
R E S E A R C H Open Access

© The Author(s) 2023.  Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Zhang et al. BMC Medical Genomics           (2023) 16:32 
https://doi.org/10.1186/s12920-023-01455-5

BMC Medical Genomics

*Correspondence:
Bing Chen
chenbing1@nju.edu.cn
1Department of Hematology, Affiliated Drum Tower Hospital, Medical 
School of Nanjing University, 210008 Nanjing, People’s Republic of China
2Nanjing Drum Tower Hospital Clinical College of Nanjing University of 
Chinese Medicine, 210023 Nanjing, People’s Republic of China

Abstract
Background  Multiple myeloma (MM) is an incurable and relapse-prone disease with apparently prognostic 
heterogeneity. At present, the risk stratification of myeloma is still incomplete. Pyroptosis, a type of programmed 
cell death, has been shown to regulate tumor growth and may have potential prognostic value. However, the role 
of pyroptosis-related genes (PRGs) in MM remains undetermined. The aims of this study were to identify potential 
prognostic biomarkers and to construct a predictive model related to PRGs.

Methods  Sequencing and clinical data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression 
Omnibus (GEO) databases. Non-negative matrix factorization (NMF) was performed to identify molecular subtype 
screening. LASSO regression was used to screen for prognostic markers, and then a risk score model was constructed. 
The Maxstat package was utilized to calculate the optimal cutoff value, according to which patients were divided into 
a high-risk group and a low-risk group, and the survival curves were plotted using the Kaplan-Meier (K-M) method. 
Nomograms and calibration curves were established using the rms package.

Results  A total of 33 PRGs were extracted from the TCGA database underlying which 4 MM molecular subtypes were 
defined. Patients in cluster 1 had poorer survival than those in cluster 2 (p = 0.035). A total of 9 PRGs were screened 
out as prognostic markers, and the predictive ability of the 9-gene risk score for 3-year survival was best (AUC = 0.658). 
Patients in the high-risk group had worse survival than those in the low-risk group (p < 0.001), which was consistent 
with the results verified by the GSE2658 dataset. The nomogram constructed by gender, age, International Staging 
System (ISS) stage, and risk score had the best prognostic predictive performance with a c-index of 0.721.

Conclusion  Our model could enhance the predictive ability of ISS staging and give a reference for clinical decision-
making. The new, prognostic, and pyroptosis-related markers screened out by us may facilitate the development of 
novel risk stratification for MM.

Clinical trial registration  Not applicable.
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Introduction
Multiple myeloma (MM) is a malignant neoplasm of 
plasma cells, accounting for 1% of neoplastic diseases 
and ranking second among hematological malignan-
cies [1]. In recent years, with the research and appli-
cation of new drugs, the prognosis of MM has been 
significantly improved. Despite these advances, MM 
remains an incurable disease, and most patients even-
tually relapse [2]. According to statistics, approximately 
100,000 patients die from MM every year worldwide [3]. 
To predict patient prognoses more precisely and make an 
optimal therapy decision, accurate risk stratification is 
important, while current MM staging systems lack sen-
sitivity and specificity in a proportion of patients, and 
uncovering other prognostic factors is of great signifi-
cance [4, 5].

Pyroptosis is a type of programmed cell death, mani-
fested by the phenomenon of cellular swelling to mem-
brane rupture, resulting in the release of cellular contents 
and inducing strong inflammatory responses [6]. It has 
been shown to be associated with a variety of tumors, 
including hematological malignancies, and its role on 
tumors is dual, which means it can both promote and 
inhibit tumor growth [7, 8]. Some of its molecular com-
ponents have been shown to regulate tumor proliferation, 
metastasis, therapeutic resistance, and antitumor immu-
nity, making them correlated with survival of patients 
and available for predicting prognoses [9].

At present, there are few studies on pyroptosis in MM 
[10–13]. Xia et al. [10] found that PRMT5 regulates 
pyroptosis in MM. Gaikwad et al. [11] found that a small 
molecule stabilizer of the MYC G4-quadruplex induces 
endoplasmic reticulum pyroptosis in MM. Wang et al. 
[12] constructed a prognostic model including a risk 
score with 11 pyroptosis-related genes (PRGs) from the 
GSE136324 dataset, but the small sample size of the veri-
fication cohorts might affect the reliability of the results. 
Li et al. [13] constructed a prognostic gene model based 
on 6 PRGs from the GSE24080 dataset, but they didn’t 
assess the mutation characteristics of PRGs. Moreover, 
there is a high false-positive rate in the single dataset 
analysis. Different datasets and different microarray plat-
forms may yield different results. To identify more reli-
able and robust novel prognostic markers and overcome 
these inconsistencies, further analysis using different 
datasets is needed.

