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Abstract 

Alzheimer’s disease (AD) is the most prevalent cause of dementia and is primarily associated with memory impair-
ment and cognitive decline, but the etiology of AD has not been elucidated. In recent years, evidence has shown 
that immune cells play critical roles in AD pathology. In the current study, we collected the transcriptomic data of the 
hippocampus from gene expression omnibus database, and investigated the effect of immune cell infiltration in the 
hippocampus on AD, and analyzed the key genes that influence the pathogenesis of AD patients. The results revealed 
that the relative abundance of immune cells in the hippocampus of AD patients was altered. Of all given 28 kinds 
of immune cells, monocytes were the important immune cell associated with AD. We identified 4 key genes associ-
ated with both AD and monocytes, including KDELR1, SPTAN1, CDC16 and RBBP6, and they differentially expressed 
in 5XFAD mice and WT mice. The logistic regression and random forest models based on the 4 key genes could 
effectively distinguish AD from healthy samples. Our research provided a new perspective on immunotherapy for AD 
patients.
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Background
Alzheimer’s disease (AD) is an age-related neurodegen-
erative disorder that primarily involves memory decline 
and executive dysfunction. The main features of AD are 
abnormal aggregation of extracellular amyloid plaques 
and hyperphosphorylation of neuronal tau, which lead 
to synaptic loss and neuronal atrophy [1]. Experts now 
believe that, like other common chronic diseases, AD 

is caused by a combinational factor [2], including age, 
environment, genetics, or specific susceptibility genes 
[3–5]. Cardiovascular disease, diabetes, obesity, and diet 
are generally considered to be factors that increase the 
risk of AD [6–8]. Activated microglia and astrocytes in 
AD patient brains usually have higher levels of inflam-
matory markers, which are generally distributed around 
amyloid plaques and neurofibrillary tangles [9, 10]. The 
role of immune response in the brain of AD patients 
may be bidirectional. On the one hand, pathogenic sub-
stances such as cell debris and protein aggregates can be 
eliminated by phagocytosis of microglia and astrocytes; 
On the other hand, persistent neuroinflammation is a 
chronic response of the innate immune system to neuro-
logical changes, and the sustained activation of glial cells 
causes harm to the nervous system [11]. In cell culture 
studies, activated microglia could produce harmful sub-
stances, which may damage neurons [12–14]. Another 
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feature of AD is the impairment of the blood brain bar-
rier (BBB), and a compromised BBB might increase the 
permeability of immune cells and peripheral tissue mol-
ecules, which could lead to neurodegeneration [15]. Both 
peripheral macrophages and neutrophils can infiltrate 
the brain of AD patients through the BBB and induce the 
activated innate immune response in AD patients [16–
18]. In addition, activated T cells are also found in the 
brain of AD patients, where they could release inflam-
matory factors[19–21]. Amyloid β (Aβ), which aggre-
gates alone, has been found to be a powerful complement 
activator [22]. Activation of the complement system in 
AD patients results in the production of allergenic tox-
ins that further promote inflammation [23], cytokine-
induced APP production, and higher Aβ production due 
to increased APP amounts [24, 25]. Although numerous 
studies have shown that inflammation plays a vital role 
in the pathogenesis of AD, the identification of immune 
cells closely related to AD and the molecular mechanisms 
of AD pathogenesis requires further elucidation.

In this study, we assess the level of immune infiltration 
from the hippocampus based on the expression of given 
immune cell genes by single sample gene set enrich-
ment analysis (ssGSEA), and revealed the differences in 
the immune infiltration of hippocampal tissue in AD and 
healthy samples. We identified key genes from highly 
correlated co-expression modules, which were closely 
associated with disease and immune cells. This study laid 
the foundation for further finding effective targets for 
curing AD and developing immunomodulatory regimens 
for effective treatment of AD.

Materials and methods
Data preprocessing and immune infiltration assessment
At first, we used “hippocampus” and “Alzheimer’s dis-
ease” as keywords to search the datasets in the GEO data-
base, and we found the GSE5281 and GSE48350 datasets, 
which were both from the GPL570 platform. The ssGSEA 
could assess the infiltration of 28 immune cells for each 
AD and control sample through GSEA package [26]. We 
retained the immune cells with significant differences as 
traits for subsequent analysis (p value < 0.05).

