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Abstract 

Background  The circular RNA (circRNA) plays a vital role in the pathogenesis of tumors as a competitive endogenous 
RNA (ceRNA). Given the high aggressiveness and fatality rate of glioblastoma (GBM) as well as poor prognosis, it is 
necessary to construct a circRNA-related ceRNA network for further studies on the mechanism of GBM and identify 
possible biomarkers as well as therapeutic drugs.

Methods  Three datasets from the gene expression omnibus (GEO) database were downloaded to distinguish dif-
ferential circRNAs, microRNAs, and messenger RNAs respectively in GBM. With the help of GEPIA2, circBank, CSCD, 
TargetScan, miRDB, and miRTarBase databases, we established a circRNAs-related ceRNA network in GBM. Functional 
enrichments were employed to profile the most relevant mRNAs to indirectly clarify the mechanisms of the ceRNA 
network. Based on the expression profile data and survival information of GBM patients from the GEO and the cancer 
genome atlas (TCGA) databases, we performed survival analysis to select prognostic mRNAs and constructed a novel 
circRNA-miRNA-mRNA central regulatory subnetwork. The DGIdb database was used to find potential drug–gene 
interactions.

Results  The datasets obtained from the GEO and TCGA databases were analyzed, and 504 differentially expressed 
mRNAs (DEmRNAs), 71 differentially expressed microRNAs (DEmiRNAs), and 270 differentially expressed circRNAs 
(DEcircRNAs) were screened out. The novel ceRNA regulatory network included 22 circRNAs, 11 miRNAs, and 15 
mRNAs. FZD1 and KLF10 were significantly correlated with the overall survival rate of patients with GBM (P < 0.05). The 
final survival subnetwork contained six circRNAs, two miRNAs, and two mRNAs. Two small-molecule compounds and 
one antibody could be used as therapeutic drugs for GBM. Interestingly, the Wnt signaling pathway appeared in both 
KEGG and GO functional terms.

Conclusions  Results of this study demonstrate that FZD1 and KLF10 may exert regulatory functions in GBM, and the 
ceRNA-mediated network could be a therapeutic strategy for GBM.
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Background
Glioblastoma is the most frequent primary malignant 
brain tumor in adults and is often rapidly fatal [1]. The 
associated complications impose a substantial economic 
burden and medical strain around the world [2]. Despite 
advances in current treatments, their impact on GBM 
remains limited, possibly due to an insufficient under-
standing of its pathogenesis. Hence, more studies must 
be conducted to investigate the mechanisms of GBM and 
to identify novel biomarkers for predicting prognosis and 
treatment outcomes.

Using high-throughput sequencing techniques, several 
noncoding RNA (ncRNAs) were found to be correlated 
with dysregulated gene expression and biological process 
imbalances in GBM [3].

CircRNAs are unaffected by exonucleases (more sta-
ble than linear RNAs) and typically exhibit tissue or 
developmental stage-specific expression, implying their 
biological function in various diseases, including GBM 
[4]. In line with this, the competing endogenous RNA 
(ceRNA) hypothesis mentions that circRNAs act as 
miRNA sponges in cells to bind to them and affect the 
corresponding target genes [5]. For instance, circNT5E 
controls various pathological processes such as cell prolif-
eration, metastasis, and invasion, and is rich in miR-422a 
binding sites. CircNT5E can inhibit miR-422a activity by 
binding, showing tumor suppressor-like characteristics 
in GBM [6]. Besides, the functions of circRNAs (includ-
ing circCCDC66, circSMARCA5, circMTO1) have been 
gradually discovered, especially their ability to bind miR-
NAs in cervical cancer, hepatocellular carcinoma, and 
glioma pathology [7–10]. Therefore, we hypothesize that 
the expression of miRNA is negatively correlated with the 
expression of circRNA and mRNA. The importance of 
ceRNA in tumorigenesis is self-evident, but the roles of 
the circRNA–mRNA–miRNA ceRNA network in GBM 
remain unclear.

This research involved the comprehensive analysis of 
multiple databases. Furthermore, this research analyzed 
the effect of differentially expressed genes (DEGs) on 
GBM overall survival, constructed a prognosis-related 
subnetwork to strengthen the understanding of the 
pathogenesis of GBM, and proposed several drugs that 
might be potential therapeutic agents for GBM.

