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Abstract

Background: Discovering a highly accurate and robust gene signature for the prediction of breast cancer metastasis
from gene expression profiling of primary tumors is one of the most challenging tasks to reduce the number of
deaths in women. Due to the limited success of gene-based features in achieving satisfactory prediction accuracy,
many methodologies have been proposed in recent years to develop network-based features by integrating network
information with gene expression. However, evaluation results are inconsistent to confirm the effectiveness of
network-based features, because of many confounding factors involved in classification model learning process, such
as data normalization, dimension reduction, and feature selection. An unbiased comparative evaluation is essential for
uncovering the strength of network-based features.

Methods: In this study, we compared several types of network-based features obtained using different mathematical
operators (Mean, Maximum, Minimum, Median, Variance) on geneset (i.e., a gene and its’ neighbors in the network) in
protein-protein interaction network and gene co-expression network for their ability in predicting breast cancer
metastasis using gene expression data from more than 10 patient cohorts.

Results: While network-based features are usually statistically more significant than gene-based feature, a consistent
improvement of prediction performance using network-based features requires a substantial number of patients in
the dataset. In contrary to many previous reports, no evidence was found to support the robustness of network-based
features and we argue some of the robustness may be due to the inherent bias associated with node degree in the
network. In addition, different types of network features seem to cover different pathways and are complementary to
each other. Consequently, an ensemble classifier combining different network features was proposed and was found
to significantly outperform classifiers based on gene-based feature or any single type of network-based features.

Conclusions: Network-based features and their combination show promise for improving the prediction of breast
cancer metastasis but may require a large amount of training data. Robustness claim of network-based features needs
to be re-examined with network node degree and other confounding factors in consideration.
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Background
The most frequently diagnosed disease and the second
leading cause of death in western women have been iden-
tified as breast cancer [1]. According to the American
Cancer Society [2], US women have 12.4% (about 1 in
8) chance of developing breast cancer over the course of
their lifetime. About 5% of women have metastatic (i.e.,
recurrence of cancer) breast cancer at their first diagnosis
[3]. Only lymph node status, histology and tumor size of
the patients are not sufficient to determine breast cancer
metastasis [4]. Due to the availability of gene expression
data for primary cancerous tumors, many methods have
been developed to predict breast cancer metastasis out-
comes over the last decade. The patient being free from
recurrence for at least 5 years and relapse occurring within
5 years after the first diagnosis are termed as good and
poor outcomes respectively.

Initially, single gene-based prognostic signatures that
are highly differential between good and poor outcomes
were proposed [1, 5–7]. Inconsistencies of prognostic sig-
natures were discovered when single gene-based prognos-
tic signatures varied in different studies [8]. There was no
homogeneity within the found signatures which compli-
cated the biological relevance of the metastatic outcomes.
A lot of genes are correlated with the metastatic outcome
which makes it possible to identify multiple single gene-
based signatures from the same dataset [8, 9]. Another
problem in the gene expression analysis is that the data
available is very high dimensional, for example- the num-
ber of genes is 10,000 for only hundreds of patients.
Many studies tried to pool multiple datasets together to
lessen the n >> p problem of the expression data and
it provided higher statistical significance of the results
[9–11]. Many samples are needed to identify robust gene
signature and to overcome the issues of dataset hetero-
geneity. The number of samples needed to achieve an
improvement on classification accuracy is still unexplored
and more studies are required to accurately address this
concern.

From a biological standpoint, protein works in complexes
and the aberrant nature of these complexes can cause
cancer. Motivated by this assumption, many methodolo-
gies have been proposed integrating network informa-
tion such as- protein-protein interaction network, co-
expression network and cellular pathway information with
the gene expression data for better classification accu-
racy and robust gene signature identification [12–22]. By
integrating network with gene expression, those methods
tried to find protein complexes or genesets which bet-
ter distinguished between the good and poor outcome of
the metastasis. The aggregated expression of the genes
belonging to a geneset was used as the network-based
feature in most of the methods. An initial feature selec-
tion step was applied to refine the network-based features

before creating the final classification model in some of
the previously proposed methods [12, 16].

