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Abstract

Background: Cytokines are a class of small proteins that act as chemical messengers and play a significant role in
essential cellular processes including immunity regulation, hematopoiesis, and inflammation. As one important
family of cytokines, tumor necrosis factors have association with the regulation of a various biological processes
such as proliferation and differentiation of cells, apoptosis, lipid metabolism, and coagulation. The implication of
these cytokines can also be seen in various diseases such as insulin resistance, autoimmune diseases, and cancer.
Considering the interdependence between this kind of cytokine and others, classifying tumor necrosis factors from
other cytokines is a challenge for biological scientists.

Methods: In this research, we employed a word embedding technique to create hybrid features which was proved
to efficiently identify tumor necrosis factors given cytokine sequences. We segmented each protein sequence into
protein words and created corresponding word embedding for each word. Then, word embedding-based vector
for each sequence was created and input into machine learning classification models. When extracting feature sets,
we not only diversified segmentation sizes of protein sequence but also conducted different combinations among
split grams to find the best features which generated the optimal prediction. Furthermore, our methodology
follows a well-defined procedure to build a reliable classification tool.

Results: With our proposed hybrid features, prediction models obtain more promising performance compared to
seven prominent sequenced-based feature kinds. Results from 10 independent runs on the surveyed dataset show
that on an average, our optimal models obtain an area under the curve of 0.984 and 0.998 on 5-fold cross-
validation and independent test, respectively.

Conclusions: These results show that biologists can use our model to identify tumor necrosis factors from other
cytokines efficiently. Moreover, this study proves that natural language processing techniques can be applied
reasonably to help biologists solve bioinformatics problems efficiently.
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Background

Cytokines is a varied group of polypeptides, usually
linked to inflammation and cell differentiation or death.
Among major families of cytokines (interleukins (IL),
interferons (IFNs), tumor necrosis factors (TNFs),
chemokine and various growth factors, comprised of
transforminggrowth factor b (TGF-b), fibroblast growth
factor (FGF), heparin binding growth factor (HBGF) and
neuron growth factor (NGF)) [1], tumor necrosis factors
are versatile cytokines with a wide range of functions
that attracts abundant of biological researchers (see, e.g.
[2-6]). TNFs can take part in pathological reactions as
well as involve in a variety of processes, such as inflam-
mation, tumor growth, transplant rejection, etc. [3, 6].
TNFs act through their receptors at the cellular level to
activate separate signals that control cell survival, prolif-
eration or death. Furthermore, TNFs play two opposite
roles in regard to cancer. On the positive side, activity in
the suppression of cancer is supposed to be limited, pri-
marily due to system toxicity of TNFs. On the negative
side, TNFs might act as a promoter of the endogenous
tumor through their intervention to the proliferation, in-
vasion and tumor cell metastasis thus contributing to
tumor provenance. Such TNFs' effect on cancer cell
death makes them a probable therapeutic for cancer [3].
Moreover, in the United States and other nations,
patients with TNF-linked autoimmune diseases have
been authorized to be treated with TNF blockers [2]. In
cytokine network, TNFs and other factors such as inter-
leukins, interferons form an extremely complicated in-
teractions generally mirroring cytokine cascades which
begin with one cytokine causing one or additional differ-
ent cytokines to express that successively trigger the ex-
pression of other factors and generate complex feedback
regulatory circuits. Abnormalities in these cytokines,
their receptors, and the signaling pathways that they
initiate involve a broad range of illnesses [7—12]. Inter-
dependence between TNFs and other cytokines accounts
for such diseases. For instance, TNFs and interleukin-1
administers TNF-dependent control of Mycobacterium
tuberculosis infection [12]. Another example is the TNF
and type I interferons interactions in inflammation
process which involve rheumatoid arthritis and systemic
lupus erythematosus [13]. For the above reasons, identi-
fication of TNFs from other cytokines presents a
challenge for many biologists.