Weighted gene co‑expression network analysis 
(WGCNA)
At first, we used the limma package to normalize the raw 
data of all samples, and then we removed genes contain-
ing NA. We used WGCNA package to construct a gene 
co-expression network to find key modules and module 
genes [27]. Genes were clustered based on the phase dis-
similarity machine. The division of modules was based on 
the high topological overlap of genes within the modules 
[28]. We selected the modules associated with disease for 

subsequence analysis. For genes within modules, we fur-
ther screened based on gene significance (GS) and mod-
ule importance (MM). The genes with high MM and high 
GS were described as the central module genes, which 
were strongly associated with disease and candidate 
immune cell. In our study, the central module genes were 
the genes in the candidate module with |MM| > 0.8 and 
|GS| > 0.2.

Functional enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis of central mod-
ule genes were conducted by clusterProfiler  [29] and 
ReactomePA packages [30].

Analysis of protein–protein interaction (PPI) 
network and identification of key genes
The Search Tool for the Retrieval of Interacting Genes 
(STRING) online tool [31] was used to analyze the PPI of 
central module genes with the default parameters. Then 
we used the cytoHubba plugin [32] of the Cytoscape 
(version 3.8.2) to identify the key genes [33]. The cyto-
Hubba provides 12 analysis algorithms to calculate hub 
genes in protein interaction network graphs, we used 
five of which to identify key genes in the PPI network, 
including Degree, Edge Penetration Component (EPC), 
Maximum Neighborhood Component (MNC), Den-
sity of Maximum Neighborhood Component (DMNC) 
and Maximum Group Centrality (MCC). We regarded 
the intersection of top10 genes, which were obtained 
by cytoHubba’s five algorithms as the key genes, the 
VennDiagram package was used to visualize these results 
[34].

Validation of the key genes
We constructed logistic regression model and random 
forest model by the intersection genes of cytoHubba’s five 
algorithms to explore the correlation between disease 
and key genes. We randomly divided all samples into test 
and training cohort according to the proportion of 3/7, 
we generated logistic regression model and random for-
est model in the training cohort and validated the per-
formance of the models in the test cohort. The receiver 
operating characteristic (ROC) curves and confusion 
matrix were used to assess the validity of the models [35].

Animals
5.5-month-old heterozygous 5XFAD mice are housed 
in Tongji University Animal Center under standard 
conditions. Aβ42 began to accumulate in the brains of 
5XFAD mice at 1.5 months of age [36]. There are many 
Aβ plaques in the hippocampus at 5.5 months of age. In 
this study, 5.5-month-old 5XFAD mice were euthanized 
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and hippocampal tissue was isolated for subsequent 
experiments. Both AD and control groups contained two 
female mice and two male mice.

RNA extraction and quantitative real‑time PCR 
(qRT‑PCR)
The total RNA of the hippocampus in all mice were 
extract by RNAiso Plus (9109, TaKaRa, China). Accord-
ing to the manufacturer’s instructions, qRT-PCR was 
performed by the AceQ Universal SYBR qPCR Master 
Mix (Q511-02, Vazyme, China). All genes’ expression 
levels were normalized to β-Actin by the comparative 
CT method (2−ΔΔCt). Table 1 showed the sequences of all 
RNA primers.

Statistical analysis
All data were visualized and analyzed by GraphPad Prism 
8. T test was used to compare expression level between 
the AD and WT groups and p value < 0.05 were consid-
ered statistically significant.

Gene set enrichment analysis (GSEA)
Based on the median expression levels of key genes, we 
divided all samples into high and low expression groups, 
and GSEA was performed to explore hallmark pathways 
between the two groups [37]. We used p value < 0.05 and 
p-adjust < 0.25 as the screening criterion for statistically 
significant.

