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Abstract 

Background  Sepsis is one of the most lethal diseases worldwide. Pyroptosis is a unique form of cell death, and the 
mechanism of interaction with sepsis is not yet clear. The aim of this study was to uncover pyroptosis genes associ-
ated with sepsis and to provide early therapeutic targets for the treatment of sepsis.

Methods  Based on the GSE134347 dataset, sepsis-related genes were mined by differential expression analysis and 
weighted gene coexpression network analysis (WGCNA). Subsequently, the sepsis-related genes were analysed 
for enrichment, and a protein‒protein interaction (PPI) network was constructed. We performed unsupervised 
consensus clustering of sepsis patients based on 33 pyroptosis-related genes (PRGs) provided by prior reviews. We 
finally obtained the PRGs mostly associated with sepsis by machine learning prediction models combined with prior 
reviews. The GSE32707 dataset served as an external validation dataset to validate the model and PRGs via receiver 
operating characteristic (ROC) curves. The NetworkAnalyst online tool was utilized to create a ceRNA network of lncR-
NAs and miRNAs around PRGs mostly associated with sepsis.

Results  A total of 170 genes associated with sepsis and 13 hub genes were acquired by WGCNA and PPI network 
analysis. The results of the enrichment analysis implied that these genes were mainly involved in the regulation of the 
inflammatory response and the positive regulation of bacterial and fungal defence responses. The prolactin signalling 
pathway and IL-17 signalling pathway were the primary enrichment pathways. Thirty-three PRGs can effectively clas-
sify septic patients into two subtypes, implying that there is a reciprocal relationship between sepsis and pyroptosis. 
Eventually, NLRC4 was considered the PRG most strongly associated with sepsis. The validation results of the predic-
tion model and NLRC4 based on ROC curves were 0.74 and 0.67, respectively, both of which showed better predictive 
values. Meanwhile, the ceRNA network consisting of 6 lncRNAs and 2 miRNAs was constructed around NLRC4.

Conclusion  NLRC4, as the PRG mostly associated with sepsis, could be considered a potential target for treatment. 
The 6 lncRNAs and 2 miRNAs centred on NLRC4 could serve as a further research direction to uncover the deeper 
pathogenesis of sepsis.
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Introduction
Sepsis manifests as signs of infection in conjunction with 
acute organ dysfunction [1]. The high mortality rate due 
to severe sepsis remains a serious problem despite the 
increasing understanding of the pathogenesis and the 
continuous advances in modern treatment techniques, 
such as appropriate antibiotics, aggressive resuscitation 
and organ support [2, 3]. Therefore, there is an urgent 
need to search for an effective treatment for sepsis 
patients to improve therapeutic efficacy and prognosis.

Pyroptosis is a specific form of cell death leading to loss 
of plasma membrane integrity, which is induced by the 
activation of sensors using the inflammasome [4]. Pyrop-
tosis can be triggered by microbial infections, and proper 
pyroptosis can protect multicellular host organisms from 
bacterial and microbial infections [5]. However, excessive 
pyroptosis can lead to massive inflammatory reactions, 
such as septic shock and multiorgan failure [6]. Although 
it has been shown that there is a correlation between 
pyrexia and sepsis, a specific regulatory mechanism is 
lacking to elucidate the relationship of both.

In this study, we utilized multiple bioinformatics meth-
ods to explore genes associated with sepsis. The PRGs 
mostly related to sepsis were finally clarified by combin-
ing machine learning algorithms. We investigated the 
genetic connection between pyroptosis and sepsis. The 
PRGs associated with sepsis could be employed as bio-
markers for disease diagnosis and therapy monitoring, as 
well as a reference for early therapeutic targets for sep-
sis. Long noncoding RNAs (lncRNAs), a type of nonpro-
tein transcript, are involved in messenger RNA (mRNA) 
splicing and maturation and mRNA stabilization [6, 7]. It 
has been demonstrated that lncRNAs have a nonnegligi-
ble regulatory role in the pathophysiological mechanisms 
and organismal dysfunction of sepsis [8]. Thus, we con-
structed a ceRNA network of lncRNAs around the PRGs 
[9].