To date, in bioinformatics, several research teams have
built machine learning models to predict cytokines and
achieved high performance [14-20]. Bases on these re-
search, it is noted that Support Vector Machine (SVM)
[21] classifier is a solid foundation for building predic-
tion models. Regarding the feature extraction method
used, considerable efforts were made to create hybrid
features through useful characteristics extracted from
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sequences such as compositions of amino acids and
amino acid pairs, physicochemical properties, secondary
structures, and evolutionary information to improve
predictive ability. It therefore has been verified that a
primary concern for biological scientists is a discrimin-
atory and effective feature set. Additionally, among these
groups, some have further classified cytokines into
tumor necrosis factor family and other subfamilies. For
example, Huang et al. utilized dipeptide composition to
developed CTKPred, a tool for identifying cytokines
families and subfamilies [15]. This classification method
accomplished an accuracy of 92.5% on 7-fold cross-
validation when predicting cytokines, and also enabled 7
significant cytokine classes to be predicted with 94.7%
accuracy, overall. Although the results seem promising,
we noted that the authors set cutoff threshold value as
very high as 90% for excluding homologous sequences
within the dataset. Three years later, Lata et al. con-
structed CytoPred using the combination of support
vector machine and Psi Blast to classify cytokines into
4 families and 7 subfamilies [16]. Despite the fact that
CytoPred outperforms CTKPred, Lata’s group reused
the dataset created by Huang et al. which poses the
similar concern about the high value for cutoff thresh-
old. We believe that if the cutoff threshold is lower,
the more the homology bias will be excluded from the
surveyed dataset in a stricter manner and thus increas-
ing reliability of the prediction model [22]. Consider-
ing the important roles of TNFs and the imperfection
of such models like CTKPred and CytoPred, a fresh
approach to classifying TNF among cytokines is
required, so our study seeks to discover a solution to
this issue.

From the interpretation of the genetic alphabet order,
scientists have found that in terms of in composition,
biological sequences, particularly protein sequences, are
comparable to human language [23]. A growing variety
of scientists are relating these molecule sequences as a
special textual data and examining them using available
text mining techniques. Initial stage of this transform-
ation is to convert (biological) words to real numbers
like those in vectors. This means that every word is
encoded by one or more values that locate it in a discre-
tionary space. Regarding this issue, NLP researchers
have seen some landmarks. They are one-hot encoding,
co-occurrence matrix, and word embedding techniques.
A one-hot vector represents a word in text and encom-
pass a dimension up to a vocabulary size, where a sole
entry resembling the word is a one and all opposite
entries are zeros. This presents a significant drawback
because this method does not group commonly co-
occurring items together in the representation space.
Furthermore, scalability is another limitation as the
representation size increases with the corpus size. Later,
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the concept of co-occurrence matrix arrived. Co-
occurrence matrix represents a word while considering
its adjacent words. The underlying reasoning for co-
occurrence matrix follows an assumption that “con-
text is king”. This technique has been believed to take
a radical change within the field of NLP. During this
methodology, a window size s is selected to formulate
a co-occurrence matrix where words appearing along
in the chunk with length s are going to be counted.
The linguistics and grammar relationships made by
this method are compelling yet this idea encounters
some limitations such as high-dimensional space and
thus computational expensive. These barriers resulted
in the arrival of word embeddings, or continuous
word vectors that are illustrations of words that also
considers the context via neighboring words yet keep
the number of dimensions greatly lower. A typical
word embedding vector accumulates additional char-
acteristics with reduced dimensions, and therefore
more efficient. Recently, its utilization have been seen
as underlying principle of various word embedding-
related research such as sentiment classification, bilin-
gual word translation, information retrieval, etc. with
appreciable accomplishment [24-27].

Motivated by remarkable achievements in NLP using
word embeddings, in this study, we tried to use NLP
technique for extracting features. We transferred the
protein sequences into “protein sentences” comprised of
composing biological words from which word vectors
were created. Next, we trained the Fast Text model to
created word embeddings on which final word
embedding-based features were generated. Finally, we
employed some advanced machine learning algorithms
for classification.