Construction of mRNA‑miRNA‑lncRNA network
To further explore the miRNA and lncRNA regulatory 
networks associated with key genes, we constructed an 
mRNA-miRNA-lncRNA network based on the key genes 
screened in the previous result. At first, based on the 
“multiMiR” package [38], we used experimentally vali-
dated data to explore miRNAs associated with key genes. 
After obtaining miRNAs that interact with key genes, 
we used the starBase database to explore lncRNAs that 
interact with miRNAs [39]. The lncRNAs that interact 

weakly with miRNAs are removed. Our screening cri-
teria were that miRNA-lncRNA expression was nega-
tively correlated in more than four cancers and validated 
by more than three clip-seq experiments. Finally, we 
used Cytoscape for visualization of the mRNA-miRNA-
lncRNA network.

Result
Data processing
This study procedure was conducted methodically based 
on the steps outlined in the flow diagram (Fig. 1). Based 
on the search for keywords in Materials and Methods, we 
downloaded two datasets, GSE5281 and GSE48350, from 
the GEO database. As we mainly focused on the changes 
in transcriptome data of hippocampal tissue, we selected 
the data of hippocampal tissue, GSE5281 containing 23 
samples and GSE48350 containing 62 samples. The R 
software was used to process the raw expression profiles 
of these two datasets, and the limma package was used 
to normalize the raw data [40]. The batch effects of these 
two datasets were processed by the “sva” package [41].

Immune infiltration in the hippocampus of AD 
patients might be altered
As described in methods and materials, ssGSEA was 
performed on 29 AD samples and 56 control samples 
to assess the scores of 28 immune cells (Fig. 2A, B). Our 
results indicated that the scores of activated B cell, acti-
vated CD8 T cell, CD56 bright natural killer cell, effec-
tor memory CD8 T cell, eosinophil, immature B cell, 
macrophage, memory B cell, monocyte, myeloid derived 
suppressor cell, natural killer cell, natural killer T cell and 
type 17 T helper cell were significantly different between 
AD and healthy groups (p < 0.05), indicating that the level 
of immune cell infiltration might be altered in the hip-
pocampus of AD patients.

Monocytes were the important immune cell 
associated with AD in the hippocampus
To identify disease-associated immune cell types asso-
ciated with disease, we constructed gene co-expression 
modules using WGCNA. We first normalized the data 
from the datasets and subsequently removed genes con-
taining NA. 2971 genes were eligible for further analysis. 
We built a scale-free (scale-free R2 > 0.85) co-expression 
network using soft threshold power β = 12 (Additional 
file  1: Fig.  S1). These 2971 genes were clustered into 10 
different color modules (Fig.  3A, B). Then, we analyzed 
the correlation between each module and immune cell 
types or sample types (AD and control) (Figure B). As a 
result, the green module was positively correlated with 
AD but negatively correlated with monocytes, and in 
contrast, the pink module was negatively correlated with 

Table 1  The primer sequences used for RT-qPCR.

Genes Sequences

β-actin Forward: CTA​AGG​CCA​ACC​GTG​AAA​AG
Reverse: ACC​AGA​GGC​ATA​CAG​GGA​CA

Kdelr1 Forward: GTG​GTG​TTC​ACT​GCC​CGA​TA
Reverse: AAC​TCC​ACC​CGG​AAA​GTG​TC

Sptan1 Forward: ACA​AGG​ACC​CCA​CCA​ACA​TC
Reverse: GCC​TTG​ACA​GCA​TCC​TCA​CT

Cdc16 Forward: CCT​GTG​TCT​TGG​TTT​GCG​GT
Reverse: TCT​CCA​CAG​CGA​AGG​AAT​GC

Rbbp6 Forward: TTA​GCA​TGA​GCG​AGT​GGG​AC
Reverse: ACA​ACG​AAG​GAC​CCT​AAG​GC
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AD but positively correlated with monocytes (p < 0.05). 
Additionally, monocytes exhibited highly correlation 
with both pink and green module. These results sug-
gested that monocytes infiltrating the hippocampus 
might be the important immune cell associated with AD.

