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Abstract

Background: Cleft lip with or without cleft palate (CL/P) is one of the most common congenital human birth defects. A
combination of genetic and epidemiology studies has contributed to a better knowledge of CL/P-associated candidate
genes and environmental risk factors. However, the etiology of CL/P remains not fully understood. In this study, to identify
new CL/P-associated genes, we conducted an integrative analysis using our in-house network tools, dmGWAS [dense
module search for Genome-Wide Association Studies (GWAS)] and EW_dmGWAS (Edge-Weighted dmGWAS), in a
combination with GWAS data, the human protein-protein interaction (PPI) network, and differential gene expression
profiles.

Results: A total of 87 genes were consistently detected in both European and Asian ancestries in dmGWAS. There were
31.0% (27/87) showed nominal significance with CL/P (gene-based p < 0.05), with three genes showing strong association
signals, including KIAA1598, GPR183, and ZMYND11 (p < 1 × 10− 3). In EW_dmGWAS, we identified 253 and 245 module
genes associated with CL/P for European ancestry and the Asian ancestry, respectively. Functional enrichment analysis
demonstrated that these genes were involved in cell adhesion, protein localization to the plasma membrane, the
regulation of the apoptotic signaling pathway, and other pathological conditions. A small proportion of genes (5.1% for
European ancestry; 2.4% for Asian ancestry) had prior evidence in CL/P as annotated in CleftGeneDB database. Our
analysis highlighted nine novel CL/P candidate genes (BRD1, CREBBP, CSK, DNM1L, LOR, PTPN18, SND1, TGS1, and VIM) and
17 previously reported genes in the top modules.

Conclusions: The genes identified through superimposing GWAS signals and differential gene expression profiles onto
human PPI network, as well as their functional features, helped our understanding of the etiology of CL/P. Our multi-
omics integrative analyses revealed nine novel candidate genes involved in CL/P.
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Background
Cleft lip with or without cleft palate (CL/P) is one of the
most common congenital human birth defects [1, 2].
The prevalence of CL/P ranges from 7.75 to 10.89 per
10,000 live births, with ethnic, racial, and geographic
variation [1, 3]. Multiple interventions are required in
treatments for individuals with CL/P, such as medical,
surgical, speech, and behavioral, imposing an economic
burden to the family [4, 5]. Approximately 70% of CL/P
cases occur as sporadic (nonsyndromic) and the
remaining 30% are a part of syndromic phenotypes [6].
The syndromic cases can be Mendelian traits or cases
with chromosome aberrations [5]. In addition to genetic
variants, environmental factors play a crucial role in
nonsyndromic CL/P [7]. Epidemiologic studies have
identified several environmental risk factors of CL/P, in-
cluding alcohol abuse, certain drug exposure, nutrition
deficiency, and smoking [8].
Efforts have been made in uncovering the complex eti-

ology of CL/P by using various genetic approaches, such
as linkage analyses, direct sequencing of individuals with
CL/P, association studies, and animal model studies. For
example, a genome-wide linkage study in the Malay
population identified several CL/P candidate genes, in-
cluding LPHN2, PVRL3, and SATB2 [9]. Whole exome
sequencing revealed a change in copy number of ADH7
and AHR in nonsyndromic CL/P [10]. Genome-wide as-
sociation studies (GWAS) of CL/P have made major ad-
vances in the identification of candidate genes and loci
in CL/P. A case-parent trio GWA study consisting of
cases from the European and Asian populations showed
variants near MAFB and ABCA4 to be significantly asso-
ciated with CL/P [2]. Variants near CTNNA2 and
SULT2A1 were discovered in another GWA study con-
ducted in the African American population [11].
While new genetic mutations have been identified in CL/

P cases, the etiology of CL/P remains elusive. Especially, the
variants discovered by GWAS mostly reside in non-coding
genomic regions, making it difficult to explore the func-
tional roles of these variants in the pathogenesis of CL/P
[12]. Although some gene-set based methods such as Gene
Set Enrichment Analysis (GSEA) have helped identify the
combined effect of multiple gene markers, these methods
are limited to pre-defined knowledge and suffer from the
incompleteness of functional database annotations [13, 14].
dmGWAS (dense module search for Genome-Wide Asso-
ciation Studies) is a network-assisted approach to identify-
ing disease-associated signals which were missed by the
stringent genome-wide significance level (e.g., 5 × 10− 8). By
superimposing GWAS signals onto the human reference
protein-protein interaction (PPI) networks, dmGWAS
searches for dense modules by implementing a greedy
searching method in the node-weighted PPI network [15].
dmGWAS has been successfully applied in cancer, pediatric

