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Abstract

Background: Multiple sclerosis (MS) is a complex disease in which the immune system attacks the central nervous
system. The molecular mechanisms contributing to the etiology of MS remain poorly understood. Genome-wide
association studies (GWAS) of MS have identified a small number of genetic loci significant at the genome level,
but they are mainly non-coding variants. Network-assisted analysis may help better interpret the functional roles of
the variants with association signals and potential translational medicine application. The Dense Module Searching
of GWAS tool (dmGWAS version 2.4) developed in our team is applied to 2 MS GWAS datasets (GeneMSA and
IMSGC GWAS) using the human protein interactome as the reference network. A dual evaluation strategy is used to
generate results with reproducibility.

Results: Approximately 7500 significant network modules were identified for each independent GWAS dataset, and
20 significant modules were identified from the dual evaluation. The top modules included GRB2, HDAC1, JAK2,
MAPK1, and STAT3 as central genes. Top module genes were enriched with functional terms such as “regulation of
glial cell differentiation” (adjusted p-value = 2.58 × 10− 3), “T-cell costimulation” (adjusted p-value = 2.11 × 10− 6) and
“virus receptor activity” (adjusted p-value = 1.67 × 10− 3). Interestingly, top gene networks included several MS FDA
approved drug target genes HDAC1, IL2RA, KEAP1, and RELA,

Conclusions: Our dmGWAS network analyses highlighted several genes (GRB2, HDAC1, IL2RA, JAK2, KEAP1, MAPK1,
RELA and STAT3) in top modules that are promising to interpret GWAS signals and link to MS drug targets. The
genes enriched with glial cell differentiation are important for understanding neurodegenerative processes in MS
and for remyelination therapy investigation. Importantly, our identified genetic signals enriched in T cell
costimulation and viral receptor activity supported the viral infection onset hypothesis for MS.
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Background
Multiple sclerosis (MS), a chronic and disabling disorder of
the central nervous system (CNS), affects nearly 1 million
individuals in the United States [1]. MS is characterized by
inflammation, demyelination, defective remyelination and
neuronal injury that may be extensive, leading to perman-
ent and progressive disability. MS is typically diagnosed be-
tween 20 and 40 years of age, and is nearly three times

more frequent in women than in men [1, 2]. The cause of
MS remains unknown, and it is unclear if its etiology may
even vary from patient to patient. MS is thought to occur
in genetically predisposed individuals with potential trigger,
or at least contribution of environmental factors [3]. One
hypothesis involves a yet unknown CNS viral infection trig-
gering T-cell auto-reactivity through a mechanism of mo-
lecular mimicry [4]. In light of the high prevalence of the
disease and its poorly elucidated mechanism, it is of im-
portance to further study MS pathogenesis.
Studying genetic factors associated with MS may aid in

understanding its pathophysiology. The realization that
MS risk is significantly higher for family members of
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affected individuals has prompted a search for genetic pre-
disposing factors [5]. Early genetic studies of MS devel-
oped genetic mapping for families affected with MS,
which identified human leukocyte antigen (HLA) regions
to be associated with MS [5, 6]. Due to limitations of sam-
ple size, these early studies were ineffective in validating
other genetic risk factors of MS [5]. Pivotally, genome-
wide association studies (GWAS), which during recent
years have aided in acquiring vast repositories of genetic
variations associated with specific phenotypes, were per-
formed in large MS populations [7]. As GWAS were per-
formed for larger MS sample sizes than original genetic
mapping studies, several genetic variations, or single nucleo-
tide polymorphisms (SNPs), outside of the HLA region be-
came attributed to MS [8, 9]. Some of these MS GWAS
studies are publicly available in the form of GWAS summary
statistics datasets, which summarize SNP level association p
values in the specific population or subpopulation (i.e., with-
out individual level genotype information to the public) [7].
In this work, two publicly available MS GWAS summary sta-
tistics datasets are independently and conjunctively further
studied: a MS GWA study performed by the Genetic Mul-
tiple Sclerosis Association (GeneMSA) consortium in 2009
and a MS GWA study performed by the International Mul-
tiple Sclerosis Genetics Consortium (IMSGC) in 2011 [8, 9].
Both of these GWA studies reported some SNPs with
genome-wide significance levels, but these variants are
largely in the non-coding regions with unknown function,
making biological interpretation difficult.
Although GWAS have come a long way in elucidating

genetic variations associated with specific traits, integrat-
ing GWAS data with other kinds of datasets can aid in un-
derstanding the molecular underpinnings behind these
associations [10, 11]. Additionally, differing genotyping
platforms used by GWAS and other factors (ethnic back-
ground, sample size, statistical tests) can make it difficult
to perform meta-analytical studies, but network-based
analysis is a promising approach to detect combinatory as-
sociation signals in network modules. This study aims to
apply network approach to find joint association signals at
the network modules, and thus, leading to biologically in-
terpretable results [12, 13]. A new version of the dense
module searching algorithm (dmGWAS) is used to inte-
grate GWAS signals with a comprehensive human
protein-protein interaction (PPI) network so that MS can-
didate subnetworks can be identified [11]. Uniquely, dense
module searching was performed independently on the 2
MS GWAS studies mentioned above. Lastly, this study
also aims to jointly examine independent MS GWAS
modules by using the dual evaluation function of the
dmGWAS package. This evaluation strategy would en-
hance the results in a reproducible fashion, since the repli-
cation rate is often low in GWA studies of complex
disease.