Methods
Data retrieval and processing
We retrieved the dataset using the search terms 
"(((Expression profiling by array [Filter]) AND Homo 
sapiens [Organism]) AND blood [Sample Source]) AND 
sepsis" based on the Gene Expression Omnibus (GEO) 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/) database, which 

is an open-source database consisting of a large amount 
of tumour or nontumor data. Two suitable datasets 
(GSE134347 and GSE32707) were obtained and normal-
ized for correction by applying the “sva” R package. Fifty-
nine and sixty-nine samples were excluded from the two 
datasets that were not relevant to this study. Thirty-three 
genes associated with PRGs were available based on prior 
reviews (Additional file  4: Table  S4). Detailed informa-
tion on the GEO datasets is listed in Table  1. The flow 
diagram of the study is shown in Fig. 1.

Identification of DEGs
The identification of differentially expressed genes 
(DEGs) facilitates the distinguishing of different body 
state conditions as well as the understanding of gaps 
between them at the genetic level. The expression matrix, 
extracted from healthy and sepsis groups, was collated 
and subjected to differential expression analysis by the 
“limma” R package. Genes with |log2 Fold Change|> 1 
and P value < 0.05 were considered DEGs. Meanwhile, 
these genes were visualized in the form of a volcano 
map and heatmap by the "ggplot2" and "pheatmap" R 
packages.

Weighted gene coexpression network analysis (WGCNA)
The “WGCNA” package was employed for weighted 
analysis to identify coexpression modules associated with 
sepsis [10]. First, we chose the optimal soft threshold to 
construct the adjacency matrix by a calculation and con-
verted it into a topological overlap matrix (TOM). Sub-
sequently, we constructed different modules based on a 
hierarchical clustering approach and randomly assigned 
colours to each module, with the difference in colour rep-
resenting the difference in relevance. The genes in these 
modules were considered sepsis-related module genes. 
The genes located in the most relevant block of sepsis 
were used for subsequent correlation analysis.

GO and KEGG pathway enrichment analysis 
of the sepsis‑related genes
Genes jointly belonging to the sepsis-related module 
genes with DEGs were regarded as sepsis-related genes. 
Genetic enrichment analysis, Gene Ontology (GO) and 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
were used to measure the distribution trend of genes in 

Table 1  Details of the datasets

Dataset Platform Count Sepsis Healthy Others

GSE134347 GPL17586 [HTA-2_0] Affymetrix Human Transcriptome Array 2.0 
[transcript (gene) version]

298 156 83 59

GSE32707 GPL10558 Illumina HumanHT-12 V4.0 expression beadchip 144 41 34 69

https://www.ncbi.nlm.nih.gov/geo/
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a phenotype-related gene table to evaluate their contri-
bution to phenotype. Hence, GO and KEGG enrichment 
analyses of these genes were executed using the database 
for annotation, visualization, and integrated discovery 
(DAVID: https://@@@@@@@david.ncifcrf.gov) (11). 
The results were visualized using the “ggplot2” package.

Analysis of the protein‒protein interaction network 
and hub genes
We applied the Search Tool for the Retrieval of Inter-
acting Genes (STRING) (https://​string-​db.​org/) data-
base to perform protein‒protein interaction (PPI) 

analysis with the aim of exploring the interconnections 
between proteins. Subsequently, the raw PPI network 
was downloaded and built through Cytoscape, a widely 
used visualization tool. Screening of hub genes from 
sepsis-associated genes based on overlapping genes was 
done using multiple algorithms of CytoHubba, a plugin 
of Cytoscape. Then, the degree of correlation and 
association between hub genes was visualized by the 
"corrplot" package. To explore the main mechanisms of 
hub genes in the pathogenesis of sepsis and their asso-
ciated pathways of action, we performed functional 
enrichment analysis using the R package “clusterPro-
filer”, and FDR < 0.05 was considered significant.

Fig. 1  Workflow chart of data preparation, processing, analysis, and validation

https://string-db.org/
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Unsupervised consensus clustering
We applied an unsupervised clustering approach for 
subtyping sepsis samples based on 33 PRGs provided by 
prior reviews, and the algorithm was executed with the 
ConsensusClusterPlus R package. The number of Clus-
ters k was set from 2 to 9. The cumulative distribution 
function (CDF) and the area under the CDF curve were 
used to determine the optimal number of clusters. Subse-
quently, we identified the clustering results with principal 
component analysis (PCA).