Many studies in bioinformatics show that [28-37]
to build a helpful statistical predictor from primary
sequences to help biologists solve a certain problem,
researchers ought to obey the rules from 5-step rule
which is restated here for clarity: (1) the accurate
procedure to compose training and independent data-
set to build and evaluate the predictive model; (2) the
way to represent amino acid chain samples in math-
ematical forms that can genuinely mirror their char-
acteristic interconnection with the predicted target;
(3) the best approach to present or build up an
effective and robust predictive algorithm; (4) the
method to correctly conduct cross-validation tests to
justly evaluate the predictor’s unseen accuracy; (5) the
way to set up a convenient and accessible web-server
for the predictor that is helpful to general users.
Herein, we strictly follow the the first four steps rec-
ommended by Chou et al. [22]. For the last step, we
deposited our prediction model on a public repository
which can also assist general users.
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Results

Number of features with n-gram sizes

It is necessary to figure out the quality as well as the
quantity of extracted features for the learning process.
Therefore, we calculated the number of features of word
embedding-based vectors that were input in our binary
classifiers (see Table 1). As we randomly divided the
data into the training part and testing part and repeated
this process for 10 times resulting 10 datasets for experi-
ments, the numbers of n-grams vary from dataset to
dataset. We found that when biological word length was
equal to 3 (n =3), the numbers of features were highest
(from 1736 to 1915) compared to those with length 1, 2,
4, or 5. In this group, the numbers of features when the
length of biological words is equal to 2 is the second
highest (from 395 to 398). Therefore, when we com-
bined between 2-g and 3-g features, the total number of
hybrid features is the highest one (from 2131 to 2313).

Amino acid composition analysis of TNFs and non-TNFs
We analyzed the amino acid composition of TNFs and
non-TNFs by calculating the frequency of comprised
amino acid. We used the entire dataset for this analysis.
Figure 1 illustrates the amino acids that contributed
unevenly in two different groups and Fig. 2 displays the
variance of the composition. We noticed that the amino
acid K, G, L, I occurred at the significant frequency
difference. Therefore, in recognizing TNF proteins, these
amino acids definitely play an important role. According
to these amino acid contributions, the model can evalu-
ate these unique characteristics to define tumor necrosis
factors.

We further carried out statistical tests on the entire
dataset to evaluate the distinction between TNFs and
non-TNFs amino acid composition variance. We per-
formed the tests on 3 types of composition: single amino
acid, dipeptide and tripeptide. First, F-test has been used
to test the null hypothesis that two datasets’ variances
are equal. We presumed that there are equal variances
between TNFs and non-TNFs. After running the test, in
all three cases, we acknowledged F < F-critical, (the F

Table 1 Number of features input in our binary classifiers

Feature types Number of features

1-g 20

2-g 3953398
39 1736 =» 1915
4-g 60 = 83

5-g 611

1-g and 2-g combined 415> 418
1-g and 3-g combined 1756 = 1935
2-g and 3-g combined 2131 = 2313
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Fig. 1 Amino acid composition of the surveyed TNF and non-TNF proteins. The amino acid K, G, L, | occurred at the significant
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and F-critical values of 3 cases are provided in the Table
S1, Additional file 1), so we accepted the null hypothesis.
It implies that the variances of two datasets in terms of
single amino acid, dipeptide and tripeptide composition
are equal or the amino acid structures of the dataset are
not substantially different. Therefore, an efficient ap-
proach for extracting useful features is critically needed
to identify TNFs with high performance.

Next, we performed the unpaired t-test with values of
amino acid, dipeptide and tripeptide composition on
positive group (18 TNF sequences) and negative group
(non-TNF sequences). The Table S2, S3, S4 in the
displays the p-values of the tests.

From the Table S2, we can see that the p-values are
generally high which means that there are not much dif-
ference in amino acid compostion between TNF and
non-TNF sequences. However, at the common criterion
(p-value of 0.05), six amino acids C, G, K, W, Y, and V
shows significant frequency difference. In addition, from
the Table S3, it can be seen that GL, LY, FG are amino
acid pairs with lowest p-values which means that they
may contribute more for distinguishing positive and
negative data. It is also noted from the Table S4 that
these patterns can be found in tripeptides with lowest p-
values (GLY, FFG, FGA, LYY). The other tripeptides
with lowest p-values are QDG, TFF and VYV.
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Fig. 2 The variance of amino acid composition of the surveyed TNF and non-TNF proteins
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Visualization of word embedding-based features in
representation space