Materials and methods
Data obtained
We downloaded expression profiles of the GSE165926, 
GSE103229, and GSE90886 datasets from the GEO data-
base web resource (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). 
The GSE165926 dataset contained circRNA data from 4 
normal brains and 12 GBM tissues [11]. The GSE103229 
dataset, which comprised microRNA expression 

profiling, included 5 normal brain tissues and 5 GBM tis-
sues. The GSE90886 dataset included mRNA expression 
profiles of 9 normal tissues and 9 GBM tissues [12]. To 
verify the preliminary findings, the serial expression pro-
files of glioblastoma were downloaded from the TCGA 
database (http://​cance​rgeno​me.​nih.​gov/), including data 
from 5 non-tumor brains and 169 GBM samples for sur-
vival analysis and collection of clinical information on 
cases.

Identification of differentially expressed genes (DEGs)
The annotation documents of the corresponding plat-
forms were used for gene expression profiling. The aver-
age value of gene expression was used when one gene 
corresponded to multiple probes. The “LIMMA” package 
in R software (version 4.1.1) was employed to identify dif-
ferentially expressed miRNAs, circRNAs, and mRNAs 
between glioblastomas and non-tumor brain tissues in 
both GEO datasets and TCGA datasets, with thresholds 
respectively set at |log2 fold change (FC)|≥ 2.0, 2.0, 1.0; 
P < 0.05 [13]. Next, the differentially expressed genes 
(DEGs) from the GEO and TCGA datasets were divided 
into upregulated and downregulated groups for further 
analysis. Venn diagrams were drawn using the “Venn” 
package of R software (version 4.1.1).

ceRNA network establishment
Firstly, we converted the names of DEcircRNAs to 
mature circRNA names using the circBASE database 
web source (http://​www.​circb​ase.​org/). Then the CSCD 
database (web source: http://​gb.​whu.​edu.​cn/​CSCD/) was 
employed to find the miRNAs response elements (MREs) 
by entering circRNAs names. Only the interactions sup-
ported by solid evidence (reporter assays, western blots, 
and qPCR) were included in the prediction to enhance 
the reliability of the results. To further investigate the role 
of mRNAs in GBM, we used the TargetScan (http://​www.​
targe​tscan.​org/), miRTarBase (http://​mirta​rbase.​cuhk.​
edu.​cn/​php/​index.​php), and miRDB (https://​www.​mirba​
se.​org/) databases to find miRNAs target genes [14]. We 
compared the target genes and DEmRNAs, retaining only 
data for intersecting mRNAs and corresponding miRNAs 
for further study. According to the prediction and evalua-
tion above, a visualized circRNAs-miRNAs-mRNAs net-
work was constructed using Cytoscape software (version 
3.8.2,

http://​www.​cytos​cape.​org/). Statistical significance was 
only determined for terms with a P < 0.05.

Functional enrichment analysis
ClusterProfiler is an R package that provides three meth-
ods, enrichGO, enrichKEGG, and groupGO, for enrich-
ment analysis and classification [15]. We used it to 

https://www.ncbi.nlm.nih.gov/geo/
http://cancergenome.nih.gov/
http://www.circbase.org/
http://gb.whu.edu.cn/CSCD/
http://www.targetscan.org/
http://www.targetscan.org/
http://mirtarbase.cuhk.edu.cn/php/index.php
http://mirtarbase.cuhk.edu.cn/php/index.php
https://www.mirbase.org/
https://www.mirbase.org/
http://www.cytoscape.org/
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perform the Kyoto Encyclopedia of Genes and Genome 
(KEGG) and Gene Ontology (GO) pathway enrich-
ment analyses of DEmRNAs in the circRNAs-miRNAs-
mRNAs network. P < 0.05 was set as the criterion for 
statistical significance, and the terms were visualized via 
the “ggplot2” package in R.

Construction of a protein–protein interaction (PPI) network
A PPI network was established by the Search Tool for 
the Retrieval of Interacting Gene (STRING, https://​
string-​db.​org/), an online database of billions of inter-
actions for thousands of organisms [16] and visualized 
via Cytoscape software (version 3.8.2). The list of DEm-
RNAs was first mapped to the STRING locus, and their 
interactions were evaluated. In addition, the genes were 
selected based on the PPIs comprehensive score > 0.9 and 
the degree of close correlation with other genes adjusted 
to ≥ 10 [16]. The Molecular Complex Assay (MCODE) 
based on a weighted algorithm was then used to iden-
tify highly interacting gene modules in the PPI network, 
and the standard parameters were set by default, except 
k-core = 7 [17].