Identification and validation of pyroptosis‑related genes
The R package “caret” was used to build the least abso-
lute shrinkage and selection operator (LASSO) model, an 
approved machine learning algorithm, for screening the 
key genes closely related to sepsis from hub genes. The 
external dataset GSE32707 was utilized to validate the 
accuracy of the model in the form of ROC curves, and 
an AUC value greater than 0.65 was recognized as having 
a better accuracy. By integrating the key genes obtained 
above as well as 33 pyroptosis genes, we obtained the 
pyroptosis genes most strongly associated with sepsis. 
Finally, the NetworkAnalyst online tool (https://​www.​
netwo​rkana​lyst.​ca/) was used to construct a lncRNA net-
work to gain more insights into the role played by pyrop-
tosis genes in sepsis.

Results
Data preprocessing and DEG screening between healthy 
and sepsis samples
The results of the normalization of the GSE134347 
expression data in 83 healthy and 156 sepsis groups are 
shown in Fig.  2A and 2B. As shown in the PCA results 
(Fig.  2C), the standardized genes demonstrated by the 
heatmap (Fig.  2D) could clearly distinguish the healthy 
samples from the sepsis samples and facilitate further 
analysis. We screened 575 DEGs based on |log2 Fold 
Change|> 1 and P value < 0.05, and duplicate gene sym-
bols were deleted (Fig.  2E). The heatmap showed 30 
upregulated and 30 downregulated genes (Fig.  2F). The 
details of the DEGs are provided in Additional file  1: 
Table S1.

Identification of core modules by WGCNA
We analysed the critical gene modules closely related 
to sepsis using the WGCNA algorithm. We screened 
the soft power β = 6 and the scale-free R2 = 0.85 as the 
most suitable parameters to construct a scale-free net-
work (Fig.  3A). In total, we identified 27 colour mod-
ules with different correlations with sepsis. Finally, the 
brown module exhibited the strongest relationship with 
sepsis, which included 2,955 genes, r = 0.83, P = 4e − 62 

(Fig. 3B). The relationship between modules and disease 
status was exhibited by the modular significance (MS). 
Gene significance (GS) was described as the correlation 
between a gene and clinical phenotype. A total of 382 
genes (Additional file 1: Table S1) that they were mostly 
associated with were screened from this module based 
on GS = 0.7 and MM = 0.7 (Fig. 3C).

Genes and pathway enrichment analysis
We identified 170 sepsis-related genes (Additional file 1: 
Table S1) based on the sepsis-related module and DEGs 
(Fig. 4A). GO terms for 170 genes fall into three catego-
ries: biological processes (BP), cellular components (CC), 
and molecular functions (MF) (Fig.  4B). The results of 
GO analysis were mainly associated with inflammation, 
cornification, and granule membrane, such as cellular 
response to lipopolysaccharide,, tertiary granule mem-
brane, extracellular space and NAD + nucleotidase, cyclic 
ADP-ribose generating (Additional file  2 Table  S2). In 
addition, we carried out a KEGG pathway enrichment 
analysis on 170 genes (Fig. 4C). The results of the enrich-
ment analysis consistent with FDR < 0.05 was leishma-
niasis. Detailed results of the KEGG analysis are shown 
in Additional file 2: Table S2. These results were positive 
for the present study and contribute to further research 
(Additional files 3, 4).

Identification and analysis of hub genes in sepsis 
by the PPI network
We acquired the PPI network with an interaction score 
of 0.400 based on the STRING database, including 163 
nodes and 226 edges (Additional files 5, 6, 7, 8, 9, 10). 
We applied six algorithms (Degree, EPC, MCC, DMNC, 
Closeness, Betweenness) to mine 13 hub genes from 
the PPI network (Additional file 3: Table S3), which was 
the intersection of the top 30 genes of each algorithm 
(Fig.  5C). Figure  5A displays the network map of the 
top 30 genes of the degree algorithm. According to the 
MCODE plugin, the most insignificant module of the 
PPI network is shown in Fig. 5B. The expression analysis 
revealed that all 13 genes were expressed at higher levels 
in sepsis samples than in healthy samples (Fig. 5D). We 
calculated the correlations among hub genes, and the 
results demonstrated that they all had significant positive 
correlations (Fig.  5E). Meanwhile, the correlation net-
work diagram also proved the tightness of the contact 
among them (Fig. 5F).