Materials and methods
Obtaining gene-level p-values by Pascal
The GeneMSA GWAS and IMSGC GWAS summary
statistics data were respectively accessed through the
public databases dbGaP and GWAS Catalogue [14, 15].
The human PPI network was downloaded from the pub-
lic Human Protein Reference Database (HPRD) [16], as
demonstrated in [17, 18]. The GeneMSA GWAS data
was collected by the Sentrix HumanHap 550-BeadChip
genotyping platform, and the IMSGC GWAS data was
collected by the Human660-Quad chip genotyping plat-
form [8, 9] (Additional file 1: Table S1).
Summary statistics data is presented in the form of SNP-

level association p-values. In this study, gene-level p-values
(pg) are needed as input for dense module searching by
dmGWAS. To obtain pg measures, a pathway scoring algo-
rithm (Pascal) was used, which considers combined SNP-
level effects (Fig. 1) [19]. The pg values were obtained with
default Pascal settings, which uses the sum-of-chi-squares
(SOCS) test and considers the gene region along with 50
kilobase pairs upstream/downstream of the gene region
[19]. Pascal pg measurements were obtained independently
for each MS GWAS dataset examined. We excluded those
genes whose pg was smaller than 10− 12 because they would
likely be dominant in the top modules and disrupt our
dense module searching process.

Dense module searching (DMS) and dual evaluation by
dmGWAS
Dense module searching was performed with the DMS
function of dmGWAS (version 2.4) Linux binary R pack-
age that is available at [20]. This function calculates each
pg value as a node weight and scores each subgraph
based on a quantitative summary of all the weights in
each module [11]. This function was executed for each
MS GWAS dataset independently. The outcome of DMS
is in the form of an RData results file which contains
modules with significant z-scores (Zm), where each mod-
ule is named by its seed gene. Zm measurements by
dmGWAS are acquired by

Zm ¼
P

Ziffiffiffi
k

p ;

where zi was transferred from pg following the normal
distribution function, and k represents the number of
genes present within each module [11]. The top modules
with the highest Zm values were considered for our inde-
pendent network analysis and validation.
The dual evaluation function of dmGWAS (dualEval)

takes into consideration two module output lists (each
from a GWAS dataset in this analysis) from DMS func-
tion and performs dense module searching based on the
two module lists (Fig. 1) [11]. This was used to assess
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the overall results of dense module searching from both
GeneMSA GWAS and the IMSGC GWAS datasets. Spe-
cifically, dual evaluation was performed by using one GWAS
dataset (e.g., IMSGC) as the discovery set and the other (e.g.,
GeneMSA) as the evaluation set, and the consistent results
will be reported. Because the IMSGC GWAS had a larger
sample size and stronger association signals, we used its
DMS modules for the discovery (Additional file 2: Figure S1)
and used the DMS modules from GeneMSA GWAS dataset
to evaluate IMSGC modules. After implementation of the
dualEval function by dmGWAS, significant modules from
discovery set were merged.

Network visualization and validation
The software Cytoscape was used for network visualization.
Cytoscape is a popular open source tool commonly used
for analysis of biomedical networks [21]. Nodes and edges

derived from the module results by running dmGWAS ver-
sion 2.4 were imported into Cytoscape. The NetworkAnaly-
zer tool, a built-in Cytoscape tool that measures a variety of
network parameters, was used to assess the resulting net-
works [21]. The measure of betweenness and centrality (Be-
tweenness) was used to measure the functional importance
of the nodes in top modules. The betweenness value, com-
puted by the Brandes fast algorithm, highlights nodes that
join communities of dense subnetworks together [22–24].
Brandes fast algorithm computes betweenness by Free-
man’s general formula:

Betweenness ¼
X

s≠v≠t∈V

σst vð Þ
σst

;

where V is the set of vertices, s and t represent vertices
such that σst can denote a path from s to t, and σst(v)

Fig. 1 Pipeline for dmGWAS implementation and gene network assessment. Details are provided in the Materials and methods section
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can denote the number of shortest paths from s to t that
vertex v lies on [23, 25].
Functional enrichment analysis by ToppGene Suite [26]

was performed for validation of our resulting MS gene
networks. ToppGene (also known as ToppCluster) is a
web-based tool that performs enrichment analysis based
on annotations of experimentally validated categorical
data about human genes [26]. Annotations from the Gene
Ontology (GO) database were reported from our analysis
[27]. Genes within top 10 modules were considered as the
input for each functional enrichment analysis performed
on individual GWAS data sets. The complete discovery
set of genes from significant dual evaluation modules were
considered for the functional enrichment analysis of the
dual evaluation results. Calculations of significance level
by ToppGene Suite was done by a probability density
function [26]. Multiple testing correction was conducted
using the Benjamini-Hochberg method for all annotation
features, which provided adjusted p-values for enrichment
results [28]. A functional enrichment annotation limit of
100 genes was chosen per annotation report, as all gene
lists ranged from 26 to 56 genes.
A drug target search within the DrugBank database

was performed for further evaluation of the translational
potential of the resulting gene networks. DrugBank is a
public online database, which contains rich biochemical
information about drugs and their gene targets [29]. The
DrugBank database was queried for MS FDA approved
drugs and their pertaining drug targets. The searched
drug targets were then compared to our resulting top 1
% modules and dual evaluation discovery modules.
Overlapping drug targets and genes were then reported,
along with corresponding pg values.