Pink and green central module genes were mainly involved 
in lipid metabolism, notch signaling pathway and material 
transport by Golgi‑associated vesicles transport.
13 and 55 genes with high connectivity (|MM| > 0.8 
and |GS| > 0.2) were screened from pink and green 
modules, respectively (Fig. 3C, D), which were consid-
ered as central module genes. To clarify the biological 
processes of the pink and green central module genes, 
we conducted GO, KEGG and Reactome enrichment 
analysis. According to our selection criteria, as for GO, 
the pink central module genes were mainly involved in 
misfolded protein reactions, proteasome-mediated pro-
teolytic metabolic processes and low-density lipopro-
tein particle metabolism (Fig. 4A). The KEGG analysis 
suggested the pink central module genes were mainly 
involved in type 1 diabetes mellitus, legionellosis and 

endocrine and other factor-regulated calcium reabsorp-
tion (Fig.  4B). Reactome analysis demonstrated that 
pink central module genes were mainly involved in wnt 
signaling pathway and lipid metabolism (Fig.  4C). The 
same analysis was also performed on the green mod-
ule genes. The GO analysis suggested that the 55 green 
central module genes were mainly enriched in histone 
modification and Golgi-associated vesicles transport 
(Fig.  4D). KEGG analysis revealed that the 55 green 
central module genes were mainly involved in thyroid 
hormone signaling pathway, notch signaling pathway, 
lysine degradation and C-type lectin receptor signaling 
pathway (Fig. 4E). As for Reactome analysis, green cen-
tral module genes were mainly focused on notch signal-
ing and the transport of substances between the Golgi 
and the endoplasmic reticulum (Fig.  4F). As a result, 
based on the frequency of terms, the pink central mod-
ule genes were mainly affected lipid metabolism, and 
the green central module genes were mainly affected 
notch signaling pathway and material transport by 
Golgi-associated vesicles transport.

Fig. 1  Flow chart of this study



Page 5 of 14Liu et al. BMC Medical Genomics           (2023) 16:53 	

Fig. 2  Immune infiltration analysis.A Boxplot of the enrichment score of 28 immune cells in each AD and healthy sample. B The immune cells with 
significant differences between AD and healthy samples
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Fig. 3  Identification of key modules correlated with AD and monocytes in the datasets through WGCNA.A Cluster dendrogram of all genes. B The 
heatmap showed relationship of each module and traits. C Scatterplot of genes in the pink module. D Scatterplot of genes in the green module



Page 7 of 14Liu et al. BMC Medical Genomics           (2023) 16:53 	

KEDLR1, SPTAN1, CDC16 and RBBP6 were 
identified as key genes associated with AD 
and monocytes
As for all the 68 central genes in the pink and green mod-
ules, we explored the PPI of these genes by STRING 
database, and the result was shown in Fig.  5A. The five 
algorithms of the cytoHubba, including EPC, MCC, 
MNC, DMNC and Degree, were used to process the PPI 
network to identify the top 10 genes (Table 2). KEDLR1, 
SPTAN1, CDC16 and RBBP6 were regarded as the key 

genes associated with monocytes and AD, which were 
the common genes identified by the five algorithms, 
respectively (Fig.  5B). Correlation analysis showed that 
KDELR1, SPTAN1 and RBBP6 were positively associated 
with AD and negatively associated with monocytes, while 
CDC16 was negatively associated with AD and positively 
associated with monocytes (Fig. 5C).

To validate correlation between KEDLR, SPTAN1, 
CDC16 and RBBP6 and AD occurrence, we constructed 
logistic regression model and random forest model. The 

Fig. 4  Functional enrichment analysis of pink and green central module genes.A The GO result of central pink module genes. B The KEGG result of 
central pink module genes [42]. C The Reactome result of central pink module genes. D The GO result of central green module genes. D The KEGG 
result of central green module genes [42]. F The Reactome result of central green module genes
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area under curve (AUC) of logistic regression model was 
0.789 (95% CI = 0.641–0.938), and the AUC of RF model 
was 0.828 (95% CI = 0.688–0.878) (Fig. 5D, F).