Survival analysis and prognostic network construction
To determine critical genes associated with the survival 
of GBM patients, the prognostic values of the DEmRNAs 
were estimated with the clinical information acquired 
from TCGA. The “survival” package in R software was 
employed to find associations between mRNAs and sur-
vival status data [18]. FDR < 0.05 was statistically signifi-
cant. The association of FZD1 (Frizzled class receptor 1) 
and KLF10 (Krüppel-like factor 10) with immune infiltra-
tion in GBM was analyzed in an online database: TIMER 
(web source: https://​cistr​ome.​shiny​apps.​io/​timer/), which 
can investigate immune cell infiltration levels using data 
from TCGA. We used Cytoscape software (version 3.8.3) 
to construct the prognostic circRNA-miRNA-mRNA 
ceRNA subnetwork.

Drug–gene interaction
Through the interaction, DEmRNAs were paired with 
existing compounds to discover potential therapeutic 
agents for GBM. The drug–gene interaction database 
(DGIdb, web source: https://​dgidb.​org/) provides an 
interface for searching gene lists based on drug–gene 
interaction profiles and potentially "druggable" genes 
[19]. DEmRNAs were uploaded into DGIdb to match 
with the existing drugs.

Meta‑analysis
To validate our findings, the eligible published stud-
ies were searched by the following databases: Chinese 
CNKI, Cochrane Library, Web of Science, and PubMed. 

Citations from the inclusive studies were also selected 
for additional relevant studies. We used “FZD1” or “fzd1” 
or “Frizzled class receptor 1” AND “neoplasms” or “can-
cer” or “tumor” or “carcinoma”, “KLF10” or “klf10” or 
“Krüppel-like factor 10” AND “neoplasms” or “cancer” 
or “tumor” or “carcinoma” as the search terms for appro-
priate identification. The exclusion and inclusion crite-
ria are shown in Additional file 1: Table 1. We extracted 
the following information: 1st author, country, date of 
publication, patients’ number, cancer type, sample assay 
approach, threshold value of FZD1 and KLF10 expres-
sion level, 95% CI and HR of overall survival (OR). We 
recorded 95% CI and HR directly if they were available 
in the studies. If not, we analyzed and abstracted the 
data from Kaplan–Meier (K–M) curves of OS based on 
the approach described by a previous research [20]. Two 
researchers evaluated the data independently, a third 
investigator decided whether to incorporate the study. 
The Newcastle–Ottawa Scale (NOS) was used to evaluate 
the quality of the enrolled studies [21].

Statistics
Statistical analyses were performed with the R software 
(version 4.1.1) and the above packages. Meta-analysis 
was conducted using the SPSS software. Chi-square-
based I2 tests and Cochran’s Q were conducted to test for 
heterogeneity. I2 < 50%, P > 0.10 indicates no significant 
heterogeneity across studies. Subgroup analyses were 
applied to investigate the sources of heterogeneity. The 
95% CI and HR in each study were integrated and plotted 
as forest plots to assess the impact of FZD1 and KLF10 
expressions on OS in cancers. Sensitivity analysis was 
used to examine the reliability of the results. Two-tailed P 
values < 0.05 were considered statistically significant.

Results
DEGs detection
Figure 1 displays the basic flow chart of this study. Firstly, 
270 DEcircRNAs, including 183 down-regulated genes 
and 87 up-regulated genes, were identified from normal 
controls and GBM samples in the GSE165926 dataset by 
the “limma” package of R software, by setting the cutoff 
value as |log2 fold change (FC)|≥ 2, P < 0.05; Similarly, 
71 DEmiRNAs were screened in the GSE103229 data-
set, including 34 down-regulated and 37 up-regulated 
genes; the criterion was set as |log2 FC|≥ 2, P < 0.05. 
Meanwhile, the GBM samples and normal control group 
in the GSE90886 dataset were analyzed, and 504 DEmR-
NAs were obtained, including 242 down-regulated genes 
and 262 up-regulated genes, with thresholds set at |log2 
FC|≥ 1, P < 0.05. We showed the heatmaps of some DEGs 
and several circRNAs in Fig.  2A–C. The structures of 
several DEcircRNAs are displayed in Fig. 2D.