stroke, chronic obstructive pulmonary disease, schizophre-
nia, and osteosarcoma [16–18], among others [13, 15].
EW_dmGWAS (Edge-Weighted dense module search for
Genome-Wide Association Studies) is the upgraded algo-
rithm of dmGWAS, which integrates not only GWAS sig-
nals but also gene expression profiles in order to identify
dense modules in node-weighted and edge-weighted PPI
network [19]. The importance of differential gene expres-
sion has been demonstrated in a study of hepatocellular
carcinoma because it represents disease-associated tran-
scriptional information [20]. Combination of gene expres-
sion profiles and PPI network could outperform traditional
analysis in uncovering the mechanisms of disease. EW_
dmGWAS utilizes differential gene expression to infer edge
weights. When evaluating a module, EW_dmGWAS con-
siders both the node weight (GWAS signals) and the edge
weight (by comparing disease-control expression profiles or
by using disease-relevant expression profiles) to calculate
the module score. Thus, the dense modules from EW_
dmGWAS are expected to be enriched in a disease-relevant
context. For example, an integrative analysis study of
alcohol-use disorders demonstrated the importance of
EW_dmGWAS in search of the possible molecular mecha-
nisms involved in alcohol-use disorders [21].
In this study, to identify new and consistent genetic

signals in CL/P, we conducted dmGWAS and EW_
dmGWAS. We collected two GWAS datasets for CL/P
and used them as discovery and evaluation datasets, re-
spectively. We focused on consistent signals from different
populations. By adding differential gene expression profile,
EW_dmGWAS was utilized to generate node- and edge-
weighted networks for each population. The genes resid-
ing in the modules identified through dmGWAS and
EW_dmGWAS were evaluated through functional enrich-
ment analysis. Such results are more likely reliable than
using a single GWAS dataset or only the GWAS data.

Results
CL/P candidate genes and subnetworks for European and
Asian ancestry
The details of the data, process, and analytical methods
are provided in the Additional files. Figure 1 illustrates
our data analysis workflow. The Manhattan plots of
gene-level p-values were displayed for European and
Asian ancestry samples respectively in Additional file 1:
Figure S1. In this study, we used the number of genes in-
stead of the number of SNPs to adjust gene-level p-
values and set the genome-wide significance as p = 0.05/
(number of genes) = 2.3 × 10− 6 following the stringent
Bonferroni multiple test correction. This led to the sig-
nificance line in Additional file 1: Figure S1 as y = −log10
(0.05/number of genes) = 5.63 (i.e., the horizontal line in
blue). Five significant genes were notably higher than
other genes in the Asian GWAS data, as shown in the
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Manhattan plot (Additional file 1: Figure S1B). These
genes are DIEXF (p = 1.36 × 10− 8), MAFB (p = 3.14 × 10−
8), C1orf74 (p = 2.47 × 10− 7), IRF6 (p = 3.66 × 10− 7), and
TRAF3IP3 (p = 5.98 × 10− 7). Because such genes with
extraordinary p-values would have overwhelmed the re-
sultant modules should they exist in the reference net-
work (too strong node weight), we excluded these genes
from further analyses [13], and only reported here as in-
dividual gene results. Indeed, when we used all genes for
dmGWAS analysis, nearly all candidate modules con-
tained the gene MAFB (data not shown). Hence, we
manually adjusted the p-values of these five genes to p =
6.39 × 10− 5, which was the lowest p-value after
excluding the five genes.
By using the dense module search method of dmGWAS,

we identified a total of 7463 modules from the European
GWAS dataset containing 8122 unique genes and 7440
modules from the Asian GWAS dataset containing 8070
unique genes. There were 8042 genes overlapped between
the modules of these two GWAS datasets (European
99.02%; Asian 99.65%). In the European GWAS dataset,
the average module size was 13.73 ± 1.90 (range: 5–23),
with an average module score of 6.22 (range: 1.33–7.00,

standard deviation: 0.31). In the Asian dataset, the average
module size was 13.49 ± 1.86 (range: 5–23) and the aver-
age module score (Zn) was 6.88 in Asian GWAS dataset
(range: 1.47–8.04, standard deviation: 0.42).

Subnetworks for European ancestry
The module with the highest score consisted of 12 genes
(BIRC8, BRF1, CASP9, CDK2, ERBB3, PA2G4, POLL,
PPM1B, RB1, SMARCA4, and ZMYND11) (Additional
file 2: Figure S2A). Interestingly, not all genes in this
module had strong association signals. For example, RB1
had a relatively weak association signal (p = 0.08); how-
ever, it directly or indirectly interacted with many other
genes that had strong association p-values, such as
CDK2 (p = 8.7 × 10− 3), PA2G4 (p = 0.01), ERBB3 (p =
6.5 × 10− 3), BIRC8 (p = 9.3 × 10− 4), and ZMYND11 (p =
5.7 × 10− 4). We further examined the top 10 modules
and identified 57 CL/P candidate genes (Additional file
2: Figure S2B). There were 35 (61.4%) genes showing
nominal significant association signals (defined as p <
0.05 without multiple testing correction). The top 50
modules from the European GWAS dataset formed a
final subnetwork consisting of 133 non-redundant genes.