Hence, the aims of this study were (1) to explore 
the expression and mutation characteristics as well as 
immune correlations of PRGs in MM, (2) to determine 
distinct pyroptosis patterns based on the expression of 
PRGs and classify the patients, (3) to identify potential 
prognostic biomarkers and construct a predictive model 
related to PRGs and (4) to verify the reliability of these 
results based on The Cancer Genome Atlas (TCGA) and 

Gene Expression Omnibus (GEO) databases. Our study 
further identified the role of PRGs in the prognosis of 
MM, providing some insights for follow-up studies.

Materials and methods
Datasets and preprocessing
The transcriptome sequencing (RNA-seq) data and 
the whole exome sequencing (WES) data of CD 138+ 
myeloma cells within bone marrow from 764 patients, 
along with corresponding clinical characteristics and 
follow-up data, were obtained from the MMRF-COM-
PASS project in the TCGA database (https://portal.gdc.
cancer.gov/projects/MMRF-COMMPASS, accession 
number: MMRF-COMMPASS, accessed date: 1st June 
2022). The gene expression microarray results and the 
annotation files of the GSE2658 dataset (microarray plat-
form: GPL570 [HG-U133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array) [13] and the GSE39754 
dataset (microarray platform: GPL5175 [HuEx-1_0-st] 
Affymetrix Human Exon 1.0 ST Array) [14] were down-
loaded from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE2658, acces-
sion number: GSE2658, https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE39754, accession number: 
GSE39754, accessed date: 1st June 2022). The GSE2658 
dataset [14], which contained transcriptomic data of 
CD138+ myeloma cells from 559 patients and matched 
prognostic information, was used as a validation set for 
this study. The GSE39754 dataset [15], which contained 
transcriptome data of CD138+ myeloma cells from 170 
patients and plasma cells from 6 normal donors, served 
as an analysis dataset for the differential analysis of PRGs 
expression and immune cell infiltration. The basic clini-
cal characteristics of the three above-mentioned datasets 
were presented in Additional file 1.

Somatic mutation, expression differences, correlation 
analysis and clinical correlation of PRGs
A total of 33 PRGs (Additional file 2) were extracted from 
the RNA-seq data, among which the MMRF project had 
33 PRGs and the GSE39754 dataset had 29 PRGs. Differ-
entially expressed PRGs in the myeloma cells and control 
plasma cells from the GSE39754 dataset were identified 
by the Wilcoxon test with p < 0.05. The expression lev-
els of these PRGs were displayed by heatmap using the 
pheatmap package [16]. The relationship between differ-
ent PRGs from the MMRF project was analyzed using 
Pearson’s correlation. A total of 31 PRGs were extracted 
from the WES data of the MMRF project. The mutation 
frequency and classification of these PRGs were analyzed 
using the maftools package [17].

Based on the MMRF project, the differences of PRG 
expression within different clinical subgroups (gender, 
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age, and International Staging System (ISS) stage) were 
compared by the Wilcoxon test.

Immune infiltration analysis
The immune cell infiltration for every sample from the 
MMRF project and GSE39754 dataset was evaluated by 
the CIBERSORTx tool (https://cibersortx.stanford.edu/, 
accessed date: 5th June 2022) [18], and samples with 
p < 0.05 were filtered out. The Wilcoxon test was used to 
compare differences in the degrees of immune cell infil-
tration between the case and control groups from the 
GSE39754 dataset. Based on the MMRF project, correla-
tion analysis was performed between each immune cell 
and between immune cells and PRGs. Pearson correla-
tion coefficient was then calculated.