In this analysis, we would like to envisage the surveyed
protein feature vectors, which have a high number of
dimensions and are very hard to see in the raw form.
We performed t-Distributed Stochastic Neighbor
Embedding [38] (t-SNE), an unsupervised, non-linear
method mainly used for data exploration and high-
dimensional visualization, on the whole dataset. t-SNE
allows us to reduce data with hundreds or even thou-
sands of dimensions to just two (forming a point in two-
dimensional space) and thus being suitable to plot our
data on a two-dimensional space. We used the word
embedding-based vectors generated from extraction
method described in section 2.2 as input into t-SNE
algorithm to create two-dimensional “maps” for TNF
and non-TNF sequences. We also noted that t-SNE con-
tains a tunable parameter, “perplexity”, which indicated
balance attention between local and global aspects of
visualized data. The perplexity value has a complex
effect on the resulting pictures and typical values are be-
tween 5 and 50. In order to get a multiple view about
our data, we performed our visualization with perplexity
values of 25 and 50. Fig. S1, S2, S3, S4, S5, S6, S7, S8 in
Additional file 2 visualize our dataset corresponding to 5
different word lengths (length =1, 2, 3, 4, 5) and 3 ways
we combined n-gram features, respectively. From these
figures, it is interesting that the two-dimensional “maps”
for TNF and non-TNF sequences have different shapes.
Moreover, features with n-gram, where n takes values of
1, 2, 4, and 5 are points that tend to be farther from each
other compared to those of the rest. In addition, when
we changed the perplexity from 25 to 50, the shape
comprised from the points changed differently among
feature types.

The influence of n-gram sizes on the performance of the
models

In this prior research, we intended to compare the
efficacy of distinct segmentation sizes and the mixture of
n-gram used. The feature sets were produced as outlined
in section 2.2. We used SVM as the binary classifier.
(We used scikit-learn library (version 0.19.1) for building
all classifiers in this study). In both 5-fold cross-
validation and independent test, we assessed the general
performance of each experiment using the AUC scores.
The outcomes with highlighted best values in bold are
shown in Table 2. We found that among 5 segmentation
sizes, feature type corresponding to biological words of
length = 3 helped vyielded the highest average perform-
ance. This may come from the larger number of features
because when the biological words length is equal to 3
(n =3), the numbers of features are highest (from 1736
to 1915, see Table 1). Furthermore, model with the 2-g
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Table 2 AUC performance of SVM classifier on embedding
features with different biological word lengths

Feature AUC

5-fold cross-validation Independent
1-g 0.856 + 0485 0.848 + 0.525
29 0.901 = 0416 0.883 = 0.599
39 0.934 + 0423 1+0
4-g 0617 + 063 0563 + 0.751
59 0.543 = 0539 0574 + 0.686
1-g and 2-g combined 0952 + 0416 0934 £ 048
1-g and 3-g combined 096 + 042 0921 + 0497
2-g and 3-g combined 0.984 + 0.298 0.998 + 0.277

(Each result is reported in format: m + d, where m is the mean and d is the
standard deviation across the ten runs)

and 3-g combined feature set achieved the best average
AUC of 0984+0.298 and 0998 +£0.277 on cross-
validation and independent test, respectively. From these
outcomes, we chose this feature type for further
experiments.

Comparison between proposed features and other
sequence-based feature types

We used SVM to evaluate the efficiency of our suggested
features against 7 frequently used feature types i.e.
amino acid composition (AAC), amino acid pair com-
position (DPC), position-specific scoring matrix (PSSM)
features and the combination of these types. After a
search for the ideal parameters, we conducted these
experiments on both cross-validation and independent
data. We found that with our suggested features, the
SVM models reached the best performance (95.82,
97.59, 83.67%, 0.83 on the validation data, 96.49, 98,
85%, 0.86 on the independent data in terms of accuracy,
specificity, sensitivity, and MCC, respectively, see
Table 3). These values demonstrate that, compared to
other sequence-based feature kinds, our word
embedding-based features are more discriminatory and
efficient. For long time, it is well-known that evolution-
ary information or PSSM is an efficient feature type to
solve numerous bioinformatics problem yet it takes a lot
of time to be created. These results show that, with our
approach for generating features, we can save much time
on feature extraction phase.