Fig. 1 Workflow of integrative, genomic, transcriptomic, and network-assisted analyses to identify candidate genes for cleft lip with or without
cleft palate in two human populations
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Among these genes, 48.1% (64/133) showed nominal sig-
nificance with CL/P (gene-based p < 0.05). Notably, there
were a total of 37 genes with p < 1 × 10− 3 in the network
and 6 were included in our final subnetwork: BIRC8,
CAND1, GPR183, TMEM11, TRPM2, and ZMYND11
(p < 1 × 10− 3). Collectively, these results implied the
strong ability of dmGWAS in finding disease-associated
genes which had a weak or moderate association signal.
Next, gene set enrichment analysis was conducted to

functionally categorize these candidate genes. After cluster-
ing the gene sets using the affinity propagation method,
eight Gene Ontology (GO) terms were enriched that
highlighted the importance of immune response-regulating
cell surface receptor signaling pathway (15 module genes,
adjusted p-value = 9 × 10− 5), cell membrane protein (9
module genes, adjusted p-value = 1.1 × 10− 3), and apoptotic
pathway (14 module genes, adjusted p-value = 1.1 × 10− 4).
Among the KEGG pathways, we observed the enrichment
in virus infection (18 genes, adjusted p-value = 1.5 × 10− 8)
and ErbB signaling pathway (10 genes, adjusted p-value =
3 × 10− 5). These findings suggested that cell adhesion, viral
infection and ErbB signaling pathway may play substantial
roles in palate formation.

Subnetworks for Asian ancestry
The top 1 module consisted of 13 genes (ARHGAP29,
CTNNB1, EPHA7, GRIA2, JUN, MAFB, MLLT4, MYOD1,
OGG1, PICK1, PITX2, PRKCA, and RAP2A) (Additional file
2: Figure S2C). Importantly, MAFB was reported in the ori-
ginal GWA study because the Single Nucleotide Polymor-
phisms (SNPs) near this gene presented the strongest
association signals [11]. The top 10 modules consisted of
35 CL/P-associated genes, with 51.4% (18/35) showing sig-
nificant association signals (Additional file 2: Figure S2D).
The top 50 candidate modules with the highest module
scores were merged to construct the final subnetwork, in-
cluding 113 candidate genes. Among these 113 genes,
45.1% (51/113) had nominal significant p-values (defined as
p < 0.05 without multiple testing correction) and seven
genes (0.6%) with strong GWAS signals; ARHGAP29,
MAFB, CAPN3, DNMT3B, GMEB1, OGG1, and PITX2
(p < 1 × 10− 3). Notably, there were 9 genes overlapped be-
tween 133 genes for European population and 113 candi-
date genes for Asian population: ACTN1, AKT1, CASP9,
CDK2, COIL, HDAC1, MAPK3, PRPF40A, and TTN.
Enrichment analysis of these 113 genes indicated the

importance of cell membrane protein (13 module genes,
adjusted p-value = 2.4 × 10− 5), cell differentiation (12
module genes, adjusted p-value = 6 × 10− 3), and apoptotic
signaling during palate formation (6 module genes, ad-
justed p-value = 0.02). The KEGG pathway analysis sug-
gested that these genes were involved in Focal adhesion
(13 module genes, adjusted p-value = 2.1 × 10− 5), HIV in-
fection (11 module genes, adjusted p-value = 2.3 × 10− 3),

and ErbB signaling pathway (7 module genes, adjusted p-
value = 6.4 × 10− 3), which was consistent with the results
from European ancestry.

Consistent association signals identified by dualEval
By treating European as a discovery set and Asian as an
evaluation set, we identified a total of 40 modules con-
sisting of 87 genes with consistent signals in the PPI
subnetwork (Fig. 2a). Among these 87 genes, 31.0% (27/
87) showed significant association signals (p < 0.05).
Three genes showed strong association signals, including
KIAA1598, GPR183, and ZMYND11 (p < 1 × 10− 3). The
module size ranged from 12 to 13. The normalized mod-
ule score ranged from 6.71 to 6.93 in the European (dis-
covery) dataset and from 1.68 to 2.70 in the Asian
(evaluation) dataset. Four of these module genes (4.6%)
were overlapped with the genes collected in the Cleft-
GeneDB database [22], a database with manual curation
of CL/P genes (see Methods): MSX1, MSX2, SMAD2,
and SUMO1 (Fig. 2b).
These 87 genes were enriched in six GO Biological

Process (BP) terms (i.e., pathways), including cellular re-
sponse to drug (12 genes, adjusted p-value = 7.2 × 10− 4),
regulation of binding (11 genes, adjusted p-value = 9.8 ×
10− 3), response to steroid hormone (11 genes, adjusted p-
value = 0.01), Fc receptor signaling pathway (7 genes, ad-
justed p-value = 0.017), intermediate filament cytoskeleton
organization (5 genes, adjusted p-value = 0.022), and inter-
mediate filament-based process (5 genes, adjusted p-
value = 0.024) (Table 1). Enriched KEGG pathways sug-
gested the potential contribution of viral infection to CL/
P: human papillomavirus infection (12 genes, adjusted p-
value = 4.2 × 10− 3) and human immunodeficiency virus 1
infection (9 genes, adjusted p-value = 0.014) (Table 1).
Interestingly, as shown in GO BP terms, Fc gamma recep-
tor relevant pathway was also identified in KEGG pathway
analysis (Fc gamma R-mediated phagocytosis, 6 genes, ad-
justed p-value = 0.027).