Although many studies claim improved classification
accuracy and gene signature stability, there has been
insufficient comparative analysis between network-based
methods and single gene-based approaches. Two recent
studies [23, 24] compared single gene-based approach
with the network-based ones and reported that network-
based methods do not perform better over the single gene-
based approach in terms of classification accuracy and
the signature stability. Later, in [21], the authors pointed
out that selecting network-based features based on sta-
tistical significance hinders the classification performance
of the network-based methods. They also argued that
only using the average operator to create network-based
features does not improve classification accuracy signifi-
cantly. Other types of operator (i.e., maximum, minimum,
median, variance) should also be used in the models.

The current study mainly focused on the differen-
tial analysis of the different feature types by comparing
network-based features with the single gene-based fea-
ture. Amsterdam Classification Evaluation Suite (ACES)
[24], a compilation of gene expressions of twelve (12)
separate studies, was used for the analysis. The goal of
the study was to determine the number of significant
features that passed the significance threshold value for
separate studies. The impact of the number of samples,
classification accuracy of feature types and robustness
of gene signature across studies were thoroughly exam-
ined. An ensemble classifier CNF (Combining multiple
Network-based Features) was proposed which provides
improved performance over individual network-based
features. Moreover, Gene Ontology analysis was done to
find the biological interpretation of the top significant
genes from separate studies.

Methods
Gene expression data
The gene expression dataset used in this analysis is ACES
[24] dataset. It combined breast cancer patient samples
from 12 different studies together from NCBIs Gene
Expression Omnibus. The dataset took the 133A plat-
form into account and removed duplicate samples with
the same GEO id in multiple studies. Sample array qual-
ity control checking was done, and outlier samples were
discarded after RLE (Relative Log Expression) or NUSE
(Normalized Unscaled Standard Error Plot) analysis. This
yielded a cohort of 1616 patients from 12 studies and all-
together the patient expression arrays were normalized
using justRMA method from R. Probe intensities of sam-
ples were log-normalized and mean centered. Finally, after
discarding missing, null or zero values there were 12,750
gene probes in ACES dataset [24] . The class label for each
patient was determined as good or poor outcome based on
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the recurrence free survival time where the threshold was
set to 5 years. The detailed information about the studies
and the class distributions are provided in the Table 1.

Protein-protein interaction network
The protein-protein interaction network (PPI) was cre-
ated from the BioGrid (version 3.4.149) interaction
database [25]. The interaction network only contained the
genes from the ACES dataset where self-edges were dis-
carded which finally produced 180,371 edges for 12,750
nodes (no. of genes).

Gene co-expression network
A global co-expression network was created for the
analysis based on mutual k-nearest neighbors of genes
using Pearson correlation coefficients between the genes’
expression in the ACES dataset (i.e., two genes were con-
nected if they were within the top-k most co-expressed
genes from each other.) The number of neighbors (k)
was set to 84 so that the network can have a similar
number of edges as in the PPI network. This yielded a net-
work containing 161,042 edges for 12,750 nodes (no. of
genes) and the degree distribution approximately followed
a power-law distribution like the PPI network.

Feature types
Each gene and its’ neighbors from the network were
considered as a geneset. Multiple network-based fea-
tures were evaluated using different mathematical oper-
ators (MAX, MIN, MEDIAN, MEAN, VARIANCE) on
the geneset. The specification of the feature types is
given in Table 2, where abbreviation “CE” stands for Co-
Expression network and “PPI” for Protein-Protein Inter-
action network. CEEdge and PPIEdge are the two fea-
ture types that consider each of the edges of network as
features.

Table 1 Specification of the studies in ACES

Dataset Geo accession no. No. of poor No. of good Total patient

Desmedt 7390 56 127 183

Hatzis 25066 102 48 150

Ivshina 4922 30 72 102

Loi 6532 24 33 57

Pawitan 1456 33 114 147

Miller 3494 21 68 89

Minn 2603 21 44 65

Schmidt 11121 24 145 169

Symmans 17705 37 187 224

WangY 5327 10 42 52

WangYE 2034 88 169 257

Zhang 12093 9 112 121

ACES 455 1161 1616

Table 2 Specification of the feature types

Name Details

Gene Using gene expression without integrating any network
information.