https://string-db.org/
https://string-db.org/
https://cistrome.shinyapps.io/timer/
https://dgidb.org/
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Construction of the ceRNA network
To further ensure the reliability of differentially expressed 
RNAs and the ceRNA network in GBM, we only retained 

the overlapping parts from the three datasets, we 
selected circRNAs-miRNAs interaction pairs and miR-
NAs-mRNAs interaction pairs from TargetScan, miRDB, 

Table 1  The GO function enrichment analysis terminologies for mRNAs in this ceRNA network

GO, Gene ontology, mRNAs, messenger RNA, ceRNA, competitive endogenous RNA

ID Description P value Count Gene names

GO:0001503 Ossification 0.000251 4 FZD1/SOX11/DDX21/KLF10

GO:0001649 Osteoblast differentiation 0.000737 3 FZD1/SOX11/DDX21

GO:1901016 Regulation of potassium ion transmembrane transporter activity 0.001324 2 NETO2/KCNE4

GO:1901379 Regulation of potassium ion transmembrane transport 0.002562 2 NETO2/KCNE4

GO:1990909 Wnt signalosome 0.009171 1 FZD1

GO:0000242 Pericentriolar material 0.016753 1 DYRK3

GO:0090543 Flemming body 0.02653 1 CEP55

GO:0016607 Nuclear speck 0.038815 2 PLCB1/DYRK3

GO:0032154 Cleavage furrow 0.039916 1 CEP55

GO:0008081 Phosphoric diester hydrolase activity 0.00234 2 PLCB1/ENPP2

GO:0004620 Phospholipase activity 0.003177 2 PLCB1/ENPP2

GO:0016298 Lipase activity 0.00484 2 PLCB1/ENPP2

GO:0001228 DNA-binding transcription activator activity, RNA polymerase II-specific 0.005337 3 HOXA10/SOX11/KLF10

Fig. 1  The basic framework of this analysis
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and miRTarBase databases to construct a circRNAs-
miRNAs-mRNAs ceRNA network. Results showed that 
44 of 71DEmiRNAs in the GSE103229 dataset were the 
same as the integrated miRNAs in the GSE165926 data-
set, and 48 of 504 DEmRNAs in the GSE90886 dataset 
corresponded with the miRNA-targeted genes likewise 
(Fig.  3). A total of 11 DEcircRNAs and 15 DEmRNAs 
constituted 17 interacting pairs. In addition, 22 DEcir-
cRNAs and 11 DEmiRNAs formed 24 interaction pairs. 
Afterwards, 22 DEcircRNAs, 15 DEmRNAs, and 11 

DEmiRNAs were used to establish a ceRNA network 
using Cytoscape software (version 3.8.2) for visualiza-
tion (Fig. 4). We also drew the boxplots of DEcircRNAs, 
DEmiRNAs, and DEmRNAs in the ceRNA network, 
respectively (Fig. 5A–C).

Function and pathway enrichment analysis
We performed the KEGG pathway and GO functional 
enrichment analysis using DEmRNAs in the ceRNA net-
work. GO results revealed that DEmRNAs were more 

Fig. 2  Expression profile heatmaps for DEGs were screened from three datasets in the ceRNA network. A represents the heatmap of circRNAs, B 
represents the miRNAs’ heatmap, and C represents the mRNAs’ heatmap. D Structure diagrams of circRNAs; the different colors, shapes of the outer 
and inner loops represent the different exons and locations of MRE, RBP, and OR

Fig. 3  Venn diagram showing the 44 overlapped diff miRNAs identified with the intersection of GSE103229 and GSE165926 datasets, 48 target diff 
mRNAs identified with the intersection of two gene sets
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Fig. 4  The ceRNA network about circRNAs-miRNAs-mRNAs. Light red triangular nodes represent the downregulated miRNAs, dark red triangular 
nodes represent the upregulated miRNAs; Light green diamonds represent the downregulated; dark green diamonds represent the upregulated 
circRNAs; Light blue elliptical nodes represent the downregulated, dark blue elliptical nodes represent the upregulated mRNAs

Fig. 5  Expression boxplots of mRNAs, miRNAs circRNAs in the ceRNA network. A The boxplot of circRNAs; B the boxplot of miRNAs; C the boxplot 
of mRNAs. “*” represents P value < 0.05, “**”represents P value < 0.01, “***” represents P value < 0.001
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related to the ossification (BP), Wnt signalosome (CC), 
and phosphoric diester hydrolase activity (MF) (Fig. 6A–
C; Table 1), respectively. KEGG analysis revealed 19 sta-
tistically significant enriched pathways. The top-3 most 
enriched pathways were: Melanogenesis, Cushing syn-
drome, Wnt signaling pathway (Fig. 6D; Table 2).