CL/P associated node- and edge-weighted PPI network
Subnetworks for European ancestry
Using the European GWAS data, we identified 121 mod-
ules (out of 129 modules) consisting of 253 genes (pperm <
0.05) using EW_dmGWAS. Among these 253 genes,
54.2% (137/253) exhibited significant association signals
with CL/P (gene-based p < 0.05). The module size ranged
from 2 to 5. The module score ranged from 2.48 to 8.75
with a standard deviation of 1.30. The top 1 module con-
sisted of five genes (CREBBP, CSK, PTPN18, SND1, and
TGS1) (Fig. 3a). There were 31 genes in the top 10 mod-
ules (Fig. 3b). There were 42 genes overlapped between
these 253 genes generated by EW_dmGWAS and the gene
set identified by dmGWAS. In addition, 36.76% (93/253)
had differential gene expression when compared the cases
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Fig. 2 (See legend on next page.)
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with the controls (p < 0.05), with expression level of 13
genes showing more than two-fold change (absolute value
of log2FC > 1; FC: fold change). Comparison with the 194
human CL/P-associated genes in the CleftGeneDB database
revealed that 12 genes (BCL2, DVL2, FGFR1, MSX1, MSX2,
SPRY2, SUMO1, TFAP2A, TGFBR1, TPM1, TP63, and
VCL; 5.1%) had been previously studied in CL/P (Fig. 3c).
Enrichment analysis of GO BP terms suggested that

these genes were involved in cell structure and cell
membrane relevant process (Table 2) [e.g. regulation of
protein localization to membrane (15 module genes, ad-
justed p-value = 2.3 × 10− 4), regulation of actin cytoskel-
eton organization (18 module genes, adjusted p-value =
5.0 × 10− 3), immune response-regulating cell surface re-
ceptor signaling pathway (23 module genes, adjusted p-
value = 2.3 × 10− 6)]. The KEGG pathways enrichment
analysis showed that these genes were related to prostate
cancer (14 module genes, adjusted p-value = 2.8 × 10− 6),
renal cell carcinoma (11 module genes, adjusted p-
value = 4.1 × 10− 5), and glioma (8 module genes, ad-
justed p-value = 0.03). Additionally, these genes were
enriched in Fc gamma R-mediated phagocytosis (13
module genes, adjusted p-value = 1.1 × 10− 5) and B cell
receptor signaling pathway (8 module genes, adjusted p-

value = 0.030), suggesting the contribution of the im-
mune response to CL/P.

Subnetworks for Asian ancestry
We identified 132 modules in total with 119 modules
(pperm < 0.05) containing 245 genes for Asian ancestry.
The module size ranged from 2 to 4. The module score
ranged from 2.46 to 8.35 with a standard deviation of
1.37. Comparing with the 113 genes generated by
dmGWAS for Asian ancestry, 36 genes overlapped.
There were 18 genes overlapped between the 245 genes
for the Asian population and the 253 genes for the Euro-
pean population based on EW_dmGWAS. Among the
245 genes, 42.04% (103/245) genes were differentially
expressed in cases versus controls (p < 0.05). The expres-
sion level of 12 genes (12/245 = 4.90%) had two-fold
change in cases versus controls (absolute value of
log2FC > 1). The best module contained four genes
(BRD1, DNM1L, LOR, and VIM) (Fig. 3d). We identified
27 genes from the top 10 modules (Fig. 3e). The inter-
section between these 245 genes and gene sets in the
CleftGeneDB was shown in Fig. 3f. According to the
Venn diagram, six genes (BCL3, MSX1, PAX6, PVR,
RFC1, and SEC16A; 2.4%) have been reported in

(See figure on previous page.)
Fig. 2 Consistent association signals identified by dmGWAS. (A) The subnetwork of all significant modules in two populations visualized by
Cytoscape showing the consistent signals. Each circle represents a gene. For the genes with p-value ≥0.05 (insignificant), the color of the circle is
set to white. For genes with p-value < 0.05, the area and color of the circle is proportional to gene’s weight. The stronger the color (red) is, the
smaller the p-value is, and the stronger weight the gene is assigned. (B) A Venn diagram shows the overlap of genes from three sources. The
yellow circle represents the 87 genes with consistent signals. The blue circle represents 194 human CL/P associated genes in the CleftGeneDB
database. The green circle represents the 267 human genes homologous to mouse mutation genes in the CleftGeneDB database

Table 1 Pathways enriched in the dmGWAS module genes (discovery: European dataset, evaluation: Asian dataset)

