based on these observations, the
functional miRNA-mRNA regulatory module may be as-
sociated with cell proliferation, apoptosis and cell migra-
tion in AML. In addition, we have found that ABLIM1
and ATXN1 were significantly associated with overall
survival for AML. In fact, loss of CIC or ATXN1L modu-
lates sensitivity to MEK inhibition in RAS-mutant can-
cers [61]. It demonstrates that SRGN is crucial for
regulating actin cytoskeletal organization associated with
cell migration for cancer metastasis [62]. Interestingly,
reduced expression of SRGN is accompanied by down-
regulation of ABLIM1, LIMA1, CFL1, RAC1, RAC2 and
RHOA, concomitant with decreased cell motility [62].
The RSF prognosis models based on mRNA or

miRNA expression signatures from GMI signature were
developed in the cohort TCGAPO. There was a signifi-
cant difference between two different risk groups with
mRNA signature based RSF prognosis model (C-index =
0.72; hazard ratio [HR], 5.3; 95% confidence interval
[CI], 2.15–11.8; p = 5.325e-3) and miRNA signature
based RSF prognosis model (C-index = 0.69; hazard ratio
[HR], 2.8; 95% confidence interval [CI], 1.05–6.83;
p = 0.006). The RSF prognosis model was used for the
independent test dataset TCGAPT and predictive per-
formance was measured. No significant difference be-
tween the two different risk groups was evident for
mRNA signature (C-index = 0.55, hazard ratio [HR],
1.22; 95% confidence interval [CI], 0.98–3.05; p = 0.05)
and miRNA signature (C-index = 0.54, hazard ratio
[HR], 1.69; 95% confidence interval [CI], 1.02–3.49; p =
0.06). These results demonstrated that RSF prognosis
model based on mRNA signature or miRNA signature did
not result in comparable performance as that from the
GMI signature. The miRNA-mRNA interactions play an
important role for achieving the predictive performance.
It has previously been observed that a 17-gene stem-

ness score (LSC17 signature) could predict recurrence
risk in AML patients [63]. The 11 genes are appeared in
TCGA cohort including CPXM1, EMP1, LAPTM4B,
ARHGAP22, MMRN1, ZBTB46, AKR1C3, SMIM24,
CDK6, NYNRIN and SOCS2. The targeted 31 miRNAs
(hsa-mir-3943,hsa-mir-761,hsa-mir-765,hsa-mir-548v,
hsa-mir-5739,hsa-mir-8082,hsa-mir-8089,hsa-mir-1913,
hsa-mir-4290,hsa-mir-644a,hsa-mir-6132,hsa-mir-320a,
hsa-mir-8054,hsa-mir-1303,hsa-mir-4313,hsa-mir-5682,
hsa-mir-4426,hsa-mir-4651,hsa-mir-4447,hsa-mir-646,
hsa-mir-4326,hsa-mir-922,hsa-mir-1291,hsa-mir-3911,
hsa-mir-3138,hsa-mir-1179,hsa-mir-449a,hsa-mir-4481,
hsa-mir-4498,hsa-mir-4657,hsa-mir-8064) are identified

Table 4 Univariate and multivariate Cox proportional hazard
regression analyses of overall survival in TCGAPT. M, male; F,
female; W, white; BA, Black or African American; GMI signature
score was based on RSF model developed in TCGAPO

Univariate Multivariate

p value HR(95% CI) p value HR(95% CI)

Age 0.25 1.03 (0.98–1.09) 0.98 1.00 (0.94–1.07)

Gender (M or F) 0.62 1.16 (0.62–2.17) 0.78 1.09 (0.58–2.06)

Race (W or BA) 0.22 1.58 (0.73–3.44) 0.21 1.69 (0.75–3.84)

WBC count 0.02 1.79 (0.91–3.95) 0.03 1.83 (0.81–4.01)

NPM mutation 0.35 1.05 (0.99–1.12) 0.41 0.98 (0.89–1.09)

FLT3-ITD mutation 0.016 2.23 (1.18–4.09) 0.03 2.08 (1.04–3.95)

CEBPA mutation 0.85 1.18 (0.82–2.37) 0.67 1.36 (0.83–3.17)