Comparison of different advanced classifiers using
embedding features

We used the feature kind selected from the results of
the experiments described in section 3.4 as inputs of 5
commonly used machine learning algorithms namely
Support Vector Machine [39], k Nearest Neighbor
(kNN) [40], RandomForest (RF) [41], Naive Bayes [42]
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Table 3 Performance comparison of proposed features with AAC, DPC, PSSM, and the combined features with highest performance

values for each class highlighted in bold

Cross-validation data

Feature types Acc (%) Spec (%) Sen (%) MCC

AAC 60.69+12.13 59.61 +15.82 68.01+19.77 024+ 0.09
DPC 7042 £13.97 72891791 51.67 £20.14 0.24+£0.13
AAC-DPC 86.48 +5.82 88.83+8.04 6934+ 16.62 0.53+0.08
PSSM 89.57 +6.68 91.88+5.73 7334+1833 061+0.16
PSSM-AAC 91.17£3.18 93.19+4.11 7634 £1291 066 £ 0.1
PSSM-DPC 91.25+3.29 93.85+4.58 72.34+1258 0.64 +0.09
PSSM-DPC-AAC 91.25+2.84 93.67 +3.85 7367 £ 1445 064+0.1
Proposed features 95.82+ 167 97.59+2.15 83.67 +745 0.83 +0.06

Independent data

Feature types Acc (%) Spec (%) Sen (%) MCC

AAC 46.92 + 2559 4237 £33.15 81.25 £ 3449 0.20£0.07
DPC 82.05+23.71 84.63 +29.06 62.75+39.92 046 +£0.28
AAC-DPC 93.65+ 2.66 94.95+3.26 83.75+9.59 0.73+0.09
PSSM 94.85+2.82 97.56 +£2.85 74.5 £ 2835 0.72+£0.26
PSSM-AAC 95.77 £ 145 9742 +2.14 8325+ 11.31 0.81+£0.06
PSSM-DPC 9594 +1.33 97.81+1.49 82+88 0.81+0.07
PSSM-DPC-AAC 95.14 £ 2.02 96.77 £2.48 83+£9.7 0.78 £0.08
Proposed features 96.49 + 4.34 98 +527 85+ 1748 0.86 +0.13

(Each result is reported in format: m + d, where m is the mean and d is the standard deviation across the ten runs)

and QuickRBF [43-46]. We used cross-validation data
and independent data for these experiments. We also
searched for the best parameters for each algorithm. The
aim of this assessment is to find out which classifier ob-
tains the greatest outputs given this kind of feature.
Table 5 shows the outcomes with the greatest average
performance values highlighted in bold. We discovered
that, the SVM classifier outperformed the other classi-
fiers on both cross-validation and independent data on
the same suggested dataset in terms of AUC (see
Table 4). Accordingly, we employed SVM to build the
final prediction model.

Source codes for the replication of our model

To assist future research replication, we provide all the
surveyed datasets and source codes at https://github.
com/khucnam/TNFPred. From the best feature types
based on the 5-fold cross-validation results in the devel-
opment process, to create a simple and publicly access-
ible model called TNFPred to demonstrate our research.
TNFPred was implemented using Python programming
language with sklearn library. The repository also in-
cludes a two-step guide. The users who are unfamiliar
with programming and machine learning can easily use
the model and evaluate our technique.

Discussions

In this work, we provided a computational model for
classifying tumor necrosis factors from cytokines. We
supported biologists with data for their experiment repli-
cations and scholarly work with reliable cytokine and

Table 4 Performance comparison of five commonly used
binary classifiers on proposed features

Classifier Cross-validation data

Acc (%) Spec (%) Sen (%) MCC
SYM 95.82+167 97.59+2.15 83.67+745 0.83+006
kNN 7733 £3.7 7541£398 100+0 047 £0.03
RandomForest  94.22+23 9420£29 94 +£843 0.75+0.05
Naive Bayes 21.59+1062 14761145 100+0 0.09+0.06
QuickRBF 9480+ 152 9981+04 5799+ 1425 0.72+0.09

Independent data

Acc (%) Spec (%) Sen (%) MCC
SVM 96.49 £434 98 +527 85+1748 0.86+0.13
kNN 79.39+£89 78.01£1057 9334+14.04 047+0.09
RandomForest 97.28+225 994226 80.01+2331 084+0.14
Naive Bayes 19.09+2376 1099+26.15 100+0 0.08£0.17
QuickRBF 9412+197 100+0 50+16.7 068+0.13