Results
Multiple sclerosis modules identified by dmGWAS
We used dmGWAS tool to search the gene network mod-
ules with enriched signals in 2 MS GWAS datasets (Fig. 1).
We identified 7458 network modules from GeneMSA
GWAS data and 7566 modules from IMSGC GWAS data.
We first examined those modules from GeneMSA data. The
top module (the highest scored module) included 14 genes
and had a normalized Zm score 7.73 and module p-value
(pm) of 1.04 × 10− 14. This top module had the central node
HDAC1 with a Betweenness measure of 0.76 and a gene-
level p-value (pg) of 0.26 (Fig. 2a). The most significant genes
within this top module included PHF12 (pg = 4.96 × 10− 4),
which directly connected to central node HDAC1, and
DMC1 (pg = 4.96 × 10− 4). Note that a network module with
enriched association signals does not require each node to
have significant pg value; and this is one of the advantages to
search a set of genes, each of which has weak or moderate
signal, but their interaction contribute to a strong, combin-
atory signal. Among the 7458 modules identified from the

GeneMSA GWAS dataset, the top 10 modules contained 37
genes. All top 10 modules had a normalized Zm greater than
7.66 and a pm less than 2.04 × 10− 14 (values pertaining to
10th top module). Cytoscape visualization of the merged
GeneMSA top 10 modules (Fig. 2b) contained the central
genes STAT3 (pg = 1.81 × 10− 3, Betweenness = 0.574) and
HDAC1 (pg = 0.26, Betweenness = 0.54). Other central genes
in GeneMSA top 10 modules included STAT5A (pg = 3.25 ×
10− 3, Betweenness = 0.28), ESR2 (pg = 0.02, Betweenness =
0.22) and RELA (pg = 0.08, Betweenness = 0.16). Next, we
merged the top 1 % modules (75 modules) to form a
network. It contained 144 genes and presented GNB2L1
(pg = 0.02, Betweenness = 0.22), SRC (pg = 0.03, Between-
ness = 0.22) and STAT3 (pg = 1.81 × 10− 3, Betweenness =
0.20) as most central (Additional file 3: Figure S2).
The top module from the IMSGC GWAS dataset had

a normalized Zm value 11.13 (pm < 2.20 × 10− 16) and
contained 9 genes. JAK2 was highly central (Between-
ness = 0.75) within this top network with a pg of 1.25 ×
10− 3 (Fig. 2c). Highly significant genes within this top
module were TNFRSF14 (pg = 2.16 × 10− 10) and IL2RA
(pg = 4.37 × 10− 9). Among the 7566 total modules identi-
fied from the IMSGC GWAS data, the top 10 modules
contained 37 non-redundant genes. All these top 10
modules had Zm values greater than 10.89 (pm < 2.20 ×
10− 16). When these top 10 modules were merged and
evaluated by Cytoscape, the gene STAT3 (pg = 8.36 ×
10− 5, Betweenness = 0.348) appeared central in this
network (Fig. 2d). Other central genes in these top 10
modules included GRB2 (pg = 0.02, Betweenness = 0.16),
RELA (pg = 1.84 × 10− 4, Betweenness = 0.16), SYK (pg =
3.41 × 10− 3, Betweenness = 0.16) and NCOA1 (pg = 0.03,
Betweenness = 0.15). Next, we merged top 1 % modules
(76 modules). The merged network included 123 genes
and showed two highly central genes: GRB2 (pg = 0.02,
Betweenness = 0.31) and EGFR (Pg = 0.07, Betweenness =
0.30) (Additional file 4: Figure S3).
We next reported the dual evaluation results by using

IMSGC GWAS as the discovery dataset and GeneMSA
GWAS as the evaluation dataset. The top module (Fig. 3a)
contained 11 genes and exhibited a normalized Zm value
10.78 (pm < 2.20 × 10− 16). This top module contained
MAPK1 (pg = 3.40 × 10− 5) as a central node (Between-
ness = 0.60). Two genes, TNFRSF14 (pg = 2.16 × 10− 10)
and IL2RA (pg = 4.37 × 10− 9), were highly significant and
observed in the dual evaluation top module. In addition,
dual evaluation of GeneMSA (evaluation) and IMSGC
(discovery) datasets identified 20 significant modules
based on discovery and evaluation Zm values (Fig. 3b). All
the 20 significant modules from the dual evaluation dis-
covery set contained 56 non-redundant genes (Fig. 3c).
The genes GRB2 (pg = 0.02, Betweenness = 0.54) and
MAPK1 (pg = 3.40 × 10− 5, Betweenness = 0.51) were the
most central genes in the merged network. Other central
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genes in this dual evaluation gene set included MAPK3
(pg = 5.07 × 10− 4, Betweenness = 0.33), MAP3K14 (pg =
3.78 × 10− 3, Betweenness = 0.31) and PPP2CA (pg = 1.18 ×
10− 4, Betweenness = 0.29).