The results of confusion matrix were shown in Fig. 5E, 
G, and the accuracy and recall of the models were shown 
in Table  3. These results suggested the logistic regres-
sion model and random forest model based on KDELR1, 
SPTAN1, CDC16 and RBBP6 can distinguish AD patients 
from healthy samples. Then, we verified the expres-
sion values of these 4 genes between the two groups and 
found that they were significantly different in AD and 
healthy group (Fig. 6). In summary, multiple algorithms 
verified KDELR1, SPTAN1, CDC16 and RBBP6 were the 
key genes corelated with AD.

We also validated the relative mRNA levels of Kdelr1, 
Sptan1, Cdc16 and Rbbp6 in 5XFAD mice and WT mice. 
Compared with 5XFAD mice, the relatively mRNA lev-
els of Kdelr1, Sptan1, Cdc16 and Rbbp6 were significantly 
increased in WT mice (Fig. 7).

GSEA revealed that lipid metabolism and immune 
response play important roles in AD
On the basis of the expression value of these 4 key genes, 
we performed GSEA to explore the potential pathways. 
We found that samples with high expression of KDELR1, 
SPTAN1, CDC16 and RBBP6 were enriched for adi-
pogenesis, fatty acid metabolism, glycolysis, mTORc1 
signaling, MYC targets V1 and protein secretion pro-
teolysis (Fig.  8). In addition, samples with high expres-
sion of KDELR1 were enriched in four other gene sets 
including apical surface, hedgehog signaling, oxida-
tive phosphorylation and UV response up (Fig.  8A), 
while samples with high expression of SPTAN1 were 
enriched in UV response down (Fig. 8B). Apical surface, 
Cholesterol homeostasis and UV response down were 
also significantly enriched in samples with high expres-
sion of CDC16 (Fig.  8C). Coagulation, interferon alpha 
response and interferon gamma response gene sets was 
significantly enriched in samples with high expression 
of RBBP6 (Fig.  8D). It has been shown that dysregula-
tion of lipid metabolism is associated with aging, altera-
tions in lipid rafts and brain lipid peroxidation levels[43]. 
Our results showed the core role of KDELR1, SPTAN1, 
CDC16 and RBBP6 in the lipid metabolism and immune 
response.

Construction of key gene‑related 
mRNA‑miRNA‑lncRNA network
For a further understanding of the role of key genes 
in AD occurrence, we built mRNA-miRNA-lncRNA 
network based the four key genes. Firstly, 12 miRNAs 
interacting with key genes were found in the multiMiR 
database based on four key genes KDELR1, SPTAN1, 
CDC16 and RBBP6, and then 38 lncRNAs interacting 
with 12 miRNAs were identified in the starBase data-
base based on our screening criteria (Fig.  9). Thus, we 
obtained the mRNA-miRNA-lncRNA regulatory net-
work of 4 key genes (containing 54 nodes and 60 edges). 
These interacting RNAs may be key mechanisms affect-
ing the pathogenesis of AD.

Discussion
Microglia are the brain-resident immune cells, and many 
studies regards Aβ-associated mononuclear phagocytes 
as microglia [44]. There are now evidences that blood-
derived monocytes can infiltrate the brain of AD patients 
through the BBB [45, 46]. In cell cultures incorporating 
Aβ42, the percentage of monocytes/macrophages (M/M) 
is significantly higher and M/M express chemokines to 
promote their migration through the BBB [47]. Mono-
cytes recruited in the brain can phagocytose Aβ in the 
brain parenchyma [48]. In addition, not only Aβ in cen-
tral nervous system can be removed, but also Aβ that 
spreads from the brain to the periphery can be captured 
and phagocytosed by peripheral monocytes. In this study, 
we analyzed transcriptomic data from hippocampus of 
AD patients in GEO database. We revealed the difference 
immune cell types in hippocampus between AD patients 
and healthy controls. In addition, we identified the pink 
and green modules are the key modules closely related to 
AD.

Based on the PPI network and cytoHubba, we identi-
fied 4 key genes associated with monocytes and AD, 
including KDELR1, SPTAN1, CDC16 and RBBP1, and 
found that these 4 genes differentially expressed in 
5XFAD transgenic mice and WT mice. The GSEA and 
mRNA-miRNA-lncRNA network based on these 4 key 
genes further confirmed the possibility of these key genes 
affecting AD.