(Each result is reported in format: m + d, where m is the mean and d is the
standard deviation across the ten runs)
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non-cytokine sequence information. Additionally, our
experiments was carefully-designed to ensure the
reliability of the predictive model. Specifically, we also
carried the experiments with 10 runs, each with the
same data but different training and testing data parti-
tions to get more insight about the dataset. Although we
kept the same sequence number distributions over these
two parts, it is interesting to find that the performance is
influenced by the random partitioning of data into train-
ing and testing data parts. This is reflected in the stand-
ard deviation across 10 runs. In this regard, sensitivity
scores are the most unpredictable ones. We think a
reason for this instability may come from the much in-
sufficiency of positive data samples (see Table 1). Add-
itionally, with our data, in the case of 3-g, 4-g and 5-g,
the number of biological words generated (see Table 2)
are far from reaching the maximum possible number
following this formulae: (20) '"¢™, where 20 is the num-
ber of standard amino acids and length is the size for
sequence segmentation. This means that we did not
have abundant samples to train the FastText model so
that it can reach its best potential. Fortunately, when we
accumulated 2-g and 3-g features to create a new feature
set, we obtained the best average AUC and lowest stand-
ard deviation (see Table 2). In order to improve the per-
formance as well as the stability of predictive models in
future research, we suggest 2 tentative methods. First,
for extracting useful features, scientists may try with an-
other word representation approach such as contextual-
ized word embeddings of which the same word (motif)
will have different embeddings depending on its con-
textual use [47-49]. Second, for tackling the insuffi-
ciencies of positive data samples (e.g., TNF sequences
in this study), transfer learning approach can be a
good attempt [50]. As part of our future work, we are
currently evaluating the effect of an optimal features
based on contextualized word embeddings for com-
parison with the scheme used in this study. Moreover,
we are also considering transfer learning approach for
protein classification tasks with source data from pro-
teins having general characteristics of cytokines, e.g.,
cell-signaling, and target data from specific kind of
cytokines such as TNFs.

Conclusions

In this research, we have consistently applied word em-
bedding techniques for identifying tumor necrosis fac-
tors from other cytokines. We assessed our performance
on 5-fold cross-validation and independent testing data-
set with support vector machine classifier and optimal
features generated from word embeddings. Our tech-
nique showed an average five-fold cross-validation ac-
curacy of 95.82% and MCC of 0.83 for predicting TNFs
among cytokines. The average accuracy of independent
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datasets is 96.49% and MCC is 0.96, respectively. In
addition, this research strictly adheres to the guidelines
of 5-step rule with a slight modification on the last step.
This makes our predictor reliable compared to other
published works. Our suggested approach is also sim-
pler, less laborious and much quicker to generate feature
sets. In addition, our work could provide a foundation
for future studies that can utilize natural language
processing tactics in bioinformatics and computational
biology.

Methods

We present a new method utilizing word embedding
vectors to efficiently identify tumor necrosis factors from
cytokines. Figure 3 displays a flowchart of our study con-
sisting two main sub-processes: using FastText to train
vector model and support vector machine classifier to
train supervised learning classification. Each sub-process
is explained further in the sections below.

Data collection

From UniProt database [51] (release 2019 _05), we first
collected positive data which are tumor necrosis factors
by using the query as “family:“tumor necrosis factor fam-
ily” AND reviewed:yes”. From this step, we obtained 106
protein sequences. After that, we collected negative data
which are 1023 cytokine sequences from other major
cytokine families including 347 interleukins, 205 chemo-
kines, 227 TGF-betas, 138 interferons and 106 others.
Using PSI Blast [52], we dismissed sequences with simi-
larity higher than 20% which ensures our study strictly
follows the first principle in the 5-step rule. We also
removed protein sequences that contain uncommon
amino acid (BJOUXZ). After this step, we were left
with 18 TNF proteins and 133 non-TNF proteins.
These are proteins from various organisms such as
human, mouse, rat, bovine and fruit fly, etc. As the
number of protein sequences left for survey is small
(151 sequences), the prediction model might be
biased toward the way we separated the data parts
used for training and testing. Accordingly, we ran-
domly divided 151 surveyed sequences into cross-
validation data and independent data for building and
testing the models, respectively. We repeated this
with process for 10 times when keeping the same se-
quence number distributions over these two parts.
This means that all our later experiments were car-
ried out on 10 different datasets and the results were
averaged. Table 5 shows the detailed number of
sequences for each part in each of 10 datasets.