Gene set enrichment analysis
We first reported the functional enrichment analysis of
gene list (n = 37 genes) from the top 10 modules of Gen-
eMSA GWAS dataset (Additional file 5: Table S2). Inter-
estingly, the most significantly enriched GO Molecular
Function terms are all involved in the process of transcrip-
tion regulation. These transcription regulation functions
included “repressing transcription factor binding” (ad-
justed p-value = 2.79 × 10− 7) as the most enriched GO
Molecular Function term, with six contributing genes:
CTNNB1, HDAC1, HDAC5, KAT5, RELA, and STAT3.
Among the top five enriched GO Biological Process terms,

“regulation of glial cell differentiation” was enriched with
an adjusted p-value of 2.58 × 10− 3. Contributing genes
within the glial cell differentiation process included
CTNNB1, HDAC1, HES1 and RELA. Next, we reported
the top five GO Cellular Component enriched terms. The
second most significant one is “histone deacetylase com-
plex” (adjusted p-value = 3.43 × 10− 4) with four contribut-
ing genes: BRMS1, HDAC1, HDAC5 and PHF12. Lastly,
the GO Cellular Component “I-kappaB/NF-kappaB com-
plex” (adjusted p-value = 3.53 × 10− 3) was also among the
top five enriched for GeneMSA, which included the input
genes REL and RELA.
We next performed gene set enrichment analysis of

the genes (n = 26 genes) from the top 10 modules from
the IMSGC GWAS dataset (Additional file 6: Table S3).
Among the enriched GO Molecular Function terms, the
top term was “phosphotyrosine residue binding” with an

Fig. 2 Top modules associated to GeneMSA GWAS and IMSGC GWAS. The top module of GeneMSA GWAS displays HDAC1 as central (a). The top
10 modules of GeneMSA were merged (b). The top module of IMSGC GWAS shows JAK2 as central (c). The top 10 modules of IMSGC were
merged (d). Large nodes represent central genes and small nodes represent less central genes (based on measure of Betweenness). Colors of
nodes represent Pascal reported gene-level p-values as specified by legend
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adjusted p-value of 2.74 × 10− 4. This term was identified
by the input genes CBLB, GRB2 and MAPK1. Other top
enriched GO Molecular Function terms of IMSGC in-
cluded “protein phosphorylated amino acid binding” (ad-
justed p-value = 5.46 × 10− 4), “non-membrane spanning
protein kinase activity” (adjusted p-value = 1.11 × 10− 3),
“growth hormone receptor binding” (adjusted p-value =
1.11 × 10− 3) and “CCR5 chemokine receptor binding” (ad-
justed p-value = 1.11 × 10− 3). Among the enriched GO Bio-
logical Process terms of IMSGC, we found the “regulation
of tyrosine phosphorylation of STAT protein” was the most
significant (adjusted p-value = 1.58 × 10− 5). Five genes:
HCLS1, JAK2, SOCS1, STAT3, and TNFRSF1A contributed
to this GO term. Other STAT related processes within the
top five IMSGC enriched GO Biological Process were
“tyrosine phosphorylation of STAT protein” (adjusted p-
value = 1.58 × 10− 5) and “positive regulation of STAT cas-
cade” (adjusted p-value = 1.58 × 10− 5). The top GO Cellular
Component term for IMSGC gene list was “I-kappaB/NF-
kappaB complex” (adjusted p-value of 1.94 × 10− 3) with the
contributing genes NFKB1 and RELA (also observed as sig-
nificant for the GeneMSA gene set).
Here, we reported the gene set enrichment analysis of

the dual evaluation module genes (20 significant modules,
56 non-redundant genes, Table 1). Among the GO Mo-
lecular Function terms, the third most significant term is

“virus receptor activity” (adjusted p-value of 1.67 × 10− 3),
which was supported by four input genes: CD80, CD86,
ITGB3 and TNFRSF14. Phosphorylation and kinase re-
lated activity was once again observed within top five GO
Molecular Function terms enriched for the dual evaluation
gene set. These functions included “phosphotyrosine
residue binding” (adjusted p-value = 1.67 × 10− 3),
“phosphatidylinositol-4,5-bisphosphate 3-kinase activity”
(adjusted p-value = 1.67 × 10− 3), “phosphatidylinositol
bisphosphate kinase activity” (adjusted p-value = 1.67 ×
10− 3), and “protein phosphorylated amino acid binding”
(adjusted p-value = 1.67 × 10− 3). The top two enriched
GO Biological Process terms in dual evaluation gene set
were “T cell costimulation” (adjusted p-value = 2.11 ×
10− 6) and “lymphocyte costimulation” (adjusted p-value =
2.11 × 10− 6), which are at times necessary processes in ac-
tivation of immune response [30, 31]. These costimulation
processes both included the same 7 contributing genes:
CD80, CD86, CSK, CTLA4, GRB2, MAP3K14 and
TNFRSF14. The “JAK-STAT cascade involved in growth
hormone signaling” (adjusted p-value = 2.94 × 10− 5) was
also present within top five enriched GO Biological
Process terms of our dual evaluation. The top GO Cellular
Component term enriched for this dual evaluation gene
set was the “nuclear pore” with an adjusted p-value of
3.79 × 10− 4.