PPI network and module analysis
We investigated the relationship between DEmRNAs in 
the network through the online tool STRING database. 
Then we use the plugin MCODE to select a more densely 
connected module with 30 edges, 17 nodes and a score 
of > 0.900(the highest confidence level) in this PPI net-
work. (Fig. 7).

DEmRNAs associated with the overall survival of GBM 
patients
To investigate the prognostic ability of DEmRNAs in 
GBM, 15 DEmRNAs in the circRNA-associated ceRNA 
networks were analyzed using the "survival" package of 
the R software (version 4.1.1). The results indicated that 
2 out of 15 DEmRNAs were significantly correlated with 
the overall survival in GBM (FDR < 0.05). The two DEm-
RNAs were FZD1 and KLF10 and were inversely corre-
lated with overall survival, as is shown in Fig. 8A, B. To 
better understand the roles of two hub genes in the GBM 
immune microenvironment, we analyzed the association 
between FZD1, KLF10, and several common immune 
cell types in the TIMER database. As shown in Fig. 8C, 

Fig. 6  GO enrichment analysis of mRNAs in the ceRNA network and KEGG pathway analysis of mRNAs in the ceRNA network. A Represents the 
“biological process”. B Represents the “cellular component”. C Represents the “molecular function”. D Represents the “KEGG Enrichment Analysis 
Circle Plot”
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D, FZD1 was positively correlated with the infiltrations 
of CD4 + T cells, macrophages, neutrophils, and den-
dritic cells in GBM. Strong positive correlations existed 
between KLF10 expression and the infiltrations of neu-
trophils and dendritic cells in GBM. Finally, the related 
ceRNA subnetwork was also constructed using the 
Cytoscape software (version 3.8.2), as shown in Fig. 9.

Drug–gene interaction
Drug–gene interactions analysis was performed on the 
15 mRNAs in this circRNA-associated ceRNA network. 
According to the results, four drugs interacted with gene 
FZD1 (frizzled class receptor (1), six drugs significantly 
interacted with ENPP2 (ectonucleotide pyrophosphatase 
/phosphodiesterase (2). At the same time, DYRK3 (dual 
specificity tyrosine-phosphorylation-regulated kinase 
(3) were associated with 11 different drugs. Of the two 
drugs, only three were found to have antineoplastic 
activities in GBM therapy and targeted FZD1 and ENPP2 
genes, respectively. The 2D structural diagrams of these 
compounds are shown in Additional file 2: Figure S1.

The relationship between FZD1 and KLF10 expression 
and prognosis
We performed the meta-analysis to initially validate 
the prognosis ability of FZD1 and KLF10. Based on the 
above-mentioned criteria, six FZD1-related articles 
[22–27] including 972 patients were finally included and 

five KLF10-associated articles [28–32], consisting of 665 
patients, were ultimately enrolled. Specific information 
on these studies is presented in Additional file 1: Tables 2 
and 3. The results revealed that high expression of FZD1 
was significantly associated with poor OS (HR 2.55; 95% 
CI 1.95–3.34; P < 0.00001) (Additional file 2: Fig. 2A). The 
heterogeneity of the data was not significant (I2 = 39%, 
P = 0.15), therefore the fixed-effect model was applied. 
As presented in Additional file  2: Fig.  2B, high KLF10 
expression was significantly correlated with an inferior 
OS (HR 1.41; 95% CI 1.02–1.97; P = 0.04). There was no 
heterogeneity (I2 = 16%, P = 0.32), so a fix-effects model 
was used. Subsequent subgroup analyses were conducted 
by analyzing the record method, detecting approach, and 
cancer type to stratify patients. The results are shown in 
Additional file  1: Tables S4 and S5. And no significant 
bias was found by performing the funnel plot analysis 
(Additional file 2: Fig. 3A, B).

Discussion
Glioblastoma (GBM) is one of the deadliest cancers in 
humans [33]. Treatment guidelines recommend surgical 
resection for newly diagnosed glioblastoma, followed by 
adjuvant radiation therapy and adjuvant chemotherapy 
[34]. Despite an aggressive treatment approach for GBM 
patients, median survival is generally less than one year 
from the date of diagnosis, and most patients die within 
two years, even in the most favorable circumstances [35]. 