Feature extraction for identifying tumor necrosis factors
According to the fundamental concepts, in our research,
every protein sequence is divided into segments with



Nguyen et al. BMC Medical Genomics 2020, 13(Suppl 10):155

Page 8 of 11

UniProt database

‘ PSI Blast 20%

Word
embedding-
based vectors

18 tumor necrosis factor proteins
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Fig. 3 The flowchart of this study. First, surveyed dataset was used to train a FastText model and then we used this trained model to generate word
embedding vectors. Next, word embedding-based vectors were created. In the end, support vector machine classifier was used for classification

J

same length and allowed overlapping. We then trained
the neural network via FastText [53, 54] to generate the
word embedding vector corresponding to each word.
During this method, rather than employing a distinct
vector illustration for every word, we considered inner
arrangement in every word: each word w was described
as a bag of character n-grams. In this manner, particu-
lar boundary characters “<” and “>” are supplementary
at the start and finish of words. If taking QIGEF an
instance, the following character n-grams: “<QI”,
“QIG”, “IGE”, “GEF”, “EF>” and the particular sequence
“<QIGEF >” will be counted when n=3. For this
reason, content of shorter words may be retained,
which may seems as as n-grams of different words. This
conjoint permits the meanings of suffixes/prefixes to be
taken. This enable us to make the most of characteris-
tics from rare words, that contributes considerably to
the potency of the tactic [53]. It should be noted that
we unbroken all the initial parameters of FastText and
specify the embedding vector dimension as one. This
implies that every biological word is delineated by only
1 real number.

Table 5 Statistics of the surveyed TNF and non-TNF sequences

Since surveyed sequence lengths are changing, the
number of split words also varies. Machine learning
algorithms, however, involve an equal amount of vari-
ables in the data samples. We addressed this difficulty
using two steps: (1) First, we built L, an ordered list
containing all protein words from the training data.
(We v to denote the number of words in L), (2) Sec-
ond, we used v embedding vectors appended one
after another to describe each data sample. In this
representation, the i™ vector is the embedding vector
ensemble to the i™ word within the ordered list. Dur-
ing this step, it is important to note that if the i™
word is not present in the protein sequence, its corre-
sponding embedding vector is adequate to zero. Like-
wise, if the i™ word emerges m times within the
sequence, its corresponding embedding vector was in-
creased m times. In this fashion, we would quantify
the prevalence or contribution of the every biological
word to a full feature vector. These biological words
can be correlated to protein sequence motifs, that
show their valuable characteristics for discriminating
protein function [55]. The use of these characteristics

Original After 20% similarity check Cross-validation Independent
TNF 106 18 14 4
Non-TNF 1023 133 103 30
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Fig. 4 The 4-step flowchart demonstrating our method for using word embedding vectors as protein features. In this illustration, 2 sequences

were used and segmentation size is equal to 3

enabled us to gain a lot of discriminatory features for
more efficient prediction. The flow chart in Fig. 4 de-
picts our extraction technique for the case with a pair
of sequences and biological word lengths equal to 3.
In Additional file 3, we present a more detailed step-
by-step demonstration of our feature extraction
method with more sample sequences and selected n-
gram length of 3. Moreover, rather than using fixed
n-grams, with n are segmentation lengths of 1, 2, 3, 4
and 5, we conducted several mixtures among these
grams, where we expected to find the best merge
among different feature types to produce truly helpful
features. The total number of these hybrid features is
accumulated by surveyed grams.

Assessment of predictive ability

Our study is a binary classification problem. First, we
employed a five-fold cross-validation technique to de-
velop and evaluate our models during the training
process. Next, we assessed the capacity of our models in
predicting unseen data using the independent dataset.
We used four widely-used metrics sensitivity (Sen),
specificity (Spec), accuracy (Acc) and Matthews’s correl-
ation coefficient (MCC) (see, e.g. [56, 57]) to measure
the predictive performance. In Additional file 4, the
formulae of these metrics are presented. When a single
metric is required to assess a predictive model globally,
we used the area under the receiver operating character-
istic (ROC) curves (AUC) score [58, 59].
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perplexity equal to 25. Fig. S5b: Visualization corresponding to protein
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equal to 50. Fig. S6a: Visualization corresponding to protein feature vec-
tors comprised from 1-g and 2-g embedding combined vectors with per-
plexity equal to 25. Fig. S6b: Visualization corresponding to protein
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tors with perplexity equal to 50. Fig. S7a: Visualization corresponding to
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