Fig. 3 Significant modules of dual evaluation regarding IMSGC GWAS as discovery set. The top module of dual evaluation shows MAPK1 as
central (a). Modules are regarded as significant based on normalized evaluation and discovery z-scores. Significant modules are represented in
red (b). The 20 significant modules were merged to show overall gene network (n = 56) (c). Large nodes represent central genes and small nodes
represent less central genes (based on measure of Betweenness). Colors of nodes represent Pascal reported gene-level p-values as specified
by legend
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Search for MS drug targets
MS FDA approved drugs and their drug targets were queried
within DrugBank database for further assessment of the
genes from our top networks. We found 32 unique MS FDA
approved target genes. Among them, we found four drug
targets overlapped with our top modules. These four genes
are HDAC1, IL2RA, KEAP1, and RELA, which are the targets
of 3 MS FDA approved drugs (Table 2). HDAC1, a gene in
the histone deacetylase family and the central node in the
top module of GeneMSA analysis (Fig. 2a), is a target gene
of the MS drug fingolimod [29]. Note that HDAC1 did not
have a significant pg value and would be missed in the typical
GWAS analysis, but our network analysis could pinpoint this
important druggable gene. Another MS drug target gene that
overlapped within our modules was IL2RA, a gene which
was present within the top module of IMSGC analysis, as
well as in the dual evaluation top module. IL2RA is a target
gene of the MS drug ocrelizumab. Lastly, the genes RELA
and KEAP1 are targets for the MS drug dimethyl fumarate
[29]. RELA was present and relatively central within Gen-
eMSA and IMSGC top 10 module gene lists (Fig. 2b, d).
KEAP1 was present within top 1 % modules of IMSGC
(Additional file 4: Figure S3). Our network analysis indicated

its potential to find potential druggable genes from GWAS
datasets, which often reported significant variants in the
non-coding regions.

Discussion
Network approaches can assist the original GWAS ana-
lysis to find combinatory signals in a set of genes that are
functionally related. This approach will help better inter-
pret the genetic association results toward understanding
the molecular mechanisms of the complex disease. In this
study, the most significant modules identified by
dmGWAS contained central genes that were not ad-
dressed in the original GWAS reports. This is mainly due
to the genome-wide significance level set in the original
GWA studies (e.g. p value < 10− 8 for each SNP). Central
genes outside of significance levels may have been re-
vealed as important interactors for their connections with
highly associated genes. Four unique MS drug target genes
were included in our top modules: HDAC1, IL2RA,
KEAP1 and RELA. The drug target genes HDAC1 and
RELA in particular were central in top modules and also
contributing genes in several notable gene set enrichment
results relevant to hypothesized MS mechanisms.

Table 1 Gene set enrichment analysis of the modules from dual evaluationa

GO term # contributing genes/
term sizeb

Contributing genesc p-value adj. p-
valued

Molecular Function

Phosphotyrosine residue binding 3/18 GRB2, MAPK1, MAPK3 1.916 × 10− 5 1.674 × 10− 3

Phosphatidylinositol-4,5-bisphosphate 3-kinase
activity

4/62 CD80, CD86, GRB2, PIK3R2 3.318 × 10− 5 1.674 × 10− 3

Virus receptor activity 4/71 CD80, CD86, ITGB3, TNFRSF14 5.667 × 10−5 1.674 × 10−3

Phosphatidylinositol bisphosphate kinase activity 4/72 CD80, CD86, GRB2, PIK3R2 5.987 × 10−5 1.674 × 10−3

Protein phosphorylated amino acid binding 3/28 GRB2, MAPK1, MAPK2 7.533 × 10−5 1.674 × 10−3

Biological Process

T cell costimulation 7/82 CD80, CD86, CSK, CTLA4, GRB2, MAP3K14,
TNFRSF14

3.704 × 10−9 2.113 × 10−6

Lymphocyte costimulation 7/83 CD80, CD86, CSK, CTLA4, GRB2, MAP3K14,
TNFRSF14

4.037 × 10−9 2.113 × 10−6

JAK-STAT cascade involved in growth hormone
signaling pathway

4/15 MAPK1, MAPK3, STAT3, STAT5A 8.415 × 10−8 2.937 × 10−5

Growth hormone receptor signaling pathway 4/24 MAPK1, MAPK3, STAT3, STAT5A 6.425 × 10−7 1.598 × 10− 4

Cellular response to growth hormone stimulus 4/25 MAPK1, MAPK3, STAT3, STAT5A 7.633 × 10−7 1.598 × 10−4