WT1 mutation 0.78 1.31 (0.86–2.35) 0.83 0.87 (0.68–1.59)

GMI score 0.019 2.11 (1.11–4.03) 0.02 2.15 (1.08–4.29)
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with MiRWalk. The RSF prognosis models based on 11
genes and 31 miRNAs were developed in the cohort
TCGAPO and independently tested in the cohort
TCGAPT. There was a significant difference between
two different risk groups in the training cohort (C-
index = 0.79; hazard ratio [HR], 14.2; 95% confidence
interval [CI], 4.97–41.7; p = 2.25e-8). Further test re-
vealed that the difference between the high-risk and
low-risk group was significant (C-index = 0.60, hazard
ratio [HR], 2.54; 95% confidence interval [CI], 1.19–5.05;
p = 0.03). Thus, 11 genes and 31 miRNAs could predict
recurrence risk and inform patient prognosis in AML.
We developed Survival Support Vector Machine

(SSVM) model based on the GMI signature for survival
analysis in comparison with RSF method. Two parameters
c and σ were implemented in the SSVM model, and differ-
ent parameter combinations were formed for model de-
velopment from each parameter among the candidate set
{10− 4, 10− 3, 10− 2, 10− 1, 100, 101, 102, 103, 104}. Five-fold
cross validation was used to identify the optimized param-
eters according to the C-index value. In the TCGAPO
dataset, the calculated SSVM scores showed 73% concord-
ance (C-index = 0.73) with the real survival data. The sig-
nificant differences were observed in overall survival
analysis between the high-risk group and low-risk group
(hazard ratio [HR], 5.39; 95% confidence interval [CI],
1.21–24.3; P = 0.01). When applying SSVM model on the
validation dataset TCGAPT, scores showed 56% concord-
ance (C-index = 0.56) when compared to the real survival
data. The patients were separated into two different
groups with overall survival (hazard ratio [HR], 1.23; 95%
confidence interval [CI], 0.67–3.78; P = 0.06). The results
indicated that RSF model achieved clearly superior per-
formance compared to SSVM model.
For the prioritized gene expression signatures, lack of

concordance is a common observation in clinical trial [64,
65]. However, several AML gene expression signatures pro-
vided the relationship with patient prognosis and survival
outcome [5, 7]. It suggested that different signatures may
share joint biological themes that are not obvious on the in-
dividual gene level [65]. Therefore, pathway-based analysis
has been made to discover biological mechanisms under-
pinning concordant prognosis for different gene expression
signatures [66]. Whilst it has great potential, the GMI sig-
nature based prognosis model is nevertheless limited by the
small scale of currently available TCGA data. Although the
performance has demonstrated that the developed RSF
prognosis model is effective in improving AML survival
prediction, we suppose that the concomitant increase of
clinical data and large scale of training samples would
ameliorate the reliability of the prognosis model for cancer
treatment. Ongoing large-scale cancer genome project, e.g.
TCGA project, has provided multiple molecular data for
clinical cancer research. The multi-omics integration

reveals the association between various genomic vari-
ables and helps to discover the complex regulatory
pattern toward generated heterogeneous data includ-
ing mRNA expression and miRNA expression. The
NanoString technology applies color-coded molecular
barcodes to hybridize directly for many different types
of target molecules with high sensitivity and preci-
sion. Therefore, this emerging technology could de-
velop the GMI signature chip as AML diagnostics
tool for clinical applications.

Conclusion
We used the pooled analysis of gene expression profiling
data from 861 patients to identify differentially expressed
gene expression signatures. We applied miRWalk approach
to integrate multiple types of transcriptomic data and dis-
cover the functional miRNA-mRNA regulatory module. In
the development of prognosis model, the GMI signature-
based RSF model was used to derive the prognostic risk
score and accordingly stratify the patients into a high-risk
and low-risk group. The results demonstrated that the RSF
prognosis model measured underlying biological character-
istics which are predictive of clinical outcomes and in-
formed the treatment in AML. In conclusion, the GMI
signature based RSF prognosis model can help facilitate ra-
tional design of clinical studies by patient stratification.
Notwithstanding its great potential, the GMI signature
score is limited by the quality of currently available data.
An important future work is to validate the clinical useful-
ness of the GMI signature for the developed prognosis
model in AML.
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