NMF molecular subtype construction
Non-negative matrix factorization (NMF) is an effec-
tive technique to decompose a non-negative matrix into 
the product of two non-negative matrices. For any given 
non-negative matrix V, it can be divided into a non-nega-
tive matrix W and a non-negative matrix H to satisfy the 
condition V = W × H. Each column in the V matrix rep-
resents an observation point, and each row represents a 
feature. The W matrix is called the base matrix, and the 
H matrix is called the coefficient matrix or the weight 
matrix. By replacing the original matrix with the coef-
ficient matrix H, the original matrix can be dimension-
ally reduced to obtain the matrix containing the feature 
set. Molecular subtype screening was performed based 
on the expression of PRGs from the MMRF project using 
the NMF package [19]. According to the degree of cophe-
netic value changing with K, the rank before the maxi-
mum changing point was determined to be the optimal 
cluster number. In addition, we analyzed the prognostic 
differences of patients in different clusters.

Gene set variation analysis (GSVA)
The limma package [20] was utilized to identify differ-
entially expressed genes (DEGs) between clusters using 
a linear model. The DEGs screening criteria were adj.p 
value < 0.05 and |log2FC| > 1. GSVA, a non-parametric 
unsupervised algorithm, can calculate enrichment scores 
for specific gene sets in each sample. We performed the 
GSVA analysis on the DEGs matrix using the GSVA 
package [21], and selected “c2.cp.kegg.v7.4.symbols.gmt” 
as the reference gene set. Moreover, the limma package 
was used for differential pathway screening, and p < 0.05 
was set as the screening threshold.

Identification of prognostic marker (LASSO analysis)
The LASSO (Least absolute shrinkage and selection 
operator, Tibshirani) method is a compression estima-
tion [22]. By shrinking the regression coefficients and 

reducing some of them to zero, a penalty function can be 
constructed to obtain a more refined model. It preserves 
the advantages of subset shrinkage and is a biased esti-
mation for processing data with complex collinearity. 
We used univariate Cox regression to screen for PRGs 
associated with the survival of patients with MM from 
the MMRF project, and the LASSO regression to screen 
for prognostic markers. Variable filtering was performed 
using the glmnet function of the glmnet package [23]. 
The cv.glmnet function was used for cross-validation. 
The combination of prognostic markers with the smallest 
cross-validation (CV) coefficient was then obtained.

Risk scoring and prognostic predictive model construction
The risk score (RS) for each case was calculated as 
follows:

	
RS =

n∑

i=1

Coefi × Expi

Coef was the LASSO regression coefficient, and Exp was 
the RNA expression level (log2 conversion).

The survivalROC package [24] was used to analyze the 
predictive ability of the RS for 1, 3, and 5-year survival 
of patients from the MMRF project, and the predicted 
receiver operating characteristic (ROC) curves were 
plotted and the area under the curve (AUC) values were 
calculated. The Maxstat package [25] was used to calcu-
late the optimal cutoff value, according to which patients 
from the MMRF project were divided into a high-risk 
group and a low-risk group, and the survival curves were 
plotted using the Kaplan-Meier (K-M) method.

The Cox equal proportional hazards model was estab-
lished to assess the impact of other clinical character-
istics, including age, gender, and ISS stage, on patient 
prognoses. The Forestmodel package [26] was employed 
to generate forest plots. And the clinical characteristics 
having a significant effect on prognoses were added to 
multivariate Cox regression as covariates to evaluate the 
independent predictive ability of the RS on patient prog-
noses, and a forest plot was drawn.

Finally, nomograms constructed with different vari-
ables and calibration curves were established using the 
rms package [27] to visualize the model results and to 
make the results of the prediction model more readable, 
and the consistency index (c-index) was calculated to 
assess the predictive power of the nomogram for survival.

Statistical analysis
All data calculations and statistical analyses were per-
formed using R programming (https://www.r-project.
org/, version 4.2.0). The Benjamini-Hochberg (BH) pro-
cedure was used for multiple testing corrections, and a 
false discovery rate (FDR) correction was used to reduce 
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the false positive rate in multiple testing. For the com-
parison of two groups of continuous variables, the sta-
tistical significance in normally distributed variables 
was estimated by the independent Student’s t-test, and 
the difference in non-normally distributed variables was 
analyzed by the Mann-Whitney U test (i.e., the Wilcoxon 
rank sum test). For the comparison of three or more 
groups of continuous variables, a one-way analysis of 
variance (ANOVA) is used to determine whether or not 
there was a statistically significant difference. The ROC 
curves were drawn using the survivalROC package, and 
the AUC values were calculated to assess the accuracy 
of the RS in estimating prognoses. All statistical p values 
were two-sided, with p < 0.05 being considered statisti-
cally significant.