Cellular Component

Nuclear pore 5/84 KPNB1, NUP153, RAN, SENP2, SNUPN 4.311 × 10−6 3.794 × 10−4

Clathrin-coated pit 4/69 AMN, CLTC, EPN1, EPS15L1 4.666 × 10−5 2.053 × 10−3

Endoplasmic reticulum tubular network 2/12 KPNB1, RAB18 5.296 × 10−4 0.0136

Platelet alpha granule membrane 2/13 ITGB3, PECAM1 6.248 × 10−4 0.0136

Cytosolic large ribosomal subunit 3/67 RPL4, RPL5, RPL17 9.556 × 10−4 0.0136
aIn this dual evaluation, IMSGC GWAS was the discovery set and GeneMSA was the evaluation set
bContributing genes: the number of genes in the input gene set. Term size: the total number of genes in the corresponding GO term
cContributing genes: those in the input genes that contributed to the enrichment
dAdjusted p-value by the Benjamini-Hochberg method [28]
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Furthermore, GRB2, JAK2, MAPK1 and STAT3 are genes
of interest reported based on centrality measures. Com-
mon themes relevant to MS observed within our gene set
enrichment analysis include immune system pathways,
transcription and histone modification pathways, as well
as growth hormone signaling pathways. Hypothesis for
transcription dysregulation and epigenetic factors in MS
were supported. Apart from these common themes, other
pertinent enriched functions include the I-kappaB/NF-
kappa B complex, glial cell differentiation, virus receptor
activity and T-cell and lymphocyte costimulation. These
enriched GO terms supported the inflammation and viral
infection onset hypotheses for MS, which have not been
reported in original GWA studies.

Several genes of interest are FDA-approved MS drug
target genes
The genes HDAC1, IL2RA, KEAP1 and RELA present
within our top gene networks are of interest, as they are
drug-target genes for FDA approved MS disease-modifying
therapies. Gene HDAC1, which encodes histone deacetylase
1, was the most central gene in the top module of the Gen-
eMSA GWAS dataset (Fig. 2a) and remained one of the
most central genes in merged top 10 modules and merged
top 1 % modules (Fig. 2b, Additional file 3: Figure S2). Al-
though HDAC1 is outside of the accepted significance level,
it may have been presented as central for being an import-
ant interactor with the relatively significant gene PHF12
and other relevant genes. It has been suggested that
HDAC1 plays a role in MS pathogenesis. HDAC1 modu-
lates histone acetylation, which plays a role in the epigen-
etic control of T-cell mediated immunity. Mice with a
conditional deletion of HDAC1 have shown to be resistant
to experimental autoimmune encephalomyelitis (EAE), a
common animal model of MS [32]. Moreover, nuclear ex-
port of HDAC1 is associated with impaired mitochondrial
function and axonal damage in MS [33]. HDAC1 is a drug-
target gene for fingolimod [29, 34] a sphingosine 1-
phosphate (S1P) receptor modulator which is thought to
mediate its effect in MS by sequestering lymphocytes within
secondary lymphoid tissues [35]. The structure of the active

metabolite of fingolimod mimics that of S1P, a signaling
lipid involved in many cellular functions. It has been shown
that fingolimod-P, produced within the nucleus from the
phosphorylation of fingolimod, binds and inhibits class I
HDAC, including HDAC1, consequently enhancing specific
histone acetylation [36]. This effect is carried out independ-
ently of S1P receptors.
The gene RELA is also a gene of interest, as it is rela-

tively central in top modules of GeneMSA and IMSGC
(Fig. 2b, d), though it was not reported by either GWAS
study examined. RELA is a proto-oncogene that encodes
for a subunit of NF-kappaB. NF-kappaB is thought to
play a central role in MS as it regulates innate and adap-
tive immunity, and is involved in the activation of astro-
cytes [37, 38]. Activation of NF-kappaB has been
described in MS brain tissue [39]. Transgenic inhibition
of astroglial NF-kappaB was shown to improve func-
tional outcome in EAE [40]. RELA has been identified as
a drug-target gene of the MS medication dimethyl fu-
marate. Indeed, monomethyl fumarate, the active metab-
olite of dimethyl fumarate, was shown to decrease RELA
expression in myeloid dendritic cells derived from MS
patients [41].
IL2RA and KEAP1 are another two genes of interest

within our top gene networks because they are drug tar-
get genes in MS. IL2RA is a drug-target gene of ocrelizu-
mad, a recently FDA approved drug for treatment of
both relapsing-remitting and primary progressive MS,
and was present within our top gene module of IMSGC
(Fig. 2c) and the top gene module of our dual evaluation
(Fig. 3a). Ocrelizumab is an anti-CD20 monoclonal anti-
body. Its efficacy in MS is attributed to B-cell depletion.
IL2RA encodes for a protein that is a constituent of the
IL2 receptor. It was reported by the IMSGC GWAS to
be a genetic risk factor of MS. Lastly, although KEAP1
was not reported by either GWAS study, KEAP1 is a
drug target gene of the MS drug dimethyl fumarate and
was present within one of our top 1 % IMSGC modules.
The gene KEAP1 encodes for an adapter protein of the
E3 ubiquitin ligase, which are involved in DNA repair
and cell cycle controls. Dimethyl fumarate, the drug

Table 2 MS FDA drug target genes within top modules

Drug name Commercial product name Target gene Occurrence in top modules GeneMSA gene-
level p-value

IMSGC gene-
level p-value

Fingolimod Gilenya HDAC1 Central in top module of GeneMSA, present in
75/75 top 1 % GeneMSA modules