Table 2  The KEGG signaling pathway analysis terms of mRNAs in the ceRNA network

KEGG, Kyoto encyclopedia of genes and genome, mRNAs, messenger RNA, ceRNA, competitive endogenous RNA

ID Description P value Count Gene names

hsa04916 Melanogenesis 0.001497 2 FZD1/PLCB1

hsa04934 Cushing syndrome 0.003491 2 FZD1/PLCB1

hsa04310 Wnt signaling pathway 0.004042 2 FZD1/PLCB1

hsa00770 Pantothenate and CoA biosynthesis 0.012877 1 PANK1

hsa05010 Alzheimer disease 0.020311 2 FZD1/PLCB1

hsa05143 African trypanosomiasis 0.022599 1 PLCB1

hsa04973 Carbohydrate digestion and absorption 0.028636 1 PLCB1

hsa00565 Ether lipid metabolism 0.029839 1 ENPP2

hsa05022 Pathways of neurodegeneration—multiple diseases 0.030506 2 FZD1/PLCB1

hsa04961 Endocrine and other factor-regulated calcium reabsorption 0.032244 1 PLCB1

hsa04730 Long-term depression 0.036439 1 PLCB1

hsa05217 Basal cell carcinoma 0.038233 1 FZD1

hsa04929 GnRH secretion 0.03883 1 PLCB1

hsa04927 Cortisol synthesis and secretion 0.039427 1 PLCB1

hsa04720 Long-term potentiation 0.04062 1 PLCB1

hsa04924 Renin secretion 0.041812 1 PLCB1

hsa00562 Inositol phosphate metabolism 0.044193 1 PLCB1

hsa04918 Thyroid hormone synthesis 0.045381 1 PLCB1

hsa04971 Gastric acid secretion 0.045975 1 PLCB1
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Differential genes have been reported to play a key role 
in tumor pathology and thus may be potential targets for 
tumor therapy [36, 37]. This study investigated the patho-
logical mechanism of GBM to determine and identify 
potential therapeutic agents for GBM. Previous studies 
have shown that circRNAs, miRNAs, and mRNAs play 
a significant role in the pathological formation of tumor 
processes [37–39], but little attention has been paid 
to the overall regulatory role of these genes in tumors, 
including GBM.

In this research, we mined three datasets from the GEO 
database to identify differentially expressed circRNAs, 
miRNAs, and mRNAs between normal brains and GBM 
tissue samples. The intersecting miRNAs and mRNAs 
were selected from these three datasets using bioinfor-
matics techniques, and a circRNAs-miRNAs-mRNAs 
ceRNA network was established. The functions and 
enrichment pathways of mRNAs in this network were 
further explored by the GO and KEGG analyses. We then 

downloaded the clinical data of GBM from the TCGA 
database, analyzed the clinical information of relevant 
genes in this network, and identified 2 mRNAs, 6 circR-
NAs, and 2 miRNAs associated with the overall survival 
of GBM. Ultimately, the online drug database DGIdb 
was used to analyze the DEmRNAs in this network and 
screen three compounds that could be potential drugs for 
GBM.

GO analysis showed that mRNAs were enriched in 
some major regions, such as ossification, Wnt signalo-
some, and phosphoric diester hydrolase activity. And 
the KEGG results indicated that the top-3 most enriched 
pathways were Melanogenesis, Cushing syndrome, 
and Wnt signaling pathway, some of which have been 
reported in previous research regarding cancer. Melano-
genesis plays an critical regulatory role in the differen-
tiation, proliferation, apoptosis, and migration of GBM 
and melanoma [40]. Paraneoplastic Cushing’s syndrome, 
caused by ectopic adrenocorticotropic hormone (ACTH) 

Fig. 7  Construction of a PPI network using mRNAs in the ceRNA network. Line thickness represents the strength of data support from the side



Page 10 of 14Jia et al. BMC Medical Genomics           (2023) 16:21 

Fig. 8  A, B Association between overall survival and mRNAs in this network analyzed via K–M survival curves. Two mRNAs were significantly 
correlated with the overall survival of GBM patients (FDR < 0.05), they were FZD1 and KLF10. C, D The correlation between FZD1, KLF10 and immune 
infiltration of GBM was studied using the TIMER database

Fig. 9  The prognostic subnetwork of circRNA-miRNA-mRNA. Light green diamonds represent downregulated circRNAs, light blue elliptical nodes 
represent downregulated mRNAs, and dark red triangular nodes represent upregulated miRNAs
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secretion, has been reported to be associated with neu-
roendocrine prostate cancer, small-cell lung cancer, and a 
variety of tumors [41, 42].