CENO A genes’ expression is based on the average expression of
its neighbors only.

CEMEAN The mean of the expression of a gene and its neighbors.

CEMAX The maximum of the expression of a gene and its neighbors.

CEMIN The minimum of the expression of a gene and its neighbors.

CEMED The median of the expression of a gene and its neighbors.

CEVAR The variance of the expression of a gene and its neighbors.

CEEdge Each edge is the summation of the expression of its
corresponding genes.

PPINO A genes’ expression is based on the average expression of
its neighbors only.

PPIMEAN The mean of the expression of a gene and its neighbors.

PPIMAX The maximum of the expression of a gene and its neighbors.

PPIMIN The minimum of the expression of a gene and its neighbors.

PPIMED The median of the expression of a gene and its neighbors.

PPIVAR The variance of the expression of a gene and its neighbors.

PPIEdge Each edge is the summation of the expression of its
corresponding genes.

Identification of significant features
First, for each feature, its value is calculated for each
patient depending on the feature types (see Table 2).
Student’s t-test is then used to compare feature values
between the good and poor outcome patients in a dataset,
and a p-value is computed for each feature. Then, we com-
puted False Discovery Rate (FDR) based on Benjamini
and Hochberg method [26] and an FDR corrected p-
value threshold was set to 0.1 for selection of significant
features.

Robustness measure of features
To evaluate the robustness for different feature types
across different studies, we selected the top-160 most
statistically significant features (ranked by Student’s t-
test p-value) from each gene- or network-based features
(except CEEdge and PPIEdge). The number 160 was cho-
sen so that the expected overlap between the features
from two different datasets is 160 × 160/12750 = 2
(160 genes chosen from 12,750 genes). For CEEdge and
PPIEdge, we pooled the genes associated with the top-
ranked edges so that a total of 160 genes were obtained.
Then the actual overlap of genes between each pair of
datasets was counted, and the geometric mean of the fold
change (observed overlap / expected overlap) across the
66 pairs of datasets was calculated as a measure of the
feature’s robustness.
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Classification model and performance evaluation
Logistic regression was used as the classification model
for evaluating the prediction performance of different
feature types. The area under the receiver-operating char-
acteristics curve (AUC) was used as the performance
measurement of the classification model due to the class
imbalance nature of the data. For evaluation purpose,
average AUC of 10 repetitions of 5-fold cross-validation
was measured for each feature type in each dataset.

Classifier with combined network features (CNF)
Based on the classification performance and mutual com-
plementariness of individual network-based features, an
ensemble classifier based on combined network-based
features, CNF, was proposed. To acquire better confidence
in classification, CNF utilizes multiple network-based fea-
tures together, including MEAN, MAX, MIN, MEDIAN
features for both co-expression network and PPI network.
A logistic regression model is created for each of the
eight network-based feature types. When a test instance
is provided, CNF obtains predicted probabilities from the
eight logistic regression models for that test instance. The
final prediction for that particular test instance is done by
averaging the predicted probabilities of those individual
classifiers.

Results and discussion
Number of significant features
Figure 1 shows the number of features passing the FDR
corrected p-value threshold for each feature type in the
12 cohorts, as well as in the combined ACES dataset.
First, almost none of the features were able to pass the
threshold in “Desmedt”, “Ivshina”, “Loi”, “Miller”, “Minn”,
“WangY”, “Zhang” datasets. This indicated that the num-
ber of patients and the class distribution have an impact

on feature significance. From Fig. 2 it can be observed
that “Ivshina”, “Loi”, “Miller”, “Minn”, “WangY”, “Zhang”
have the lowest number of patients and very imbalanced
class distribution. Although the “Desmedt” dataset has
relatively more patients and the class distribution is less
skewed, no features passed the FDR corrected p-value
threshold, indicating that the differential analysis also
depends on the nature of the dataset. Note that the total
number of CEEdge and PPIEdge features are much larger
than other network-based features, hence these feature
types have the highest number of significant features.