0.263 0.249

Ocrelizumab Ocrevus IL2RA Present in top modules of IMSGC GWAS and
top module of dual evaluation, present in
76/76 top 1 % IMSGC modules

0.212 4.37 × 10−9

Dimethyl fumaratea Tecfidera KEAP1 Present in 1/76 IMSGC top one present modules 0.172 2.22 × 10−6

RELA Present in 3/75 top 1 % GeneMSA modules and
7/76 IMSGC top 1 % modules

0.084 1.84 × 10−4

aDimethyl fumarate has two target genes from module gene list (KEAP1 and RELA)
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which targets RELA and KEAP1, is an anti-inflammatory
and central nervous system agent [29]. Although it is
known that dimethyl fumarate upregulates nuclear-
derived 2 (Nrf2) pathway, its relevance to MS is only hy-
pothesized [29].

Additional genes of interest may be promising drug
targets
Additional genes of interest were highlighted by their cen-
trality within top gene modules: GRB2, JAK2, MAPK1 and
STAT3. Given that the central genes HDAC1 and RELA
genes are currently drug targets of FDA approved MS treat-
ment, this suggests other central genes identified may be
promising drug targets for future investigation. The protein
encoding gene JAK2, which produces a protein that pro-
motes cell proliferation through the JAK/STAT pathway,
was central in our top gene module of IMSGC GWAS
dataset (Fig. 2c). This gene was not previously reported by
either MS GWA study. The gene STAT3, which was central
in merged top 10 modules of GeneMSA and IMSGC and
encodes for a protein that is a member of the STAT protein
family, also plays a key role in the JAK-STAT signaling
pathway. STAT3 was previously reported by the IMSGC
GWAS and polymorphisms of STAT3 have been consid-
ered risk factors of MS, although the mechanism by which
this association occurs is not fully understood [42, 43]. Pre-
vious work has highlighted the role of the JAK/STAT
signaling pathway in the regulation of innate immunity and
promotion of oligodendrocyte apoptosis and demyelination
[44]. Cytokines and oxidative stress promote inflammation-
related gene expression via JAK2 phosphorylation and
STAT3 transcription factor activation [45]. Liu et al.
demonstrated that JAK2 inhibitors have clinical efficacy in
multiple preclinical models of MS by suppressing down-
stream activation of STAT, particularly STAT3 [46]. Modu-
lation of the JAK/STAT pathway is thought to mediate the
beneficial effect of neuroprotective compound linagliptin in
cuprizone-induced demyelination [47]. Studies have
suggested that JAK/STAT signaling occurs upstream of
NF-kappaB activation [48]. Further evidence for the
involvement of the JAK/STAT and NF-kappaB pathways in
MS pathogenesis was obtained from our gene set
enrichment analyses. Regulation of tyrosine phosphoryl-
ation of STAT protein, which included JAK2 and STAT3
was also observed within top gene enrichment of IMSGC,
along with more STAT regulation pathways. Within the
dual evaluation enrichment results, the JAK-STAT cascade
involved in growth hormone signaling pathway was
observed with the contributing genes of interest MAPK1
and STAT3. The cellular component I-kappaB/NF-kappaB
complex was enriched for both the GeneMSA and IMSGC
enrichment results and included the contributing drug tar-
get gene RELA.

MAPK1, a gene part of the MAP kinase family and an
essential part of the growth hormone signaling cascade,
was the central gene in the top module of our dual evalu-
ation (Fig. 3a), regarding IMSGC as the discovery set.
MAPK1 was previously reported by the IMSGC GWAS,
and has been identified as a risk locus for MS [49]. The
gene GRB2, a gene that encodes for the growth factor re-
ceptor bound protein, was seen as central in the merged
significant dual evaluation gene modules (Fig. 3c) and in
the top 1 % modules of IMSGC (Additional file 4: Figure
S3). This gene was not reported by either GWA study ex-
amined. However, GRB2 has also been considered of a
biological relevance by another MS network-based report
and has been shown to be upregulated in EAE [50, 51].
The genes GRB2, JAK2, MAPK1 and STAT3 may be of
consideration for future MS drug target experimentation
because of their central presence in our top modules.

Gene set enrichment analysis supports epigenetic
hypothesis in MS
Transcription factors have been attributed to subtypes of
MS and hypothesized to dysregulate certain genes, thereby
contributing to MS onset [52, 53]. The involvement of tran-
scription factor dysregulation is supported by our study,
given that our enrichment results showed many transcrip-
tion factor processes within top five significantly enriched
categories. The top enriched GO Molecular Function term
in GeneMSA was “repressing transcription factor binding”,
which included the genes of interest HDAC1, RELA and
STAT3. Other enriched transcription regulation functions
reported for GeneMSA include “activating transcription
factor binding” and “RNA polymerase II distal enhancer
sequence-specific DNA binding”, which both included
HDAC1 and RELA. Transcription regulation GO Cellular
Component terms enriched for IMSGC were “transcription
factor TFTC complex” and “transcription factor TFIID”.
Additionally, epigenetic factors are thought to mitigate the
environmental factors of MS [34]. This epigenetic factor hy-
pothesis of MS was also supported by our results, as “his-
tone deacetylase complex” was a top enriched GO
Molecular Function term and a member of the histone dea-
cetylase family, HDAC1, was highly central in top Gen-
eMSA modules [34]. Another epigenetic enriched function
within GeneMSA was the GO Molecular Function term
“chromatin DNA binding”, which included the genes of
interest HDAC1, RELA and STAT3.

