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Abstract

Background: With the development of next generation sequencing (NGS) technology and genotype imputation
methods, statistical methods have been proposed to test a set of genomic variants together to detect if any of them is
associated with the phenotype or disease. In practice, within the set, there is an unknown proportion of variants truly
causal or associated with the disease. There is a demand for statistical methods with high power in both dense and
sparse scenarios, where the proportion of causal or associated variants is large or small respectively.

Results: We propose a new association test – weighted Adaptive Fisher (wAF) that can adapt to both dense and
sparse scenarios by adding weights to the Adaptive Fisher (AF) method we developed before. Using simulation, we
show that wAF enjoys comparable or better power to popular methods such as sequence kernel association tests
(SKAT and SKAT-O) and adaptive SPU (aSPU) test. We apply wAF to a publicly available schizophrenia dataset, and
successfully detect thirteen genes. Among them, three genes are supported by existing literature; six are plausible as
they either relate to other neurological diseases or have relevant biological functions.

Conclusions: The proposed wAF method is a powerful disease-variants association test in both dense and sparse
scenarios. Both simulation studies and real data analysis indicate the potential of wAF for new biological findings.

Keywords: Genome-wide association study, Adaptive fisher, Rare variants, Common variants, Dense signal, Sparse
signal, Combine p-values

Background
Single nucleotide variants (SNVs) are a type of chromo-
some variants where the DNA sequence of an individ-
ual is different from the reference genome on only one
nucleotide. Before the era of next generation sequenc-
ing (NGS), SNP array technology was used to obtain the
genotypes of common SNVs with minor allele frequencies
(MAFs) larger than a certain cutoff (e.g. 1% or 5%, a.k.a
single nucleotide polymorphisms or SNPs). Over the past
decades, genome-wide association studies (GWASs) have
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been successfully conducted to discover many disease-
associated common SNVs with relatively large MAFs
[1, 2]. Despite the success of GWAS, the common SNVs
detected through this procedure sometimes account for
only a small proportion of the heritability, which is known
as the problem of “missing heritability” [3]. This problem
promotes the researchers to seek heritability outside of the
controversial common disease-common variant hypothe-
sis, which is the fundamental of GWAS based on common
SNVs, but to seek “missing heritability” in rare SNVs [4].
Rare SNVs (a.k.a rare variants) are SNVs with low MAFs
(often < 1% or < 5%). Compared to common SNVs, the
number of rare SNVs is much larger, and their locations on
the human genome are often unknown before genotyping
all the study samples, which makes DNA hybridization-
based genotyping technology (e.g. SNP array) less useful
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in genotyping rare SNVs. Thanks to the advent of NGS,
researchers now are enabled to reliably measure rare
SNVs. Furthermore, because of the development of fast
imputation tools [5] and the 1000 Genomes project [6],
rare SNVs can be imputed for old GWASs where only
common SNVs were measured. This helps recycle and
add value to the numerous GWASs that are conducted for
many complex human diseases and are available on public
domain.

However, the technological advancement in genotyping
of rare SNVs also presents several statistical challenges
for the association analysis method development. First,
because of the small MAFs of the rare variants, the sta-
tistical power of traditional association methods are very
low when applied to detect the association between rare
variants and the disease outcome. Second, because the
number of SNVs including both common and rare vari-
ants is significantly larger than the number of common
variants (often more than 100 times larger), the multiple
comparison issue is more severe [7]. Therefore, it would
be powerless if association analysis were performed on
each single SNV separately. A commonly used solution to
these issues was to perform the association analysis on
SNV sets, where multiple SNVs were grouped together
based on their locations on the genome. SNVs on or close
to a gene are often grouped together into one SNV set.
However, the traditional statistical testing methods such
as the score test or likelihood ratio test used in multivari-
ate generalized linear models (GLMs) are not powerful
enough when many variants are included in the SNV set.
As shown by Fan [8], the tests based on χ2 distribution
will have no power when the signal is weak or rare as the
degree of freedom increases. To solve this problem, three
categories of approaches have been proposed, all of them
essentially reduced the degree of freedom in some way to
boost the statistical power.