The result of the ACES dataset seems much more sta-
ble for each feature type compared to the results of the
separate studies. The number of gene features passing the
predefined threshold is much higher than separate stud-
ies (Fig. 1). Uniform significant number of features for
ACES dataset indicated that a large number of samples
is required for attaining the consistent result. The num-
ber of significant features for most network-based feature
types (except CENO and PPINO) was much higher than
the gene-based feature in ACES dataset, suggesting that
network neighbors can provide additional discriminating
information that would otherwise be too noisy to identify
for individual genes. It is also worth noting that network
features resulted from multiple gene-expression values,
such as MEAN and VAR, are more abundant than features
resulted from operators that only pick one gene (e.g., MIN,
MAX, and MEDIAN), as the later can be more affected by
noise in the network structure.

Prediction performance of different feature types
The second analysis was focused on whether the inte-
gration of the network with genes offers better classifi-
cation accuracy compared to gene-based feature (Fig. 3).
Out of the 12 independent datasets, gene-based feature

Fig. 1 Number of significant features for each feature type in 13 datasets
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Fig. 2 Patient class distribution in 12 studies

and network-based features had the highest AUC scores
on 3 and 9 datasets respectively. For example, PPIMAX
is the highest in “Desmedt” dataset whereas CEMIN is
the highest in “Ivshina” dataset. Different feature types
achieved the highest AUC score in different datasets
among the network-based feature types which indicated
that the classification accuracy varied across the datasets.
No feature type showed consistent improvement across
datasets. Although network-based features outperformed
gene-based feature in 9 datasets, it is insufficient to claim
the effectiveness of network-based over gene-based fea-
tures among the different studies, given that multiple
types of network-based features were tested against the
gene-based feature.

However, when tested on the combined ACES dataset,
which is relatively free from class imbalance prob-
lem and had the highest patient cohort diversity, the
network features based on MEAN, MIN, MAX, and
MEDIAN operators of gene and its neighbors from both
co-expression network and protein-protein interaction
network significantly outperformed gene-based feature
(Fig. 4). VARIANCE-based features from both PPI and
co-expression networks also provided slightly better AUC
than the gene-based feature. While CEEdge and PPIEdge
features performed on par with the gene-based feature,
it is worth noting that the number of features in these
feature types is much larger than the other types of
features, which could have impeded their classification

Fig. 3 Classification accuracy of each feature type in 13 datasets. The highlighted entry as “bold” and “underlined” in each dataset indicates that it
has the highest average AUC score for that dataset
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accuracy. More investigation may be needed to under-
stand the ways of finding a subset of edges that will offer
improved classification accuracy. Finally, Neighbor-Only
features (CENO, PPINO) do not seem to have any advan-
tage over gene-based features in improving classification
performance. This is also consistent with the results that

very few Neighbor-Only features are statistically signifi-
cant between good and poor outcome groups (Fig. 1).

Overall, using ACES dataset, we showed that integra-
tion with PPI or co-expression networks resulted in not
only larger numbers of significant features than using gene
expression data alone, but also more accurate classifica-

Fig. 5 Classification accuracy on different sub-samples of ACES. The highlighted entry as “bold” indicates that the average AUC for that
network-based feature is higher than the average AUC score of gene-based feature and the entry as “underlined” indicates that it has the highest
AUC score for that sub-sample
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Fig. 6 Feature type stability. Boxplot of the fold change of overlapping gene signatures in pairwise setting across 12 studies. Fold change values
were converted to log scale. Red diamond denotes the geometric mean of the fold change values

tion models. This is consistent with the results reported in
[21], but in contradiction with the findings in two previous
studies, where network-based features were shown to pro-
vide no benefit in classification [23, 24]. The discrepancy
may be attributed to the fact that we did not perform any
feature selection for any of the feature types in our study
in contrast to other studies. Supervised feature selection
as performed in other studies may introduce overfitting,
given a large number of features and a modest number of
samples.