Enrichment analysis of hub genes
To further investigate the connection of sepsis devel-
opment with hub genes, we performed GO and KEGG 
enrichment analyses. GO enrichment analysis indi-
cated that hub genes were focused on defence response, 

https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
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Fig. 2  Data preprocessing and DEG screening. A, B Before & after data normalization. C PCA: The farther the two samples are from each other, the 
greater the difference is between the two samples in gene expression patterns. D Heatmap: Gene expression differed between the samples of 
the two groups. E The volcano plot of DEGs: The red points represent upregulated genes, and blue points represent downregulated genes. F The 
heatmap of DEGs: The upregulated genes are shown in red, and downregulated genes are shown in blue
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inflammation regulation and multiple receptor activa-
tion (Fig. 6A–C). According to KEGG analysis, the hub 
genes were involved in various signalling pathways, 
including the prolactin signalling pathway, leishma-
niasis, the IL-17 signalling pathway, growth hormone 
synthesis, secretion and action (Fig.  6D–G) [12–14]. 
Detailed results of the enrichment analysis are shown 
in Additional file  2: Table  S2. These results confirm 
the high association between hub genes and sepsis, as 
well as the apparent variation of hub genes in various 
immune and inflammatory conditions.

Correlation of sepsis and pyroptosis based on subtype 
clustering
Based on 33 PRGs provided by prior reviews, subtype 
analysis of sepsis was performed. According to Fig. 7B 
and 7C, k = 2 or k = 3 values would be acceptable; how-
ever, after dividing the samples into 3 groups, some 
data could not be well clustered; therefore, we decided 
to separate our data into 2 groups. The data could be 
well clustered when k = 2 (k: clustering variable) based 
on Figs. 7B and 7C. The matrix shown in Fig. 7A rep-
resents the consensus for k = 2 and indicates a well-
defined two-block structure. As shown Fig.  7D and E, 
33 PRGs could distinguish Cluster 1 from Cluster 2 
from two different perspective, and we concluded that 
grouping by pyroptosis-related genes of sepsis expres-
sion was appropriate (k = 2). Thus, a possible correla-
tion between pyroptosis-related genes and sepsis may 
also be demonstrated.

Analysis and screening PRGs
We yielded 8 key genes by applying validated machine 
learning algorithms (LASSO) from 13 hub genes 
(Fig. 8A1, A2). We used GSE32707, as an external data-
set, to evaluate the efficiency of the supervised machine 
learning algorithms using ROC curves (Fig.  8B). The 
AUC value of LASSO was 0.74, and we considered it the 
optimal sepsis prediction model. According to the 33 
PRGs provided by prior reviews, only NLRC4 was asso-
ciated with pyroptosis in the 8 key genes related to sep-
sis (Fig. 8C). Finally, ROC curves were plotted based on 
the external validation dataset (GSE32707) to verify the 
potential value of NLRC4 as an early diagnostic marker 
or therapeutic target for sepsis patients. The AUC value 
of NLRC4 was 0.67, which was greater than or equal to 
0.65, and it was identified as a sepsis-related key gene 
(Fig. 8D). To explore the upstream targets of PRGs asso-
ciated with sepsis, we used the NetworkAnalyst online 
tool to predict the miRNAs of NLRC4. The StarBase 
database (https://​starb​ase.​sysu.​edu.​cn/) was employed to 
predict lncRNAs based on hsa-miR-335-5p and hsa-miR-
146a-5p, as well as to construct a ceRNA network with 1 
mRNA (NLRC4), 2 miRNAs (hsa-miR-335-5p, hsa-miR-
146a-5p) and 6 lncRNAs (MIR29B2CHG, TMEM161B-
AS1, KCNQ1OT1, NEAT1, AC016876.2, XIST) (Fig. 8E).