Pathway ID Description Pathway size* # informative genes$ Adjusted p-value#

GO Biological Process

GO:0035690 Cellular response to drug 349 12 7.2 × 10−4

GO:0051098 Regulation of binding 367 11 9.8 × 10− 3

GO:0048545 Response to steroid hormone 388 11 0.017

GO:0038093 Fc receptor signaling pathway 127 7 0.017

GO:0045104 Intermediate filament cytoskeleton organization 48 5 0.022

GO:0045103 Intermediate filament-based process 49 5 0.024

KEGG pathway

hsa05210 Colorectal cancer 86 7 1.7 × 10−3

hsa05165 Human papillomavirus infection 339 12 4.2 × 10−3

hsa05170 Human immunodeficiency virus 1 infection 212 9 0.014

hsa05014 Amyotrophic lateral sclerosis (ALS) 51 5 0.016

hsa04360 Axon guidance 175 8 0.024

hsa04666 Fc gamma R-mediated phagocytosis 91 6 0.027
*Pathway size: the total number of genes in the GO term or KEGG pathway
$The observed number of genes from the module gene list
#Bonferroni method was used to adjust p-value
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Fig. 3 Subnetworks of module genes identified by EW_dmGWAS. (A) The top 1 network module from the data in European ancestry. Each circle
represents a gene. For the genes with p-value ≥0.05 (insignificant), the color of the circle is set to white. For genes with p-value < 0.05, the area
and color of the circle is proportional to gene’s weight. The stronger the color (red) is, the smaller the p-value is, and the stronger weight the
gene is assigned. (B) A merged subnetwork of top 10 network modules from the data in European ancestry. (C) A Venn diagram showing the
intersection of the 253 genes for European ancestry with the two gene sets in the CleftGeneDB database. (D) The top 1 module from the data in
Asian ancestry. (E) A merged subnetwork of top 10 modules from the data in Asian ancestry. (F) A Venn diagram showing the intersection of the
245 genes for Asian ancestry with the two gene sets in CleftGeneDB database
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previous publications (Fig. 3f). A further comparison was
conducted between these genes and the gene sets. We
found that seven genes (CTNNB1, DNMT3B, GRB2,
ITGAV, LIMS1, PTPN11, and TP53) were overlapped.
Notably, none of the four genes in the best module
(BRD1, DNM1L, LOR, and VIM) were overlapped with
the CleftGeneDB gene set, suggesting that these genes
has not yet been studied as CL/P candidate genes.
Functional analysis indicated that the module genes

were related to cell structure and cell response to the
stimulus (Table 3). Enriched KEGG pathways were
mostly related to virus infection (e.g. viral carcinogenesis
(22 genes, adjusted p-value = 2.6 × 10− 7) and human
papillomavirus infection (26 genes, adjusted p-value =
1.4 × 10− 5). Apoptosis (6 genes, adjusted p-value = 0.023)
was also enriched (Table 3).

Discussion
In this study, we carried out the network analyses for CL/P
GWAS datasets from European and Asian ancestries by
using both dmGWAS and EW_dmGWAS tools. Our
unique analysis design (two GWAS datasets, two network
module analyses, dual evaluation, two populations, and
multi-omics analysis) will likely reveal more reproducible

and consistent genetic association signals and their poten-
tial function in CL/P. To our best knowledge, this compre-
hensive network analysis of GWAS pipeline has not been
introduced in any literature. We identified 253 genes of
interest for CL/P pathogenesis in the European population
and 245 genes in the Asian population by EW_dmGWAS.
Of note, our study is the first time to detect CL/P-associ-
ated genes in one population dataset, evaluating the signals
in another population dataset. Our analysis highlighted 17
genes that are known to be associated with CL/P, such as
FGFR1, MSX1, and TFAP2A. The protein encoded by
MSX1 gene functions as transcription repressor during em-
bryogenesis, which plays a substantial role in craniofacial
development. Both the mouse model study [23] and associ-
ation studies [24, 25] confirmed the contributions of MSX1
gene to the risk of CL/P. The FGFR1 gene encodes the
fibroblast growth factor receptor. Gene TFAP2A encodes
transforming growth factor beta receptor. A previous asso-
ciation study of Italian population provided evidence for
the involvement of TFAP2A in CL/P [26].
In addition, the best module with the most significant

score contained 5 genes for European dataset and 4
genes for Asian dataset. These nine unique genes are
considered as new CL/P candidate genes since they are

Table 2 Pathways enriched in EW_dmGWAS module genes (European dataset)

Pathway ID Pathway name Pathway size* # informative
genes$

Adjusted
p-value#

GO Biological Process

GO:0002768 Immune response-regulating cell surface receptor
signaling pathway

330 23 2.3 × 10−6

GO:0003012 Muscle system process 423 25 1.2 × 10− 5

GO:1905475 Regulation of protein localization to membrane 177 15 2.3 × 10−4

GO:0030335 Positive regulation of cell migration 472 24 4.5 × 10− 4

GO:0022898 Regulation of transmembrane transporter activity 235 16 1.7 × 10−3

GO:0090068 Positive regulation of cell cycle process 270 17 2.1 × 10−3

GO:0043433 Negative regulation of DNA-binding transcription
factor activity

155 13 2.1 × 10−3

GO:0060627 Regulation of vesicle-mediated transport 499 23 4.8 × 10−3

GO:0032956 Regulation of actin cytoskeleton organization 320 18 5.0 × 10−3

GO:0010975 Regulation of neuron projection development 475 22 7.8 × 10−3

GO:0002433 Immune response-regulating cell surface receptor
signaling pathway involved in phagocytosis