As the MEAN, MIN, MAX, and MEDIAN operators on
both gene co-expression and protein-protein interaction
networks seem to be beneficial but mutually complemen-
tary to each other (data not shown), we tested whether the
combination of these features can improve prediction per-
formance further. Indeed, by merging the classifiers from
different network-based features into an ensemble classi-
fier (CNF), the highest classification AUC was observed
on the ACES dataset (Fig. 4), signifying the benefit of com-
bining different network features for improved prediction
accuracy.

Classification accuracy on smaller sub-samples of ACES
dataset
To understand why the network-based features worked
well in the combined ACES dataset, but not in many of
individual cohorts, the effect of sample sizes on classi-
fication accuracy was investigated to determine its rela-
tionship with the classification accuracy of network-based
features. For this analysis, 10 sub-samples consisting of
the same number of patients were created for specific per-
centages (from 90% down to 10%) of the ACES dataset.
Then, similar 5-fold cross-validations were performed for
10 repetitions of each of the 10 sub-samples. The average

AUC scores of each feature type and different sub-sample
percentages are shown in Fig. 5. From Fig. 5, it can be
observed that while gene-based feature have relatively sta-
ble performance with regard to different sample sizes,
the network-based features, in particular, MEAN, MAX,
MIN, and MEDIAN, from both co-expression and PPI
networks outperformed gene-based feature only for rel-
atively larger sample sizes, and can be much worse than
gene-based feature for small sample sizes. Even more
consistent trend is observed on the ensemble classifier
combining different network features: average AUC for
the CNF classifier decreases steadily with the decrease
of sample sizes. Given that no consistent improvement
of network-based features over gene-based feature was
found on the 12 individual cohorts (Fig. 3), it can be con-
cluded that a minimum number of samples are needed
to obtain an improved and stable prediction accuracy
using network-based features. This results aligns well with
other studies where datasets were merged together for
improved accuracy [9, 10].

Robustness of features across patient cohorts
Figure 6 shows the robustness value for different feature
types. Overall, network-based features do not seem to have

Table 3 GO analysis of gene-based feature

Feature Term Count Benjamini corrected
p-value

Gene-based Cell cycle 138 2.20E-15

DNA repair 42 1.90E-01

cell-cell adhesion 49 4.4.E-1

p53 signaling pathway 20 1.70E-02
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significantly higher overlap than gene-based feature, con-
trary to claims made by several recent studies [12, 21, 27],
but consistent with results reported in [23]. Three network-
based features, CEEdge, PPIEdge, and PPINO appear to be

the most robust among the 15 feature types and the extent
of overlap is higher than gene-based features. However,
further investigation revealed that the top-ranked CEEdge
and PPIEdge features tend to involve genes with higher