Discussion
Sepsis is currently one of the major global health burdens 
and the leading cause of death for patients in intensive 
care units (ICUs) [15]. Therefore, there is an urgent need 

Fig. 2  continued

https://starbase.sysu.edu.cn/
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to find a therapeutic target that can be used as an early 
diagnostic or effective treatment target to improve diag-
nostic efficiency and patient prognosis and quality of life. 
In this study, we first screened 170 genes associated with 
sepsis by WGCNA and differential expression analysis, 

which resulted in the identification of 13 genes closely 
connected to sepsis. The results of functional enrichment 
analysis suggested that these genes were mainly involved 
in the regulation of the inflammatory response and 
the positive regulation of bacterial and fungal defence 

Fig. 3  Identification of core modules by weighted gene coexpression network analysis (WGCNA). A Left: Analysis of the scale-free index for various 
soft-threshold powers (β). Right: Analysis of the mean connectivity for various soft-threshold powers. B The correlation of genes with sample 
modules is demonstrated by a heatmap. C The relevance of members in the brown module and sepsis
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Fig. 4  GO and KEGG analysis of 170 sepsis-related genes. A Venn diagram showing 170 sepsis-related genes obtained by DEGs and WGCNA. B 
All terms of GO categories of biological process (red), cellular component (blue) and molecular function (green). C KEGG pathway analyses of 170 
genes
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Fig. 5  Identification and analysis of hub genes by the PPI network. A The top 30 genes of the degree algorithm of the PPI network. B The 
most insignificant module of the PPI network. C The hub genes were identified by six algorithms (Degree, EPC, MCC, DMNC, Closeness, and 
Betweenness). D Violin plot of hub gene expression. E Correlation heatmap of hub genes. F Correlation network map of hub genes
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Fig. 6  GO and KEGG analysis of hub genes. A–C GO enrichment analysis of hub genes (A: BP, B: CC, C: MF). The size of the node respondents for 
the number of gene counts. (D) KEGG enrichment analysis of hub genes; the colour of the bar represents the P value. (E–G) Prolactin signalling 
pathway, leishmaniasis, and IL-17 signalling pathway. Red indicates high expression in the pathway, and green indicates low expression in the 
pathway
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Fig. 7  Identification of consensus clusters by pyroptosis-related genes. A When k = 2, there is a correlation between groups. B Relative change 
in the area under the cumulative distribution function (CDF) curve for k values from 2 to 9. C Consensus clustering CDF when the k value ranges 
from 2 to 9. D PCA of pyroptosis-related genes in the sepsis samples (Cluster 1 is marked in blue, and Cluster 2 is marked in red). E PCA of 
pyroptosis-related genes in the sepsis samples (Cluster 1 is marked in orange, and Cluster 2 is marked in purple)
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Fig. 8  Analysis and screening of PRGs associated with sepsis. A Eight sepsis-related key genes obtained using the LASSO algorithm. B Application 
of an external dataset to validate the predictive model. C The PRG mostly associated with sepsis was identified by a predictive model, the 
GeneCards database and prior reviews. D Applying an external dataset to validate the PRG mostly associated with sepsis. E Construction of the 
ceRNA network around the PRG mostly associated with sepsis
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responses, all of which indicated an association with the 
pathogenesis and course of sepsis. Therefore, these find-
ings could provide a strong theoretical basis for further 
related studies of the 13 genes and enhance the validity of 
the results.