Results
Landscape of PRG expression and somatic mutation in MM
The workflow chart was shown in Fig.  1. The expres-
sion levels of 29 PRGs in patients with MM and controls 
from the GSE39754 dataset were displayed as heat maps 
(Fig.  2B). By comparing them using the Wilcoxon test, 
we found that 12 PRGs were significantly differentially 

expressed, out of which 6 PRGs (GPX4, CASP4, PLCG1, 
CASP3, GSDMB, and AIM2) were upregulated in 
patients with MM (Fig. 2A). The gene correlation matrix 
for the 33 PRGs from the MMRF project was depicted 
in Fig. 2C, and the PRGs with Pearson correlation coef-
ficient greater than 0.65 were shown in Fig. 3. Next, we 
compared the expression difference of each PRG within 
three clinical subgroups. In gender subgroups, CASP4, 
CASP5, GSDMA, IL18, IL1B, IL6, NLRP3, NLRP2, 
and TIRAP were significantly differentially expressed 
between males and females. In age subgroups, there were 
differences in the expression of CASP1, IL18, NLRP3, 
and TNF between the patients aged < 50 years and the 
patients aged ≥ 50 years. In ISS stage subgroups, the 
expression levels of genes, i.e., AIM2, CASP1, CASP3, 
CASP4, CASP5, CASP6, CASP8, CASP9, GSDMB, 
GSDMD, IL6, NLRC4, NLRP1, PRKACA, and PYCARD, 
were statistically different among stage I, II, and III, and 
the expression levels increased with the stage (Fig. 4).

The somatic mutation analysis revealed that PRG muta-
tions were present in 14% (107/764) patient samples, and 
6.8% (52/764) samples have non-synonymous mutations. 
Among 33 PRGs, 31 genes were found to be mutated, of 

Fig. 1  The workflow chart of this study

 



Page 5 of 15Zhang et al. BMC Medical Genomics           (2023) 16:32 

which 24 genes were non-synonymously mutated. The 
missense mutation was the most common variant classi-
fication, and C > T was the most common single nucleo-
tide variation (SNV). The gene with the highest mutation 
frequency was NLRP3, followed by NLRP2, NLRP7, 
GSDMB, AIM2, CASP14, and NLRP4 (Fig. 2D-E).

Differences of immune infiltration and correlation between 
PRGs and immune cells
The differences in the degree of infiltration of 22 immune 
cells between patients with MM and controls from the 
GSE39754 dataset were shown in Fig. 5A. Based on the 
MMRF project, we analyzed the correlations of infil-
tration degrees between each immune cell, and the 
correlation matrix was shown in Fig. 5B. Finally, we eval-
uated the relationship between PRGs and immune cells 

Fig. 2  Expression and mutation of pyroptosis-related genes (PRGs). (A) The box plot shows expression differences of PRGs in patients with multiple 
myeloma and controls from the GSE39754 dataset. *: p < 0.05; **: p < 0.01; ***: p < 0.001; ns: not significant. (B) The heatmap displaying expression levels 
of PRGs in patients with multiple myeloma and controls from the GSE39754 dataset. (C) The correlation matrix for the 33 PRGs from the MMRF project. 
Red represents a positive correlation. Blue represents a negative correlation. The darker color represents a larger correlation index. Black X represents no 
statistical significance. (D) The somatic mutation frequency and classification of PRGs from the MMRF project. (E) The waterfall plot of somatic mutation 
of PRGs from the MMRF project
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(Fig.  5C). The result indicated that ELANE, GSDMA, 
IL18, IL1B, NLRP3, and TNF were significantly nega-
tively correlated with plasma cells; GSDMA and IL18 
were significantly positively correlated with M2 macro-
phages; ELANE was significantly positively correlated 
with M0 macrophages and resting NK cells.