76 9 8.0 × 10−3

KEGG pathway

hsa05215 Prostate cancer 97 14 2.8 × 10−6

hsa04666 Fc gamma R-mediated phagocytosis 91 13 1.1 × 10−5

hsa05211 Renal cell carcinoma 69 11 4.1 × 10−5

hsa04662 B cell receptor signaling pathway 71 8 0.030

hsa05214 Glioma 71 8 0.030
*Pathway size: the total number of genes in the GO term or KEGG pathway
$The observed number of genes from the module gene list
#Bonferroni method was used to adjust p-value
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not in the CleftGeneDB database (BRD1, CREBBP, CSK,
DNM1L, LOR, PTPN18, SND1, TGS1, and VIM) (Fig. 3a,
d). A lot of supporting evidence exist regarding the asso-
ciation of these nine genes and CL/P. For example, the
intermediate filament protein encoded by the VIM gene
plays an important role in the formation of cytoskeleton
and stabilization of cytoskeletal interactions. The muta-
tions in the LOR gene are associated with Vohwinkel’s
syndrome, an inherited skin disease. The BRD1 gene
may take effect in gene activation by interacting with
DNA. The DNM1L gene is responsible for cell division
and the apoptotic process. Of interest, VIM was initially
suspected as a CL/P candidate since it maps near to the
translocation breakpoint of two CL/P individuals [27],
yet the association was excluded in a subsequent linkage
analysis [28]. Consistent with these findings, the VIM
gene in our study also showed a weak association signal
(p = 0.06). Thus, our study suggests the contribution of
these genes to CL/P when taking PPI networks and gene
expression correlation change into consideration.
Enrichment analysis revealed that gene sets identified

by dmGWAS and EW_dmGWAS were involved in
cancer-related GO BP terms and KEGG pathways. Al-
though the relationship between CL/P and cancer is still

controversial in different origins, cell type, and malig-
nancy while the co-occurrence of cancer and CL/P were
greatly documented. According to a study conducted by
Kobayashi et al., CL/P and cancer share common genetic
variations or biological pathway alterations [12]. Based
on the results of an epidemiology study in 2010, testicu-
lar cancer and melanoma rates are higher in the cancer
patients with CL/P family history than those without
such history [29]. Researchers from the University of
Pittsburgh evaluated the cancer risk in family members
of CL/P children. The results indicated that the risk ratio
of cancer in CL/P individuals is 6.22 higher than that of
the general population [30]. Additionally, some epidemi-
ology studies indicated that individuals with CL/P repre-
sented a higher incidence rate of cancers in the brain,
lung, and breast than normal individuals [31, 32].
Evidence of cell adhesion and cellular structure with CL/

P is compelling. Our gene sets were shown to be enriched
in focal adhesion, extracellular structure organization, cell-
substrate adhesion, cell junction organization. This is
consistent with the findings in many other publications. A
literature review also highlights the importance of cell ad-
hesion and structure in palate development [33]. Our study
also suggests that genes related to CL/P are associated with

Table 3 Pathways enriched in the EW_dmGWAS module genes (Asian dataset)

Pathway ID Pathway name Pathway size* # informative genes$ Adjusted p-value#

GO Biological Process

GO:2001233 Regulation of apoptotic signaling pathway 385 26 1.9 × 10−7

GO:0043062 Extracellular structure organization 400 23 6.0 × 10−5

GO:0043254 Regulation of protein complex assembly 447 24 1.1 × 10−4

GO:0007409 Axonogenesis 449 24 1.2 × 10−4

GO:1901653 Cellular response to peptide 358 21 2.0 × 10−4

GO:0031589 Cell-substrate adhesion 332 20 2.7 × 10−4

GO:0060627 Regulation of vesicle-mediated transport 499 24 8.5 × 10−4

GO:0002237 Response to molecule of bacterial origin 330 19 1.2 × 10−3

GO:0050730 Regulation of peptidyl-tyrosine phosphorylation 244 16 2.1 × 10−3

GO:0002521 Leukocyte differentiation 496 23 3.0 × 10−3

GO:0034330 Cell junction organization 285 17 3.3 × 10−3

GO:0006914 Autophagy 473 22 5.1 × 10−3

GO:0051123 RNA polymerase II preinitiation complex assembly 25 6 6.1 × 10−3

GO:0038179 Neurotrophin signaling pathway 39 7 6.1 × 10−3

GO:0070482 Response to oxygen levels 337 18 7.7 × 10−3

KEGG pathway

hsa05203 Viral carcinogenesis 201 22 2.6 × 10−7

hsa05165 Human papillomavirus infection 339 26 1.4 × 10−5

hsa04728 Dopaminergic synapse 131 12 0.014

hsa04215 Apoptosis 32 6 0.023
*Pathway size: the total number of genes in the GO term or KEGG pathway
$The observed number of genes from the module gene list
#Bonferroni method was used to adjust p-value
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the Fc gamma receptor signaling pathway and virus infec-
tion. Fc gamma receptor is a protein in cell surface involved
in regulations of the immune response. Although there is
no current direct evidence in the relationship between the
Fc gamma receptor and CL/P, our results suggested the po-
tential contribution of the immune response to the devel-
opment of CL/P. We also observed virus infection enriched
in our network module genes. A previous case-control
study had found that respiratory virus infection was an im-
portant risk factor of cleft lip [34]. However, such results re-
quire further experimental validation and illustration of the
causal effect of virus infection on CL/P.
Furthermore, our results showed the relationship be-