The first category is burden tests, which collapse rare
variants into genetic burdens, then test the effects of the
genetic burden. CAST [9], CMC [10] and wSum [11]
all belong to this category. By combining multiple rare
variants into a single measurement of genetic burden,
these methods essentially reduce the number of parame-
ters to test down to one, which is equivalent to reducing
the degree of freedom of the χ2 test statistic to one.
Despite the popularity of this type of method, the tra-
ditional way of calculating genetic burden often ignores
the fact that different variants may have opposite effects
on the same outcome. Simply pooling or summing the
variants together may cause the opposite effects to can-
cel out, therefore reduce the statistical power. A solution
is to calculate genetic burden adaptively based on evi-
dence provided by the data. For example, Price et al. [12]
proposed to adjust MAF threshold for the pooling step
based on data. Han and Pan [13] and Hoffmann et al. [14]

proposed to adaptively choose the sign and magnitude of
the weight in the collapsing step to calculate genetic bur-
dens. TARV [7] can also be viewed as this type of method
because it adaptively combines multiple variants into a
“super variant” based on the strength of evidence provided
by each single variant.

The second category of methods is quadratic tests which
often base on testing variance component in mixed effect
models. The well-known SKAT [15] belongs to this cate-
gory. By assuming the effect of each variant to be random,
SKAT tests whether the variance of the random effects is
zero. The test statistic can be approximated by a χ2 distri-
bution with a degree of freedom much smaller than that in
the likelihood ratio test (or Rao’s score test) in fixed effect
models. SKAT can also test non-linear effects by adopt-
ing an arbitrary kernel matrix. SKAT was also extended to
accommodate multiple candidate kernels [16], to jointly
test rare and common variants [17], and to apply on family
data [18]. Some other popular methods, such as C-alpha
[19] and SSU [20] can be viewed as special cases of SKAT.

The third category is functional analysis. Because the
genomic variants within the same gene are often highly
correlated due to linkage disequilibrium (LD), this cat-
egory of methods treat them as discrete realizations of
a hidden continuous function on the genome. Both the
variants and their coefficients can then be decomposed
in the functional space. Since the number of functional
bases used is generally smaller than the number of vari-
ants, this is equivalent to a dimensional reduction method
which also reduces the degree of freedom of the asso-
ciation test. Different methods under this category have
been proposed utilizing different basis including func-
tional principal component basis [21], B-spline basis [22,
23], and Fourier basis [23].

In addition to these three categories of methods, efforts
have also been made to combine multiple testing meth-
ods into one single test. For example, the popular SKAT-O
[24] is a combination of variance component test (SKAT)
and burden test. Similarly, Derkach et al. [25] proposed to
combine variance component test and burden test using
Fisher’s method or minimal P-value.

It should be noted that the power of aforementioned
methods relies on the proportion of variants which truly
associate with the disease outcome. Under the alternative
hypothesis – when the null hypothesis of no association
is not true, all three types of methods assume that every
SNV included in the test has some nonzero effect more
or less. Specifically, burden tests assume the effects of
the variants are proportional to each other, with the pro-
portion predefined by the weights used to calculate the
genetic burden; variance component tests assume the ran-
dom effects of the combined variants share a common
variance component, if the component is not zero implies
all the random effects are nonzero; and the functional
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analysis based methods test whether any functional basis
(a weighted sum of variants) has a nonzero effect, which
in turn implies nonzero effects for all or most of the vari-
ants. The type I error of these methods is not affected by
violation of this assumption of the alternative hypothesis,
which does not undermine their validity. However, under
the alternative hypothesis where some effects are nonzero
(especially when only a small proportion of variants have
nonzero effects), the statistical power of these tests will
be suboptimal. Therefore there is a demand for statistical
methods that can adapt to the proportion of variants with
nonzero effects. For the ease of discussion, we call the sce-
nario where this proportion is large as the dense scenario,
and call the scenario where this proportion is small as the
sparse scenario. For this purpose, Pan et al. [26] proposed
an adaptive test named aSPU which has strong statistical
power in both the dense and sparse scenarios. This aSPU
can also be viewed as a combination of SKAT (with lin-
ear kernel) and other tests including burden test. Barnett
and Lin [27] suggested that Higher Criticism (HC) can be
another potential powerful test that can adaptively detect
both dense and sparse signals. Previously, we proposed
Adaptive Fisher (AF) method [28] and illustrated in sim-
ulation that AF is a very powerful method to detect the
mixture distribution in both dense and sparse scenarios,
and it can be much more powerful than HC with finite
sample. Therefore, we propose to use AF to detect disease-
associated SNV sets, and compare to existing methods in
the following sections.