Analysis of MM molecular subtypes based on PRGs
The NMF classification results showed that the cophe-
netic value began to drop significantly when rank = 4, 
so the optimal number of clusters was 4 (Fig.  6A). The 
consensus map of the NMF clustering and the princi-
pal component analysis plot were displayed in Fig.  6B-
C, and the heatmap of the PRG expression in 4 clusters 
was depicted in Fig.  7A. Then we analyzed the progno-
ses of patients in 4 clusters by plotting the survival curve 
(the K-M method), and found that there was no differ-
ence in the survival time of patients in general, while 
multiple comparisons revealed that the survival time of 
patients in cluster 1 and cluster 2 was statistically differ-
ent, and patients in the two clusters accounted for 80.5% 
(615/764) of all cases (Fig.  6D-E). The DEG analysis 

between the two clusters identified 372 up-regulated 
genes and 36 down-regulated genes. By the GSVA analy-
sis of these DEGs, two differential pathways including the 
toll-like receptor signaling pathway and cytosolic DNA 
sensing pathway were identified (Fig.  6F). Subsequently, 
we compared the pyroptosis scores within three clini-
cal subgroups in each cluster and found that males had 
higher scores in cluster 1 and cluster 4; patients aged < 50 
years had higher scores in cluster 3, while patients 
aged ≥ 50 years had higher scores in cluster 4; and scores 
in cluster 1 increased with the ISS stage (Fig. 7B-D).

The immune infiltration analysis of 4 clusters indicated 
that the infiltration degrees of multiple immune cells in 
cluster 4 were higher than in other clusters, while for 
plasma cells, which accounted for the highest proportion 
of all immune cells, the infiltration degree was the lowest 
in cluster 4 (Fig. 8A-B).

Prognostic marker screening and RS calculation based on 
PRGs
The univariate Cox regression analysis results showed 
that 14 PRGs, i.e., AIM2, CASP5, IL1B, IL6, NLRC4, 

Fig. 3  The dot-line plots of Pearson correlation analysis between each pyroptosis-related gene from the MMRF project. (A-I) Pyroptosis-related genes 
with a significant correlation and a correlation coefficient greater than 0.65
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NLRP1, NLRP6, NOD1, PJVK, PLCG1, PRKACA, 
PYCARD, SCAF11, and TIRAP, were significantly asso-
ciated with the survival of patients with MM (Fig.  9A). 
By the LASSO regression analysis, a total of 9 PRGs were 
screened out as prognostic markers, which were AIM2, 
CASP5, IL1B, IL6, NLRP6, NOD1, PRKACA, PYCARD, 
and SCAF11 respectively (Fig.  9B-C). The AUC for the 
LASSO regression model was 0.643, indicating a rela-
tively good prognostic predictive ability (Fig. 9D).

According to the analysis results of the LASSO regres-
sion model, the coefficients of the candidate prognostic 
markers were determined, and the RS was calculated as 
follows: RS = 0.0485 × AIM2 + 0.0735 × CASP5 + 0.0152 
× IL1B + 0.1043 × IL6 + 0.1053 × NLRP6 + 0.1188 × 
NOD1 + 0.1533 × PRKACA + 0.1004 × PYCARD + 0.0674 
× SCAF11. The AUCs of 1, 3, and 5-year survival pre-
dicted by RS were 0.646, 0.658, and 0.513, respectively 
(Fig. 9E). The optimal cutoff value for the RS predicting 
survival in patients with MM was 1.7714. According to 
the cutoff value, patients with MM were divided into a 

high-risk group and a low-risk group, and patients with-
out survival information were excluded. The survival 
analysis showed that the survival time of patients in the 
high-risk group was significantly shorter than that in the 
low-risk group (Fig. 10A).

The GSE2658 dataset was used to validate the reliability 
of the 9-gene model, and the result was consistent with 
that in the MMRF project (Fig. 10B). We then performed 
the survival analyses for each of these genes, and found 
that the expression levels of genes (CASP5, IL1B, NOD1, 
PRKACA, AIM2, and SCAF11) were significantly related 
to patient survival (Fig. 10C-K).

The comparison results of RSs among ISS stage I, II, 
and III showed that the higher the stage, the higher the 
RS, and that the difference was statistically significant, 
while there were no differences in RSs between males and 
females and between the patients aged < 50 years and the 
patients aged ≥ 50 years (Fig. 10L-N).