tween ErbB family and CL/P. Existing studies about
ErbB family mostly focus on its relationship with solid
tumors or neurodegenerative diseases. Mice with a defi-
ciency for Egfr, a member of the ErbB family, exhibit fa-
cial anomalies and impaired epithelial development
through a failure of secretion of matrix metalloprotein-
ases [35–37]. These studies may serve as genetic correl-
ation evidence of ErbB family in human CL/P.
Although our network analysis has successfully identified

several candidate gene sets, there are still some limitations.
One limitation of our research is that the resultant network
greatly depends on the background human PPI network
and GWAS signals. The non-overlap of candidate genes
between the best modules for European GWAS dataset and
for Asian GWAS dataset might reflect this limitation. On
one hand, the dense module searching method of
dmGWAS and EW_dmGWAS expanded the module by
adding all the neighborhood genes within a pre-defined dis-
tance and selected the best module. The interactions in the
PPI network may have a great effect on the selected mod-
ules. On the other hand, the genes with strong GWAS sig-
nals were more likely to be included in the module with
high degrees of connectivity. Therefore, the top modules
would be driven by these genes and the results may be
biased. Although the corresponding adjustment was made
to address such concern, the degree of adjustment and the
impact on the final module remain unclear. Our EW_
dmGWAS could partially reduce such biases because it re-
quires both association and expression signals. Additionally,
we used a one directional strategy to detect consistent
signals (European data as discovery and then Asian data as
evaluation) rather than a bi-directional strategy. The one
directional strategy may create a bias on the results in terms
of accuracy and consistency, while the bi-directional would
add complexity in comparing and summarizing the results.
Another limitation is that the sample size of gene co-
expression data is quite small. The false positive rate would
be higher when inferring edge weight according to Pear-
son’s correlation coefficients in cases and controls. How-
ever, the gene expression dataset we used is currently the
largest such kind of data for CL/P.

Conclusions
We presented an integrative, multi-omics study to iden-
tify novel CL/P-associated genes using our in-house net-
work tools, dmGWAS and EW_dmGWAS, based on
GWAS data, the human PPI network, and differential
gene expression profiles. A total of 87 genes were con-
sistently detected in both European and Asian ancestries
in dmGWAS. In EW_dmGWAS, we identified 253 and
245 module genes associated with CL/P for European
ancestry and the Asian ancestry, respectively. Functional
enrichment analysis revealed that these genes were in-
volved in cell adhesion, protein localization to the
plasma membrane, the regulation of the apoptotic sig-
naling pathway, and other pathological conditions. In
addition, only a minority of genes had prior evidence in
CL/P as annotated in the CleftGeneDB database. Our
study highlighted nine novel CL/P candidate genes
(BRD1, CREBBP, CSK, DNM1L, LOR, PTPN18, SND1,
TGS1, and VIM) and 17 previously reported genes. The
genetic association signals identified through our unique
network analysis of GWAS pipeline provide valuable in-
sights into the etiology of CL/P, and these new candidate
genes warrant further investigation in future.

Methods
GWAS dataset processing
We downloaded the GWAS data from the database of
Genotype and Phenotype (dbGaP) (accession number:
phs000094.v1.p1). The original GWAS was conducted by
the Gene Environment Association Studies (GENEVA)
[11]. The CL/P cases were recruited from a number of
different populations through a treatment center or
population-based registry. A total of 7089 subjects consist-
ing of case-parent trios were genotyped using the Illumina
Human610_Quadv1_B array. After a series of quality con-
trol process (e.g. missing rate call, chromosome anomalies,
minor allele frequency, Mendelian error, duplication error
rate, and Hardy-Weinberg equilibrium filtration), the
cleaned data included 2037 complete parent-offspring trios
(6111 subjects) and 553,665 SNPs. We conducted the
family-based association test using the transmission dis-
equilibrium test (TDT) implemented in software plink [38,
39] for trios of Asian ancestry (1029) and trios of European
ancestry (878), respectively. From the plink output, we
selected the asymptotic p-values to compile gene-level p-
values for disease association.

Gene-based association test using pathway scoring
algorithm
Gene-based p-values were compiled by combining SNP
asymptotic p-values from TDT. Specifically, we mapped
a SNP to a gene if it was located in the gene body or
within 50 kb upstream or downstream of the gene. We
used the pathway scoring algorithm, named Pascal, to
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calculate the gene-based p-values [40]. Pascal utilized
the sums of chi-squared statistics for SNP p-values while
controlling potential biases from gene length, SNP dens-
ity, and the local Linkage Disequilibrium (LD) structure.
For the TDT results using trios of European ancestry
and the TDT results using trios of Asian ancestry, we used
the corresponding 1000 Genomes reference panel, EUR
and ASN (phase 1, release v3), respectively. In the Pascal
results, we selected genes that passed the analyses (i.e., la-
beled with success in the status column). The gene-based
p-values were then transformed to gene-based z-scores by
the inverse normal distribution function.

Human protein-protein interaction (PPI) network
We downloaded the Human Protein Reference Database
(HPRD, release 9) to build the reference network, as shown
previously [41]. HPRD collected experimentally validated
PPIs (in vivo, in vitro, and yeast 2-hybrid) and had high reli-
ability [42, 43]. The current version of HPRD contains a
total of 9617 nodes (genes) and 39,240 edges (interactions).