Methods
Suppose a trait for n independent subjects Y =
(Yi1, ..., Yin)T are observed. Gi = (Gi1, ..., GiK )T denotes
the genotypes of K SNVs in a chromosomal region (e.g. a
gene) for subject i, where Gik = 0, 1, 2 represents the num-
ber of minor alleles at locus k of subject i. We model the
association between the trait and SNVs with the following
generalized linear model

h
(

E(Yi)
)

= β0 +
K∑

k=1
βkGik , (1)

where β = (β1, ..., βK )T is the vector of SNV effects. h(·)
is taken as the logit link function for binary traits (e.g.
diseased or nondiseased) or as the identity link function
for continuous traits (e.g. blood pressure, height, etc.). If
J covariates Ci = (Ci1, ..., CiJ )T , i = 1, 2, ..., n are also
observed for each subject, denoting their effects by α =
(α1, ..., αJ )T , the model can be extended as

h
(

E(Yi)
)

= β0 +
K∑

k=1
βkGik +

J∑
j=1

αjCij. (2)

Determining whether there is an association between the
trait and any SNV is equivalent to testing the following
hypotheses,

H0 : β = 0 versus H1 : β �= 0. (3)

The proposed adaptive fisher tests involve the score
statistics U = (U1, ..., UK )T . For model (1),

U =
n∑

i=1
(Yi − Ȳ )Gi, (4)

and its estimated covariance matrix under H0 is given by

V = Ĉov(U|H0) = Ȳ (1 − Ȳ )

n∑
i=1

(
Gi − Ḡ

) (
Gi − Ḡ

)T ,

(5)

for binary traits, and

V = Ĉov(U|H0) = σ̂ 2
1

n∑
i=1

(Gi − Ḡ)(Gi − Ḡ)T . (6)

for continuous traits, where Ȳ = 1
n

∑n
i=1 Yi, σ̂ 2

1 =
1

n−1
∑n

i=1(Yi − Ȳ )2 and Ḡ = (Ḡ·1, ..., Ḡ·K )T with Ḡ·k =
1
n

∑n
i=1 Gik . For model (2),

U =
n∑

i=1

(
Yi − μ̂Yi

) (
Gi − Ĝi

)
, (7)

for binary traits,

V = Ĉov(U|H0) = σ̂ 2
2

n∑
i=1

(
Gi − Ĝi

) (
Gi − Ĝi

)T
,

(8)

and for continuous traits,

V = Ĉov(U|H0) = σ̂ 2
3

n∑
i=1

(
Gi − Ĝi

) (
Gi − Ĝi

)T
,

(9)

where μ̂Yi = h−1
(
β̂0 + ∑J

j=1 α̂jCij
)

with β̂0 and α̂j, j =
1, 2, ..., J being the maximum likelihood estimators, Ĝi =(

Ĝi1, ..., Ĝik
)T

with Ĝik being the predictive value of Gik
from a linear regression model with covariates as predic-
tors. σ̂ 2

2 = 1
n

∑n
i=1 μ̂Yi(1 − μ̂Yi), σ̂ 2

3 = 1
n−1

∑n
i=1(ei − ē)2

with ei = Yi − μ̂Yi , i = 1, 2, ..., n and ē = 1
n

∑n
i=1 ei.

Adaptive fisher method
Let the standardized score statistics be Ũk = Uk/

√
Vkk ,

where Vkk is the kth diagonal element of V . If βk is tested
marginally, the P-value for this marginal score test is pk =
2

[
1 − �

(|Ũk|
)]

, k = 1, 2, ..., K , as Ũk is asymptotically
N(0, 1) distributed under H0. Let
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Rk = − log pk . (10)

Order R’s in descending order R(1) ≥ · · · ≥ R(K). Let S =
(S1, ..., SK )T be the partial sums of R(1), ..., R(K),

Sk =
k∑

l=1
R(l). (11)

For each Sk , k = 1, 2, ..., K , we calculate its P-value by

Psk = Pr(Sk ≥ sk), (12)

where sk is be observed value of Sk . The AF test is based
on the AF statistic below

TAF = min
1≤k≤K

Psk . (13)

Weighted adaptive fisher method
SNVs can be weighed differently when taking the partial
sums. Suppose w = (w1, ..., wK )T are weights of the K
SNVs in a genetic region. Define