Interestingly, we found that the "Wnt signaling path-
way" appeared in both GO and KEGG enrichment analy-
ses. The WNT (Wingless/Integral) signaling pathway is 
involved in different stages of GBM. It has been recog-
nized as a marker of a therapeutic challenge due to its 
critical function in normal tissue homeostasis [43]. Wnt 
signaling acts as an essential regulator of critical cellu-
lar events in the developing brain. More specifically, it is 
essential for self-renewal, differentiation, proliferation, 
and migration in neurons, astrocytes, oligodendrocytes, 
and so on [44]. Numerous studies have shown that exces-
sive activation of Wnt signaling was associated with the 
malignant transformation and development of brain 
tumors [45–47]. Diclofenac and celecoxib inhibit tumor 
cell proliferation in a variety of human malignancies and 
are potential therapeutic drugs targeting glioblastoma 
cells that work by inhibiting activation of Wnt/β-catenin/
Tcf signaling [48].

This constructed ceRNA network consisted of the core 
DEGs after being intersected from three datasets. We 
believe that this network contributes to further under-
standing of GBM pathogenesis at the genetic level. Some 
of these interactions have been demonstrated in previ-
ous reports. For instance, MiR-144, a tumor suppres-
sor, inhibits cell viability, invasion and cell migration by 
downregulating CEP55 and induces apoptosis and cell 
cycle arrest in breast cancer [49]. This discovery pro-
vided new prognostic biomarkers and therapeutic tar-
gets for the development of breast cancer diagnosis and 
treatment. Also, MiR-494 inhibits the expression of the 
oncogene HOXA10 and thereby reduces the prolifera-
tion of oral cancer tissue cells [50]. And overexpression 
of circRNA_102171 has been reported to promote the 
occurrence and progression of papillary thyroid carci-
noma (PTC) by activating the Wnt/β-catenin pathway in 
a CTNNBIP1-dependent manner [51]. In addition, sev-
eral mRNAs in this ceRNA network have been found to 
have regulatory roles in GBM, such as VSNL1, CEP55, 
HOXA10, ENPP2 [52–55], and so on. We believe that 
with the deepening of GBM basic and clinical trials, more 
and more gene targets and corresponding therapeutic 
drugs will be found in this ceRNA network.

To confirm the credibility of our analysis, we again 
built a PPI network with DEmRNA, where 12 mRNAs 
in the ceRNA network appeared in the most important 
modules. The 12mRNAs were: NIPAL3, CEP55, VSNL1, 
FZD1, HOXA10, PLCB1, SOX11, ENPP2, ELAVL3, DDX-
21, KLF10, DYRK3, some of which have been found to 
play an important role in the pathological process of 
GBM. Clinical information, including overall survival, 

downloaded from the TCGA database was used to ana-
lyze the prognostic ability of genes in the circRNAs-
associated ceRNA network. Six of 22 circRNAs, two 
of 11 miRNAs, and two of 15 mRNAs were associated 
with the patient’s overall survival rate. These genes were 
miR-224-3p, miR-4762-5p, circ_0016956, circ_0006841, 
circ_0006635, circ_0056281, circ_0005223, circ_0005777, 
FZD1, KLF10. Among them, we focused on the down-
regulated mRNAs (FZD1 and KLF10) significantly corre-
lated with overall survival in GBM.

It has been reported in many cancer tissues that over-
expression of FZD1 can lead to tumor progression and 
drug resistance [25]. FZD1 is the first member of the 
Frizzled gene family that translates seven-transmem-
brane proteins, which are receptors for the Wnt signal-
ing pathway [56]. FZD1 could also regulate the cellular 
response in physiological and pathological microenviron-
mental conditions [57]. Previous research found that the 
gradient effect of FZD1 expression in the tumor micro-
environment may regulate colon cancer progression and 
spread, providing a new therapeutic target for colon can-
cer patients [58]. FZD1 appears to mediate drug resist-
ance by modulating the Wnt/β-catenin pathway in clear 
cell renal cell carcinoma [25], neuroblastoma [59], pan-
creatic ductal adenocarcinoma [27], ovarian cancer [60], 
and breast cancer [61]. KLF10 (Krüppel-like factor 10) 
has been established in several studies for its role as a 
tumor suppressor in cancer [62]. KLF10 has the poten-
tial to be a marker of various diseases, including car-
diac hypertrophy [62], diabetes [63], osteoporosis [64], 
immune system diseases, and colitis [65]. KLF10 plays a 
significant role in many conditions and biological pro-
cesses, including tumorigenesis. The expression of KLF10 
was negatively correlated with the progressive worsening 
of pancreatic cancer; therefore, KLF10 may be used as a 
predictor of pancreatic cancer staging [28]. Moreover, 
KLF10 expression can also serve as an independent prog-
nostic marker in oral cancer patients, especially those in 
early-stage [30]. KLF10 inhibits β-catenin nuclear trans-
formation and Wnt signaling pathways in vivo, support-
ing its potential therapeutic target of multiple myeloma 
[66]. Research by Marrero, D et al. found that changes in 
KLF10 and mRNA expression and variation in PSG copy 
number may be new molecular markers of cervical can-
cer [67]. The results of this study further demonstrate the 
potential of hub genes involved in the network in assess-
ing the prognosis of GBM.