Fig. 4  Clinical subgroup analysis of pyroptosis-related genes (PRGs) expression based on the MMRF project. (A) The expression of PRGs in the gender 
subgroup. (B) The expression of PRGs in the age subgroup. (C) The expression of PRGs in the ISS stage subgroup. *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: 
p < 0.0001; ns: not significant
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Construction of the individualized prognostic prediction 
model
The univariate Cox regression analysis demonstrated that 
in addition to RS, the factors (gender, age, and ISS stage) 
had a statistically significant impact on patient survival 
(Fig. 11A). The multivariate Cox regression analysis dis-
played that age, ISS stage, and RS were the independent 
prognostic factors (Fig. 11B). To construct a nomogram 
with the powerful predictive ability, we generated four 
nomograms with different variables and calculates the 
c-index values. The nomograms constructed by ISS stage, 
RS, and ISS stage combined with gender and age had a 
c-index of 0.661, 0.648, and 0.690, respectively, while the 
nomogram (Fig.  11C) constructed by gender, age, ISS 
stage, and RS had a c-index of 0.721, indicating the best 
prognostic predictive ability. The calibration curves of the 
nomogram with 4 variables predicting 1-, 3-, and 5-year 
survival for patients with MM were shown in Fig. 11D-F.

Discussion
MM is the second most common hematological malig-
nancy. Despite recent advances in therapy, there are 
still subsets of patients with poor survival. At present, 
lots of prognostic markers have been found. Whereas 
they are not sufficient to change the treatment of MM, 
and most patients still use the same treatment proto-
cols. New approaches to better risk stratify patients with 
MM are necessary [28, 29]. Pyroptosis is an inflamma-
tory cell death mediated by caspase and gasdermin fam-
ily proteins; under the action of caspases, gasdermins 
can punch holes in the cell membrane, releasing inflam-
matory factors and inducing cell death [30]. In recent 
years, pyroptosis has received great attention due to its 
effect on antitumor immunity [31, 32]. Besides, several 
studies showed that pyroptosis could fuel tumor pro-
gression [33–35]. These suggested that pyroptosis might 
have potential prognostic value. However, there are still 
no exactly prognostic markers for pyroptosis in MM. To 

Fig. 5  Analysis of immune infiltration. (A) Differences of immune infiltration between patients with multiple myeloma and controls from the GSE39754 
dataset. *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001; ns: not significant. (B) The matrix of the correlations between the infiltration degrees of each 
immune cell in the MMRF project. Blue represents a positive correlation. Red represents a negative correlation. The darker color represents a larger cor-
relation index. Black X represents no statistical significance. (C) The correlation matrix between pyroptosis-related genes and immune cells in the MMRF 
project. Red represents a positive correlation. Blue represents a negative correlation. The darker color represents a larger correlation index. Correlation 
coefficients and p values were marked in the box
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evaluate the role of PRGs in the prognosis of MM, we 
performed this study.

By comparing the expression of PRGs in the MM cells 
and normal plasma cells, 12 differentially expressed 
PRGs were identified. Consistent with the prior study 
[12], GSDMB and AIM2 were overexpressed in the MM 
group. Furthermore, their expression levels increased 
with the ISS stage. GSDMB, belonging to the gasder-
min family, can trigger pyroptosis after cleavage [36]. 
It is highly expressed in a variety of tumors, and corre-
lated with cancer cell invasion, progression, and metas-
tasis [37]. AIM2 is a sensor molecule, which can directly 
recognize double-stranded DNA and form an activated 
inflammasome with apoptosis-associated speck-like pro-
tein containing a CARD (ASC) and caspase-1, thereby 
inducing pyroptosis [38]. High expression of AIM2 is 
observed in some malignancies, e.g., lung cancer, and 
nasopharyngeal carcinoma; depending on the type of 
cancer, AIM2 plays a pro-cancer or anti-cancer role [39]. 
The relationship between AIM2 and MM is unclear. By 
the immune infiltration analysis, we found it was sig-
nificantly negatively correlated with activated NK cells, 
the reduction of which promotes the formation of an 
immunosuppressive microenvironment in MM [40]. The 
prognosis analysis revealed that high expression of AIM2 
predicted poor survival in MM.

A total of 33 PRGs in the MMRF project were rela-
tively conserved and stably expressed. Based on these 
genes, we defined 4 MM molecular subtypes and found 
that patients in cluster 1 had poorer survival than those 
in cluster 2. The activities of two differential pathways, 
including the toll-like receptor signaling pathway and 
cytosolic DNA sensing pathway, were upregulated in 
cluster 1, which can induce an immunosuppressive 
microenvironment and protect tumors from attack [41, 
42]. The heatmap of PRG expression in 4 clusters indi-
cated that IL-6 was overexpressed in cluster 1. IL-6 is a 
member of the pro-inflammatory cytokine family and 
plays an important role in mediating drug resistance and 
survival in MM [43]. The immune infiltration analysis 
revealed that the infiltration degrees of many immune 
cells were different in cluster 1 and cluster 2, which indi-
cates the composition of the immunological microenvi-
ronment may affect the prognosis of myeloma. Li et al. 
[13] also performed a clustering analysis based on the 
TCGA-MMRF database and identified two clusters using 
the R package “ConsensusClusterPlus”. Similar to the 
findings of our study, their study showed that the levels 
of immune activation were different in two clusters, indi-
cating that pyroptosis could be involved in defining the 
immunological microenvironment of MM [13].