Xk = wkRk . (14)

Order X1, ..., XK in descending order X(1) ≥ · · · ≥ X(K).
Let S∗ = (S∗

1, ..., S∗
K )T be the partial sums of X(1), ..., X(K),

S∗
k =

k∑
l=1

X(l). (15)

Similar to (12), the P-value of s∗k (observed value of S∗
k ),

Ps∗k = Pr(S∗
k ≥ s∗k), and the weighted AF (wAF) statistic is

defined by

TwAF = min
1≤k≤K

Ps∗k . (16)

Directed wAF method
We use two-sided P-values of marginal tests to construct
AF and wAF methods in the above sections. However,
when all or most of the causal variants have effects of the
same direction, combining one-sided P-values using the
same strategy may have higher statistical power. There-
fore, we propose a directed version of wAF, noted as
wAFd. Let p+

k = 1−�(Ũk), k = 1, 2, ..., K be the one-sided
P-values of testing whether the variants are risk factors
(i.e. testing H0 : βk = 0 versus H1 : βk > 0), and
p−

k = �(Ũk) be the one-sided P-values of testing whether
the variants are protective (i.e. testing H0 : βk = 0 ver-
sus H1 : βk < 0). We first combine p = (p1, ..., pk),
p+ = (

p+
1 , ..., p+

k
)

and p− = (
p−

1 , ..., p−
k
)

following Eqs. 10
and (14)-(16) to obtain TwAF, TwAF+ and TwAF- respec-
tively. Then, we define the minimal of three as the wAFd
statistic, which is

TwAFd = min{TwAF, TwAF+, TwAF-}. (17)

Computation
We use the following procedure to access Psk (Ps∗k ) in (12)
and find the null distributions of TAF in (13) (TwAF in
(16)). Here the weighted method for model (1) is used as
an example. The unweighted method can be regarded as a
special case with all weights being equal.

1. Calculate the residuals ei = Yi − Ȳ , i = 1, 2, ..., n.
2. Permute ei’s for a large number B times to obtain

e(b) =
(

e(b)
1 , ..., e(b)

n
)T

, b = 1, 2, ..., B, where
(

e(b)
1 , ..., e(b)

n
)T

is a permutation of e(0) = (e1, ..., en)T .
3. For each e(b), calculate

U(b) =
(

U(b)
1 , ..., U(b)

K

)T = ∑n
i=1 e(b)

i Gi and

p(b) =
(

p(b)
1 , ..., p(b)

K

)T
with

p(b)

k = 2
[
1 − �

(∣∣∣U(b)

k /
√

Vkk

∣∣∣
)]

. Then follow

Eqs. 10, (14) and (15) to get S∗(b) =
(

S∗(b)
1 , ..., S∗(b)

K

)T
,

b = 0, 1, 2, .., B.
4. For a fixed b∗ ∈ {0, 1, 2, ...B},

P(b∗)
S∗

k
= 1

B + 1

B∑
b=0

I

{
S∗(b)

k ≥ S∗(b∗)
k

}
.

5. For each S∗(b), T (b)
wAF = min1≤k≤K P(b)

S∗
k

,
b = 0, 1, 2, ..., B.

6. The P-value of wAF test can be approximated by

P̂r
{

TwAF ≤ T (0)
wAF

∣∣∣ H0
}

= 1
B + 1

B∑
b=1

I

{
T (b)

wAF ≤ T (0)
wAF

}
,

where T (0)
wAF = min1≤k≤K P(0)

S∗
k

is the observed value of
the wAF statistic and I(·) is the indicator function.

Note that the P-value of TwAFd can be assessed using a
similar permutation procedure.

Results
In this section, we evaluate our wAF and wAFd methods
by both simulation studies and real-data application. In
simulation studies, we compare our methods with SKAT,
SKAT-O, aSPU and Min-P (which takes the minimal P-
value of all the combined variants as the test statistic).
In real-data application, we use the Genome-Wide Asso-
ciation Study of Schizophrenia (SCZ) data provided by
Genetic Association Information Network (GAIN), which
is publicly available in the database of Genotypes and
Phenotypes (dbGaP).