Genes identified for enriched regulation of glial cell
differentiation and growth factor signaling
Regulation of glial cell differentiation was observed for the
GeneMSA enrichment results. Glial cells include oligo-
dendrocytes, astrocytes, and microglia, which are cells of
interest in processes of MS pathogenesis. Oligodendro-
cytes are cells responsible for myelin sheath synthesis, and
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microglia and astrocytes are involved in innate immune
responses within the central nervous system [54–56].
Myelin restoration is seen as a therapeutic strategy that
could potentially aid in reversing neurological disabilities
exhibited by people living with MS [57, 58]. As MS remye-
linating therapies become more sought after, this suggests
that genes involved in the enriched function for regulation
of glial cells may be of interest: CTNNB1, HDAC1, HES1
and RELA. Interestingly, epidermal growth factor receptor
(EGFR) was shown as central within our top 1 % IMSGC
gene modules (Additional file 4: Figure S3), and involve-
ment of growth factors signaling pathways, phosphotyro-
sine residue binding and protein phosphorylated amino
acid binding are supported by our gene set enrichment
analysis. EGFR overexpression was found to enhance
oligodendrocyte differentiation and axonal myelination,
suggesting that EGFR targeting may represent a viable
strategy for myelin repair [57].

Viral insult hypothesis for MS etiology supported by virus
receptor activity and T cell costimulation
Although the cause of MS is unknown, this complex dis-
ease has been attributed to the occurrence of a viral insult
at a young age, later causing onset of neurological deficits
in genetically predisposed individuals. This hypothesis is
regarded as the most probable by some investigators [31].
Functional enrichment analysis of significant dual evalu-
ation gene modules supports this hypothesis as T cell
costimulation, lymphocyte costimulation and virus recep-
tor activity were significantly enriched. Costimulation
pathways of T cell and B cell activation have been exhib-
ited in pathogen infection, and costimulation pathways of
immune response activation have been linked to a viral
context [30]. These lymphocyte costimulation pathways,
coupled with enrichment of virus receptor activity suggest
that the viral hypothesis for MS onset is relevant, and may
occur through T cell costimulation. The genes found to
be involved in MS virus receptor activity may be of inter-
est for experimental validation of this viral onset hypoth-
esis: CD80, CD86, ITGB3 and TNFRSF14. Finally, the
genes involved in T-cell costimulation may also be further
investigated to discover if the autoimmune response in
MS truly occurs through this immune response activation
pathway: CD80, CD86, CSK, CTLA4, GRB2, MAP3K14
and TNFRSF14.

Limitations and future work
There are several limitations in this study. One is data het-
erogeneity between IMSGC and GeneMSA GWAS data-
sets. Another limitation of this study is that some genes
within our networks may be highly connected with the
most significant genes (at individual gene level), and this
makes them more likely to be detected due to lack of PPI
reference network completeness. On the other hand, the

PPI network is still incomplete, and does not include all
the protein-coding genes. Thirdly, the highly associated
HLA region within MS GWAS datasets is also a limiting
factor, as these highly associated regions may mask the as-
sociation signals of other regions. We will expand our
work in future. First, we may include more genetic associ-
ation data, including both common and rare variants from
genome sequencing data, once they are available. Second,
we may integrate gene expression and GWAS signal from
the same disease (MS) to detect more reliable and causal
signals. Tools such as EW-dmGWAS [59] can be applied.
Thirdly, functional annotations are available from various
resources. We will evaluate these association signals using
additional annotations such as epigenetic marks, expres-
sion quantitative trait loci (eQTL), tissue-specificity and
cell types, among others. Tissue specificity enrichment
analysis of genetic variations in association studies has
shown interesting results, as demonstrated in our multi-
trait GWAS analysis [60]. Finally, further experimental
validation of supported and proposed MS mechanisms is
needed using cell lines and animal models.

Conclusions
The dmGWAS (version 2.4) tool, previously developed by
members of our team, was used to integrate the GeneMSA
and IMSGC GWAS with the human interactome to inter-
pret genetic associations. Through a dual evaluation ap-
proach, this network-based analysis could effectively yield
top modules evaluated by the presence of MS FDA-
approved drug target genes: HDAC1, IL2RA, KEAP1 and
RELA. Other central genes present within top modules are
suggested as potential drug targets for MS: GRB2, JAK2,
MAPK1 and STAT3. The independent gene set enrichment
results of both GeneMSA and IMSGC top modules sup-
ported the hypothesis of epigenetic factors involved in dys-
regulation of genes in MS. GeneMSA enrichment of top 10
modules presented a pathway involved in regulation of glial
cell differentiation, thereby identifying genes that are prom-
ising for remyelination therapy investigations. Furthermore,
a dual evaluation of both MS GWAS identified genes
enriched in virus receptor activity, supporting the viral on-
set hypothesis for the etiology of MS.
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