Pyroptosis is a mode of programmed cell death that 
is distinguished from apoptosis and could be involved 
in the innate immune response of the body, activation 
of immune cell phagocytosis and clearance of patho-
gens [16, 17]. During sepsis pathogenesis, an inappro-
priate or excessive inflammatory response of the body 
may cause secondary infection or even organ failure 
[18]. Correspondingly, excessive pyroptosis could also 
lead to an uncontrollable inflammatory response, result-
ing in a poor prognosis [19, 20]. With the improvement 
of scientific research, a growing number of studies have 
attempted to elucidate the mutual relationship exist-
ing for the pathogenesis of sepsis and pyroptosis. It has 
been shown that caspase-1 activated by LPS can act on 
the pannexin-1 and P2X7 signalling pathways to induce 
scorch production and severe inflammatory responses, 
and this could be a potential target for the treatment of 
gram-negative bacterial sepsis [21]. Additional studies 
have demonstrated that downregulated miR-21 could 
suppress cystein-1 activation and GSDMD cleavage, 
acting through protein A20 to regulate the nuclear fac-
tor kappa B (NF-kB) pathway, thus serving as an essen-
tial positive regulator of pyroptosis and septic shock [22, 
23]. Therefore, further exploration of the role played by 
pyroptosis in the pathogenesis of sepsis may provide 
novel potential therapeutic targets for sepsis. Machine 
learning, a well-established technology in the biomedi-
cal field, plays an irreplaceable role in improving the 
efficiency of clinical diagnosis and providing the best 
treatment options. We applied machine learning algo-
rithms combined with relevant reviews and databases 
to screen for PRGs associated with sepsis and ultimately 
identified NLRC4 as a potentially effective therapeutic 
target for sepsis.

The NOD-like receptor (NLR) family, CARD domain-
containing protein 4 (NLRC4), was initially described 
as a pro-apoptotic protein and demonstrated to detect 
cytosolic flagellin [24–26]. NLRC4, a pivotal component 
of the inflammasome, is involved in endogenous danger 
signalling responses to multiple microbial spines and 
macrophage scorching [27]. Recruitment of the NLRC4 
inflammasome may have a substantial effect on gram-
negative bacterial infections, especially those associated 
with Salmonella typhimurium [28]. It has been reported 
that overexpression of NLRC4 increases macrophage 
inflammasome activity, leading to infantile small bowel 
colitis syndrome and recurrent macrophage activation 
syndrome [29, 30]. In addition, another study found that 

decreased NLRC4 reduced the inflammatory response; 
during gram-positive pneumonia, NLRC4 knockdown 
mice exhibited reduced inflammation and controlled 
bacteria more effectively than wild-type infected mice 
[30, 31]. Pyroptosis is a proinflammatory form of regu-
lated cell death dependent on caspase-1 activation [5]. 
When in recognition of danger or pathogen-associated 
molecular patterns, the inflammasome initiation sensor 
(NLRC4) activates caspase-1, which is considered the 
typical inflammatory vesicle activation mode [32]. In this 
study, NLRC4 was highly expressed in all patients with 
sepsis; therefore, it is reasonable to believe that NLRC4 
may cause pyroptosis by activating caspase-1 and pro-
moting the inflammatory response, which consequently 
leads to the development of sepsis. As a result, NLRC4 
may be considered a potential therapeutic target of sep-
sis for further research. At present, some lncRNAs have 
been demonstrated to act as important regulators in the 
pathogenesis of sepsis [33]. For example, it was reported 
that there were significant differences in the expression of 
lncRNA ENST00000504301.1 and ENST00000452391.1 
between sepsis survivors and nonsurvivors [34, 35]. To 
further explore the impact of a pyroptosis gene (NLRC4) 
on sepsis at a deeper level, we predicted the upstream 
targeting factor miRNAs and lncRNAs and constructed 
a ceRNA network of 6 lncRNAs (MIR29B2CHG, 
TMEM161B-AS1, KCNQ1OT1, NEAT1, AC016876.2, 
XIST) and 2 miRNAs (hsa-miR-335-5p, hsa-miR-
146a-5p) around NLRC4.

Meanwhile, there are limitations to this study. The pre-
diction results of lncRNAs and miRNAs are in a wide 
range and require more experimental data and literature 
to corroborate. Additionally, the PRGs identified in this 
study that have the potential to be therapeutic targets for 
sepsis require further literature support and basic experi-
mental validation.

Conclusions
In this study, we identified NLRC4 as a PRG associated 
with sepsis based on machine learning and constructed 
a ceRNA network of lncRNAs and miRNAs around 
NLRC4, which may serve as early molecular biomark-
ers for therapeutic targets of sepsis. In the future, these 
molecular markers deserve further study in follow-up 
and require additional datasets and further experimental 
validation at the cellular or specimen level.
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