Simulation studies
Simulation studies are conducted under both dense and
sparse scenarios to compare various methods. Genotypes
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Fig. 1 Power curves for binary trait. Comparison of empirical powers for binary trait. a Power against varying number of loci K in the dense scenario
with effect proportion π = 20% and effect size δ = 0.2. K ∈ {50, 100, ..., 450, 500}. b Power against varying number of loci K in the sparse scenario
with effect proportion π = 2% and effect size δ = 1. K ∈ {50, 100, ..., 450, 500}

Gi = (Gi1, ..., GiK )T , i = 1, 2, ..., n are simulated in a sim-
ilar manner to the framework of Pan et al. [26], by the
following steps.

1. Generate Z1 = (Z11, ..., Z1K )T and
Z2 = (Z21, ..., Z2K )T independently from a
multivariate normal distribution N(0, A). A has a
first-order autoregressive (AR(1)) covariance
structure with the (k, k′)th element Akk′ = c|k−k′|. c is
chosen to be 0.9 to give close loci a higher correlation
and distant loci a lower correlation.

2. Randomly sample MAFs by first generating
log(MAF)’s from U(log(0.001), log(0.5)) and then
exponentiating them back to MAFs.1 Set
Gik = I(�(Z1k) ≤ MAFk) + I(�(Z2k) ≤ MAFk),
k = 1, ..., K .

3. Repeat step 1 and 2 n times to generate genotypes for
all subjects.

We randomly sample πK genotype effects among β =
(β1, ..., βK )T to be nonzero, whose values are sampled
from a uniform distribution within [ −δ, δ], while keep the
other (1 − π)K effects zeros. Trait of n = 1, 000 subjects
are generated from model (1).

The weights of wAF and wAFd tests are chosen to be
wk = √

MAFk(1 − MAFk), k = 1, 2, .., K . The weights of
SKAT and SKAT-O are chosen to be flat with wk = 1,
k = 1, 2, ..., K , so that SKAT is equivalent to SSU [15].

1Because of the logarithm, this MAF sampling algorithm often samples small
MAFs and therefore yields more rare variants.

The significance level is set to be 0.05 for every test. All
simulation results are based on 5,000 replicates.

Binary traits
When generating binary trait, h(·) is taken to be the logit
link function. We increase the number of SNVs, K, from
50 to 500 with an increment 50, while holding the effect
proportion π and the effect size δ constant. For the dense
scenario, π = 20% and δ = 0.2. For the sparse scenario,
π = 2% and δ = 1. Figure 1 shows that wAF test results in
large powers for both dense and sparse scenarios. Specif-
ically, in the dense scenario, wAF and SKAT have the
highest power. SKAT-O and aSPU are slightly less power-
ful than SKAT and wAF. wAFd follows behind with almost
the same for small K and slightly inferior performance for
large K. Min-P, on the other hand, is much less powerful
than the other methods. For the sparse scenario, Min-P
is the most powerful method. Our wAF has the second
highest power, which is about 5% higher than the other
methods including SKAT, SKAT-O and aSPU. wAFd has
the third best performance, following tightly after wAF.
For all these compared methods, the type I errors are well-
controlled empirically as shown in the Additional file 1:
Table S1.

Continuous traits
When generating continuous trait, h(·) is taken to be the
identity link function and random errors are standard nor-
mal random variables. Again, K is increased from 50 to
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500 with an increment 50, while π and δ are held con-
stants. For the dense scenario, π = 20% and δ = 0.1.
For the sparse scenario, π = 2% and δ = 0.5. Based
on power curves in Fig. 2, wAF test performs relatively
well for both dense and sparse scenarios, similar to what
we have seen in the binary traits. In dense scenario, wAF
and SKAT enjoy the highest power, which is slightly bet-
ter than aSPU, SKAT-O and wAFd, and much better than
Min-P. Whereas in the sparse scenario, Min-P is the most
powerful method, seconded by wAF. wAFd has slightly
less power than wAF, but has higher power than aSPU,
SKAT and SKAT-O. Similar to the binary traits, all type I
errors are well-controlled empirically.

We also consider two other cases where 1) all SNV
effects are of the same direction; 2) all variants are rare
variants (RVs). In the first case, nonzero βk ’s are sampled
from U[ 0, δ] distribution. The result shows that wAFd has
large powers in both dense and sparse scenarios. wAF
has almost the same high power with wAFd in the sparse
scenario. In the second case, MAF’s are generated from
U(0.001, 0.01). wAF and wAFd work well especially in
the sparse scenario. Power curves for these two cases are
shown in Additional file 1: Figure S1–3.