Glioblastoma is one of the most drug-resistant 
malignancies and often recurs after chemotherapy. 
Therefore, there is some need to explore new com-
pounds or drugs to achieve the desired therapeutic 
effect. Three drugs (Niclosamide, Vantictumab against 
FZD1; Ziritaxestat against ENPP2) were identified as 
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potential candidates with antitumor activity that may 
play a role in the treatment of GBM.

Vantictumab is a fully-humanized monoclonal anti-
body that binds to the frizzled (FZD) receptor and 
inhibits the classical WNT signaling pathway [68]. A 
combination of vantictumab and paclitaxel has shown 
promising clinical activity in patients with metastatic 
or locally advanced breast cancer who have received 
2 prior routes of chemotherapy [69]. In addition, in 
the study of limiting the dilution of pancreatic trans-
plantation, vantictumab could reduce the frequency of 
activity of initiating tumor cells in  vitro, further sup-
porting its effect on tumor stem cells [69].

Niclosamide has significant inhibitory, cytotoxic, 
and anti-migratory effects. It can reduce the frequency 
of multipotent/self-renewing cells in  vitro and the 
malignant potential of primary human glioblastoma 
cells in  vivo [70]. Therefore, niclosamide, an anthel-
mintic drug used to treat tapeworm infections, has 
recently renewed interest in its use as a treatment for 
diseases such as colon cancer and glioblastoma. A 
variety of studies have uncovered that niclosamide had 
effects on cell inhibition, cytotoxicity, and anti-migra-
tion and inhibited intracellular NOTCH-, mTOR-, 
WNT/CTNNB1-, and NF-kB signal transduction 
[70–73]. Among them, Oh et  al. discovered that the 
combination of temozolomide and niclosamide could 
effectively reduce the metastasis and aggressiveness of 
GBM tumorspheres [72]. The last drug, ziritaxestat, is 
in phase 3 clinical trials for the treatment of idiopathic 
pulmonary fibrosis (IPF) but has been reported to act 
as an autotaxin inhibitor for cancer treatment when 
combined in different ways with other small com-
pounds [74].

As multiple TCGA and GEO datasets were included, 
tumor samples were not evaluated for GBM pheno-
types, which may have influenced the expression pro-
files and prognosis of GBM patients. In addition, all 
survival analyses were based on GBM samples only 
and were performed using online databases with an 
automatic assessment of confounding factors. And the 
primary screening measure in this study was prognos-
tic value, which may have resulted in the omission of 
potentially valuable information. In the part of meta-
analysis, most of the included studies were from China 
and there may be potential publication bias. Currently, 
drugs and genes, including the constructed ceRNA 
network we have identified, rely heavily on bioinfor-
matics tools and databases. Their accuracy still needs 
to be validated by basic experiments and clinical tri-
als. Therefore, in this study, we adopted and integrated 
multiple databases and methods for all predictions to 
improve the fidelity of the data.

Conclusions
The role of ceRNAs in the progression of GBM has been 
reported, but only a few studies have focused on the 
part of ceRNAs in the prognosis of GBM patients. Fur-
thermore, the majority of previous studies have con-
structed ceRNA networks based on sequential patterns 
of lncRNA–miRNA–mRNA in GBM. This study was one 
of the few to establish a GBM-related ceRNA network via 
mRNA–miRNA-circRNA sequential patterns. In conclu-
sion, the findings of this study may provide new insights 
and potential therapeutic strategies for glioblastoma.
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