Fig. 6  Molecular subtype analysis based on the MMRF project. (A) The process of NMF clustering. (B) The consensus map of NMF clustering. (C) The plot 
of principal component analysis. (D) The survival curves for 4 clusters (the K-M method). (E) The survival curves of cluster 1 and cluste 2 (the K-M method). 
(F) The heatmap of differential pathways in cluster 1 and cluster 2 by the GSVA analysis
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Fig. 8  Immune infiltration in 4 clusters and the correlations between pyroptosis scores of each cluster and immune cells based on the MMRF project. 
(A) The box plots of immune infiltration in 4 clusters. **: p < 0.01; ****: p < 0.0001; ns: not significant. (B) The matrix of the correlations between pyroptosis 
scores of each cluster and immune cells. Red represents a positive correlation. Blue represents a negative correlation. The darker color represents a larger 
correlation index. Correlation coefficients and p values were marked in the box

 

Fig. 7  Pyroptosis-related gene expression in 4 clusters and pyroptosis scores within three clinical subgroups in each cluster based on the MMRF project. 
(A) The heatmap of pyroptosis-related gene expression in 4 clusters. The comparison of pyroptosis scores for gender (B), age (C), and ISS stage (D) sub-
groups in 4 clusters. *: p < 0.05; **: p < 0.01; ns: not significant
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To construct a prognostic model, 9 PRGs were screened 
out as prognostic markers, namely AIM2, CASP5, IL1B, 
IL6, NLRP6, NOD1, PRKACA, PYCARD, and SCAF11, 
the RS consisting of which had high predictive perfor-
mance, and the nomogram showed the powerful predic-
tive ability. Compared to the RS in the previous studies 
[12, 13], we found that AIM2 was present in all three 
studies, while IL-IB was present in our study and Wang et 
al.‘s study [12]. Li et al. [13] detected the relative expres-
sion of AIM2 in the MM group and the control group 
by quantitative real-time PCR and found there were no 
differences in the expression of AIM2 (p = 0.079), but 
the control samples they chose were from patients with 
iron deficiency anemia, and they didn’t describe whether 
they isolated normal plasma cells. IL1B is an important 
mediator of the inflammatory response and has a dual 
effect on tumors [44]. Takagi et al. [45] demonstrated 
that IL-1B is critical to platelet-mediated MM progres-
sion. For the remaining 7 genes, CASP5 is a member of 
the caspase family. After activation, it can cleave GSDMD 
to execute pyroptosis and stimulate inflammation [46]. 

NLRP6 is the sensor component of the NLRP6 inflam-
masome, which mediates the maturation and secretion of 
IL-18 and IL-1B [47]. Yu et al. [48] revealed that NLRP6 
inflammasome interacted with SP1 to induce immune 
evasion in glioma cells. As with NLRP6, NOD1 is also a 
member of the NOD-Like Receptor (NLR), and it could 
modulate the immunosuppressive activity of myeloid 
cells in colorectal cancer [49]. PRKACA is one of the 
catalytic subunits of protein kinase A and was found to 
mediate resistance to HER2-targeted therapy in breast 
cancer [50]. PYCARD is an adaptor protein that assem-
bles the inflammasome, high expression of which was 
considered to be an independent predictor of unfavor-
able prognoses in glioma and could promote glioma cell 
proliferation and migration [51]. SCAF11, also known as 
caspase-11, is a pro-inflammatory enzyme, which may 
have a role in cancer-associated angiogenesis [52]. Chu et 
al. [53] demonstrated that knocking down SCAF11 sup-
pressed cell proliferation and colony formation in breast 
cancer cell lines.