Real data application
To further evaluate the performance of our methods,
we apply wAF and wAFd on European-American sub-
jects from GAIN SCZ data. 2,548 subjects are selected

after quality control, including 1,170 cases and 1,378 con-
trols. Genotypes are imputed using Michigan Imputation
Server [5] to UCSC Human Genome build hg19. We focus
our analysis on variants that are within genes and their
flanking regions (5,000 bp upstream and downstream).
The analysis is performed on 13,993,898 variants located
on 18,296 autosomal genes.

We apply wAF and wAFd methods based on model (1)
for each gene, with disease status as the outcome and
genotypes of SNVs in this gene as predictors. P-values are
estimated using a similar step-up procedure as in Pan et
al. [26] such that the data analysis can be more computa-
tionally efficient. We firstly scan all genes with B = 100
permutations. For each gene, if the estimated P-value is
smaller than 5/B, we continue with B = 1, 000; otherwise,
we stop the procedure for this gene and record the esti-
mated P-value. Each round B is increased to 10 times of
its current value for those significant genes until no gene
has a P-value smaller than 5/B.

Table 1 lists the ten most significant genes detected by
either wAF or wAFd. FAM69A has the smallest P-value
by both methods. Two transcriptome studies ([31, 32])
report FAM69A as a differentially expressed gene by affec-
tion status of SCZ. Wang et al. [33] identifies two SNPs
(rs11164835 and rs12745968) within this gene that are
associated with both SCZ and bipolar disorder (BD) by
a genome-wide meta-analysis. Another gene in our list,
HPGDS, is also mentioned as related to both diseases [34].

Fig. 2 Power curves for continuous trait. Comparison of empirical powers for continuous trait. a Power against varying number of loci K in the dense
scenario with effect proportion π = 20% and effect size δ = 0.1. K ∈ {50, 100, ..., 450, 500}. b Power against varying number of loci K in the sparse
scenario with effect proportion π = 2% and effect size δ = 0.5. K ∈ {50, 100, ..., 450, 500}
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Besides, GTF2A1 is found associated with BD by Fries et
al. [35]. Increasing evidence of SCZ and BD being closely
related ([36], [37]) suggests GTF2A1 might be a candidate
associated gene with SCZ.

Gene RPL5 is the third significant by wAF and the
second significant by wAFd. RPL5 is identified by Interna-
tional Multiple Sclerosis Genetics Consortium (IMSGC)
[38] and Rubio et al. [39] as a risk allele for multiple scle-
rosis (MS), an autoimmune disease which often causes
neurological disability. Considering the genetic pleiotropy
between SCZ and MS [40], RPL5 is a plausible gene that
associates with SCZ. Furthermore, 21 SNPs are identified
as positively associated with MS by IMSGC at the GFI-
EVI5-RPL5-FAM69A locus. Associations between this
region and MS are further replicated in independent stud-
ies among different populations [41, 42]. This may shed
light on understanding the similarities and differences
among SCZ, BD and MS.

For the other genes that we detect, Hek et al. [43]
reports that SNP rs161645 near NUDT12 is associated
with depressive symptoms; NRN1L expresses predomi-
nantly in the nervous system [44] and may play a role in
psychiatric diseases [45]; and STRA13 may have an effect
on SCZ by influencing gene CHRNA7 [46].

Among the thirteen genes listed in Table 1, FAM69A,
HPGDS and STRA13 are previously found associated
with SCZ by other researches; five genes (NUDT12,
RPL5, GTF2A1, NRN1L and SLC35A5) are reported to be
related to neurological diseases other than SCZ; NRN1L
and CERCAM are plausible in terms of gene function.

We also compare wAF and wAFd with aSPU, SKAT and
SKAT-O on these genes. It is noticeable that the five meth-
ods perform differently on gene CERCAM. wAF, wAFd
and aSPU attain P-values that reach 1 × 10−4 while SKAT
and SKAT-O can only reach 1 × 10−1. After calculating
the marginal P-values for each of the 228 variants on CER-
CAM, we find that only 1 variant has a P-value smaller
than 1 × 10−4 while the other P-values are all larger than
0.01 (details can be found in Additional file 1: Figure S4).
This again shows that wAF, wAFd and aSPU are superior
than SKAT and SKAT-O in the sparse scenario, which is
consistent with results from our simulation studies.