Dense module search using GWAS data (dmGWAS 2.4)
Single GWAS dataset
The dmGWAS version 2.4 R package was utilized to de-
tect CL/P-associated modules and genes by superimpos-
ing GWAS signals onto the HPRD network [15].
dmGWAS implements a dense module searching (DMS)
algorithm and works on the reference network with
nodes weighted by gene-based z-scores. Briefly, DMS
considers every gene in the reference network with
GWAS p-values as a seed gene to initiate a greedy
searching process. With the seed gene, DMS expands a
module by examining and recruiting neighborhood
genes that could improve the module score (Zm) by a
predefined threshold, r. The neighborhood genes are de-
fined as genes whose distance to genes in the module is
equal to or less than a predefined distance d. The mod-
ule score Zm is calculated by using gene-level z-scores of
component genes in the module. A new module score is
calculated every time when new genes are added to the
module. The module is finalized when all the candidate
neighborhood genes fail to achieve Zm+ 1 > Zm × (1 + r),
where Zm is the current module score and Zm+ 1 is the
new module score should a gene be recruited into the
current model. The parameter r represents the restric-
tion on the expansion of a module. A smaller value of r
(e.g., r = 0.05) would result in a large module size
whereas a larger value of r (e.g., r = 0.2) may impose a
too strict restriction. We used the default parameters
(d = 2 and r = 0.1) in the analysis, as recommended by
dmGWAS user manual [15]. The generated modules
were ranked based on the normalized module score Zn.
The top 50 modules were chosen to build the final gene
subnetwork, which was visualized by Cytoscape 3.7 [44].

Dual GWAS datasets
The dmGWAS version 2.4 package provides a function
called dualEval to take as input two GWAS datasets for a
discovery-evaluation design. The discovery GWAS dataset
would be used to generate modules, each with a module
score calculated using the discovery dataset. Subsequently,
these modules are evaluated using the evaluation GWAS
dataset, resulting in module scores calculated using the
evaluation dataset. Modules with significant scores in both
datasets are considered with consistent association signals
and are selected for further analyses, as previously de-
scribed [13]. The initial strategy is bi-directional by treat-
ing one dataset as the discovery dataset and the other one
as the evaluation dataset, and vice versa [13]. However, in
our results, we found the module scores (Zm) showed a
positive correlation when using the European subgroup as
the discovery dataset and the Asian subgroup as the evalu-
ation dataset but found no such correlation when exchan-
ging the roles of the two datasets (Additional file 3: Figure
S3). Therefore, we chose to use the European GWAS
dataset as discovery dataset and employed a one direc-
tional strategy for the analysis.

Dense module search by combining GWAS and
differential co-expression (EW_dmGWAS)
The Java version of EW_dmGWAS was utilized to gen-
erate the node- and edge-weighted PPI network consid-
ering the computing efficiency [45]. The node weight is
determined by the gene-based p-value [19]. The edge
weight is inferred by the change degree of gene expres-
sion between case and control samples. The module
score is determined by node weight and edge weight and
is balanced through the parameter λ [19]. λ ranges be-
tween 0 and 1 to adjust the contribution from edge
weight on the module score.
We downloaded a gene expression dataset from Gene

Expression Omnibus (GEO, accession ID: GSE42589)
that were conducted using dental pulp stem cell samples
of nonsyndromic CL/P patients. The platform was Affy-
metrix Human Gene 1.0 ST Array. The original file con-
tained expression data of 33,297 probe sets of 7 case and
6 control samples. Robust multi-array average (RMA)
and quantile normalization were conducted. For genes
with multiple probe sets, we used the average expression
of these probe sets for the gene. Finally, we obtained
gene expression for 20,358 genes and they were
imported into EW_dmGWAS for edge weights.

Functional enrichment analysis of module genes
We used WebGestalt [46] for functional enrichment
analysis of the candidate genes residing in the subnet-
works identified by dmGWAS and EW_dmGWAS. The
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) functional databases were used.
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Multiple testing correction was controlled by the Bonfer-
roni method [47]. The minimum number of genes for a
category was set to 10 with the maximum number set to
500 [48, 49]. The enriched categories were identified
based on the adjusted p-value threshold of 0.05. Affinity
propagation, one method of redundancy reduction, was
used as a post-processing step to identify the most
significant and representative sets after clustering gene
sets based on the Jaccard index [46].

Literature mining of CL/P candidate genes
Our in-house database, CleftGeneDB [22], was used to
curate CL/P candidate genes from literature mining.
Specifically, we systematically performed literature min-
ing of CL/P genes in humans and mice followed manual
curation by domain experts. The data deposited in Cleft-
GeneDB contained 194 human CL/P genes and 272
mouse CL/P genes. The mouse mutation genes were
mapped to the homologous human genes. These gene
sets were compared with the genes identified through
dm_GWAS and EW_dmGWAS.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12920-020-0675-4.
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Additional file 3: Figure S3. Distribution of module scores (Zm) from
two GWAS datasets
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