Fig. 9  Survival analysis of pyroptosis-related genes (PRGs) and prognostic marker screening by the LASSO regression based on the MMRF project. (A) The 
forest plot of the effect of PRG expression levels on patient survival by the Cox regression analysis. (B-C) Use of the LASSO model to screen prognostic 
markers and use of the partial likelihood bias with 10-fold cross-validation to determine the optimal λ. (D) The ROC curve was used to evaluate the predic-
tive ability of the LASSO model. (E) The ROC curves and AUC values of the risk score for predicting 1, 3, and 5-year survival of patients
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There are still some limitations in the study. Firstly, the 
revised ISS (R-ISS) stage was not included in our pre-
dictive model because of the lack of related data in the 
MMRF project. Compared with the ISS stage, the R-ISS 
stage incorporates two additional prognostic factors: 
genomic features and LDH levels at diagnosis. It is now 
considered the standard risk stratification model for 
patients with newly diagnosed MM, although it classifies 
most patients into the intermediate-risk category (R-ISS 
II) [54]. Hence, our model may lack some predictive 
power. Then, no experiments were done to validate our 
results. We identified 12 differentially expressed PRGs 
and 9 PRGs as prognostic markers, which should be veri-
fied by western blot (WB), quantitative real-time PCR, 
and a clean loss-of-function and gain-of-function study. 
Besides, further clinical analysis is necessary to detect the 
prognostic performance of these genes.

In conclusion, we identified 9 PRGs as prognostic 
markers for MM and constructed a prognostic predic-
tive model with high predictive performance. This model 
can enhance the predictive ability of ISS staging and give 
a reference for clinical decision-making. These new prog-
nostic markers based on pyroptosis could provide some 
insights for follow-up studies and facilitate the develop-
ment of novel risk stratification for MM.

Fig. 10  Survival analysis of patients from the MMRF project grouped by the risk score and validation by the GSE2658 dataset. (A) The survival curves for 
patients in the high- and low-risk groups from the MMRF project (the K-M method). (B) The survival curves for patients in the high- and low-risk groups 
from the GSE2658 dataset (the K-M method). (C-K) The survival curves for patients in high and low expression groups of 9 prognostic genes in the 
GSE2658 dataset (the K-M method). (L-N) Differences of risk scores in clinical subgroups of age, gender, and ISS stage. ****: p < 0.0001; ns: not significant

 



Page 13 of 15Zhang et al. BMC Medical Genomics           (2023) 16:32 

Abbreviations
ASC	� apoptosis-associated speck-like protein containing a CARD
AUC	� area under the curve
AIM2	� absent in melanoma 2
BH	� Benjamini-Hochberg
CASP1	� cysteine-aspartic acid protease-1
CASP3	� cysteine-aspartic acid protease-3
CASP4	� cysteine-aspartic acid protease-4
CASP5	� cysteine-aspartic acid protease-5

CASP6	� cysteine-aspartic acid protease-6
CASP8	� cysteine-aspartic acid protease-8
CASP9	� cysteine-aspartic acid protease-9
 C-index	� consistency index
ELANE	� elastase, neutrophil expressed
GEO	� Gene Expression Omnibus
GPX4	� glutathione peroxidase 4
GSDMA	� gasdermin A
GSDMB	� gasdermin B

Fig. 11  Construction of a predictive nomogram based on the MMRF project. (A-B) The forest plots of the effect of gender, age, ISS stage, and risk score 
on patient survival by the univariate and multivariate Cox regression analysis. (C) The nomogram was constructed by gender, age, ISS stage, and risk score. 
(D-F) The calibration curves for the nomogram predicting 1-, 3-, and 5-year survival for patients with multiple myeloma
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IL-1B	� interleukin 1 beta
IL-6	� interleukin 6
ISS	� International Staging System
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NLRC4	� NLR family CARD domain containing 4
NLRP1	� NLR family pyrin domain containing 1
NLRP2	� NLR family pyrin domain containing 2
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NLRP6	� NLR family pyrin domain containing 6
NLRP7	� NLR family pyrin domain containing 7
NMF	� Non-negative matrix factorization
NOD1	� nucleotide binding oligomerization domain containing 1
NOD2	� nucleotide binding oligomerization domain containing 2
PJVK	� pejvakin/deafness, autosomal recessive 59
PLCG1	� phospholipase C gamma 1
PRGs	� pyroptosis-related genes
PRKACA	� protein kinase cAMP-activated catalytic subunit alpha
PYCARD	� PYD and CARD domain containing
R-ISS	� revised ISS
RNA-seq	� transcriptome sequencing
ROC	� receiver operating characteristic
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