In summary, most of the genes we detect are supported
by existing literature. This demonstrates the potential of
real-life impact of our wAF methods, especially consider-
ing that we only used 2,548 subjects and the fact that SCZ
GWAS is known to be limited by the sample size, yield-
ing results that are not significant until the sample size
reached tens of thousands [47].

Discussion
Based on the simulation and real data analysis results,
we found wAF has high power in both dense and sparse
scenarios. This is because we adaptively combine the

marginal tests based on the strength of evidence. By sort-
ing the marginal P-values in ascending order, we only
combine the most relevant SNVs into the test. The selec-
tion of partial sums allows wAF to have its adaptiveness, as
the number of variants combined into the test depends on
the unknown proportion of variants that are truly causal
or associated. Variants with less or no evidence will not
contribute to the final test, which in turn will reduce noise
in the test statistic. Therefore, wAF enjoys the comparable
or better power in both scenarios.

As stated in the “Background” section, HC is another
method that can be used to combine marginal tests of
each variant. Although we did not explore the application
of HC in SNV set analysis, Barnett et al. [48] proposed
a generalized higher criticism (GHC) based on HC. They
found that GHC was only powerful in sparse scenario but
underperformed in dense scenario, and suggested that one
may consider combining GHC and SKAT to boost power
when we do not know which scenario the causal gene
actually belongs to, which we believe is true for every real-
life problem. This conclusion agrees with our previous
findings about HC [28].

While comparing wAF and aSPU, we found that their
test statistics can be written in the same general format.
For both methods, we can think the test statistic as adap-
tively chosen from a set of weighted sums with different
weights. The weighted sums in both methods can be writ-
ten as

∑
k vc(Ũk , Gk)w(Gk)f (Ũk), where vc(Ũk , Gk) is the

cth adaptive weight function depends on the standardized
score statistic and the genotype data for variant k, w(Gk)
is a non-adaptive weight only depends on the genotype
data, and f (Ũk) is a transformation of the standardized
score statistic. We can show that for aSPU, f (Ũk) = Ũk ,
w(Gk) = sd(Gk), and vc(Ũk , Gk) =[ w(Gk)f (Ũk)](c−1)

for c ∈ {1, 2, . . . , 8, ∞}; for wAF, f (Ũk) = 2[ 1 −
�(|Ũk|)], w(Gk) = √

MAFk(1 − MAFk) ≈ sd(Gk)/
√

2,
and vc(Ũk , Gk) = I{w(Gk)f (Ũk) ≥[ w(G)f (Ũ)](c) } for
c ∈ {1, 2, . . . , K}, where I{·} is an indicator function and
[ ·](c) denotes the cth largest order statistics of the quan-
tity inside the bracket. By comparison, we can see that
the major difference between aSPU and wAF is how we
adaptively weigh the test statistic: aSPU creates the weight
by raising the statistics to different powers, whereas wAF
sequentially put a 0/1 weight based on the magnitude
of the test statistics. This comparison also reveals that
although not explicitly mentioned, aSPU also weighs dif-
ferent variants based on their MAFs using almost the
same weight as we used in wAF.

Because permutation is needed for wAF, computational
burden is a major weakness. To improve computation
speed, we adopt the same strategy as Pan et al. [26] to run
a hundred permutation first, then choose to increase the
number of permutation only for those with small P-values.
Theoretically, because sorting and order statistics are used
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in wAF, the computation complexity is higher than aSPU.
Specifically, because wAF need sorting and cumulative
summation, our complexity is higher than aSPU by an
order of log K . In practice, because K is often fixed, the
theoretical difference in computational complexity can be
ignored.

Conclusions
Association analysis of SNV sets becomes the standard
analysis approach in GWAS when rare variants are geno-
typed or imputed in the dataset. However, when many
SNVs are combined together into one omnibus test, the
power of the statistical test often depends on the pro-
portion of variants with nonzero effects and how these
variants are combined. Most current methods (except
aSPU) are not adaptive to this proportion and only applies
to either the dense or sparse scenario. In this paper, we
proposed a new adaptive method wAF as an alternative to
aSPU with better or comparable power. The adaptiveness
of wAF allows it to perform better than current available
methods in both dense and sparse scenarios, and to detect
potential new genes associated with diseases.
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