Table 4 GO analysis of network-based feature types

Feature Type
Co-expression Network PPI network

Term Count Benjamini
corrected
p-value

Term Count Benjamini
corrected
p-value

NO Growth factor 24 4.10E-02 G-protein coupled receptor
signaling pathway

49 9.40E-01

Jak-stat signaling
pathway

28 1.70E-01 Jak-stat signaling pathway 19 4.30E-01

Cell junction 49 5.90E-01 Cell junction 42 1.80E-01

Olfactory transduction 13 6.40E-01 Extracellular region 111 6.60E-02

MEAN RNA transport 33 3.30E-01 Transmembrane 479 1.60E-24

Lysosome 40 5.00E-01 Extracellular matrix 37 2.30E-03

Antigen processing and
presentation

19 3.60E-01 Bicellular tight junction 14 8.80E-01

Endothelial cell
chemotaxis

5 9.90E-01 Notch signaling pathway 6 9.2E-1

Leukocyte transendothelial
migration

10 9.7E-01

MAXIMUM Cell cycle 132 2.40E-12 Cell cycle 122 2.70E-10

Antigen processing and
presentation

27 7.70E-03 Positive regulation of canonical
Wnt signaling pathway

36 1.60E-05

DNA repair 45 5.20E-02 T-Cell receptor signaling
pathway

51 1.20E-09

Cardiac epithelial to
mesenchymal transition

5 9.9E-01 Cell-cell adherens junction 70 3.50E-05

Positive regulation of blood
vessel endothelial cell
migration

7 5.7E-01

MINIMUM Cell cycle 116 2.00E-06 Cell cycle 136 5.90E-14

p53 signaling pathway 5 9.00E-01 p53 signaling pathway 19 4.90E-02

Rho cell motility signaling
pathway

7 9.60E-01 DNA repair 41 2.80E-01

MEDIAN Cell cycle 124 2.80E-09 Sensory transduction 26 9.90E-01

DNA repair 47 1.70E-02 Telomere 4 9.80E-01

CSonic Hedgehog (SHH)
Receptor Ptc1 Regulates
cell cycle

3 9.90E-01 Ribosome 17 9.80E-01

VARIANCE Cell cycle 138 6.30E-18 Intracellular steroid hormone
receptor signaling pathway

7 9.40E-01

DNA repair 47 8.80E-04 Extracellular space 177 2.10E-01

Positive regulation of
telomere maintainance

12 8.00E-02 Immune response 64 9.50E-01

EDGE Cell cycle 147 1.80E-22 Cell cycle 167 4.80E-30

Positive regulation of
telomere maintainance

15 1.30E-03 Cell-cell adherens junction 84 5.00E-10

DNA repair 44 7.20E-03 Positive regulation of epithelial
to mesenchymal transition

7 9.5E-01

Cell-cell adhesion 48 1.30E-01 Regulation of cell motility 6 9.8E-01
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degree (mean degree equal to 43 and 102, compared to the
network average of 25 and 28, for co-expression network
and PPI network, respectively). Therefore, the improved
robustness may simply reflect a selection bias as there
are few hub nodes in each network, which increases the
chance of feature overlap between different datasets. Sim-
ilarly, the improved robustness of PPINO was due to an
inherent bias in including low-degree genes, where the
median degree of the top-160 features was zero in 6 out
of the 12 studies. We suspect that this type of biases is
the main reason for the high robustness of network-based
features claimed in the literature and a more comprehen-
sive re-evaluation of the previously reported results may
be deserved.

Gene ontology (GO) analysis of the feature types
To investigate the biological function of the top-ranked
features, we combined the top-160 genes for each fea-
ture type from all 12 cohorts and performed gene ontol-
ogy enrichment analysis using the combined gene list.
Tables 3 and 4 show top-ranked GO terms along with
FDR-corrected p-values for gene- and network-based fea-
tures respectively. Overall, cell cycle and DNA damage
are the most recurring GO terms, appearing in most fea-
ture types. Other well-known metastasis-related terms
such as cell-cell adhesion, cell junction, and various signal-
ing pathways including p53 and Jak-stat appear in several
feature types, but the statistical significance of the enrich-
ment is rather low, partly due to the FDR correction
required to tackle with the multiple hypothesis testing
problem. This is in agreement with the low robustness
of the features across datasets, and suggests that a com-
bination of diverse features from large cohorts as in this
study is necessary for both mechanistic understanding
and improved prediction of metastatic breast cancer.

Conclusions
Improved prediction accuracy and signature stability
across multiple datasets are very crucial for the prediction
and mechanistic understanding of breast cancer metasta-
sis. Here we present a comprehensive analysis of distinct
network-based features in comparison to gene-based fea-
ture. In general, the number of patients and the ratio
between metastatic and non-metastatic patients in the
dataset can dramatically impact the number of signifi-
cant features that can be detected, for both gene-based
and network-based features. While network-based fea-
tures can provide higher prediction accuracy than gene-
based features in large cohorts, its performance gain
diminishes in smaller dataset. We did not find strong evi-
dence to support the claim that network-based features
are more stable than gene-based feature (in fact, some
potential bias that could have lead to the false claim was
identified). In addition, gene ontology analysis revealed

relatively insignificant enrichment of known metastasis-
related pathways. Nevertheless, an ensemble classifier
combining different network features achieved signifi-
cantly higher accuracy than gene-based and individual
network-based features, signifying both the potential and
challenges in network-based prediction and understand-
ing of breast cancer metastasis.
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