KDELR1, KDEL endoplasmic reticulum protein 
retention receptor 1. It could regulate integrated stress 
responses (ISR), and promote the naive T-cell survival 

(See figure on next page.)
Fig. 5  Multiple algorithms identified 4 key genes associated with AD and monocytes.A The PPI network of central genes in the pink and green 
modules. B A Venn diagram between five algorithms of cytoHubba. The coincident part represents the four genes (KDELR1, SPTAN1, CDC16 and 
RBBP6) identified by all five algorithms. The lines between nodes in the PPI network diagram represent the interactions between the nodes. C The 
correlations between 4 key genes and monocytes and AD. D ROC curve of logistic regression model could distinguish AD and control samples. 
E Confusion matrix of the logistic regression model in test cohort. F ROC curve of the RF model could distinguish AD and control samples. G 
Confusion matrix of the RF model in test cohort
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Fig. 5  (See legend on previous page.)
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in  vivo [49], and regulates T-cell homeostasis through 
PP1 (protein phosphatase) [50]. KDELR1 is also one of 
the candidate molecules associated with neurodevelop-
mental disorders [51], suggesting it may be one of the 
key molecules associated with the occurrence of AD. 
SPTAN1, spectrin alpha, non-erythrocytic 1, is essen-
tial for myelin formation [52]. Patients with SPTAN1 
mutations have also been found to present with periph-
eral neuropathy, severe dyslexia, and executive func-
tion difficulties [53]. SPTAN1 is downregulated in the 
hippocampus of patients with medial temporal lobe 
epilepsy(MTLE), which is usually involved in drug-
resistant seizures and cognitive deficits[54]. Therefore, 
we believe that SPTAN1 is also a key potential molecule 
associated with Alzheimer’s disease. CDC16, cell divi-
sion cycle 16, functions as a protein ubiquitin ligase. 
Together with other proteins, CDC16 forms a protein 
complex containing the Tre2-Bub2-Cdc16 (TBC) struc-
tural domain, the protein that belongs to the Rab-specific 
GTPase-activating protein (GAP) and is highly conserved 

Fig. 6  The expression value of the four genes in AD and control samples.A–D The expression value of KDELR1, SPTAN1, CDC16 and RBBP6 in AD 
(n = 29) and control (n = 56) samples. Statistical analysis was performed by t test

Table 2  The top 10 genes identified by five algorithms of the 
cytoHubba, including EPC, MCC, MNC, DMNC and Degree

Degree MNC DMNC MCC EPC

1 COPB1 COPB1 CDC16 COPB1 COPB1

2 KDELR1 CLTA RBBP6 KDELR1 KDELR1

3 CDC16 KDELR1 RNF4 CDC16 SPTAN1

4 KAT2A ASH1L FBX011 SPTAN1 TMED9

5 SETD2 SETD2 TMED9 CLTA CLTA

6 RBBP6 SPTAN1 KDELR1 RBBP6 SETD2

7 CLTA CDC16 GAK FBX011 CDC16

8 FBX011 RBBP6 SPTAN1 SETD2 RBBP6

9 SPTAN1 RNF4 ARHGAP1 TMED9 KPNB1

10 ASH1L FBX011 KAT2A ASH1L ASH1L

Table 3  The confusion matrix index of logistic regression and 
random forest models

Index Logistic regression model Forest model

Test cohort Test cohort

Precision 0.7727 0.8333

Recall 0.7191 0.7895
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in eukaryotes [55]. The TBC and LysM Domain contain-
ing (TLDc) proteins containing the structural domain of 
TBC1 domain family member 24 (TBC1D24) are associ-
ated with neurodevelopmental disorders and are mainly 
involved in the oxidative stress response [56, 57]. There-
fore, we speculate that CDC16 may also be one of the key 

molecules affecting neurodevelopment in AD. RBBP6, 
retinoblastoma binding protein 6. In various human can-
cers, RBBP6 is involved in the regulation of cell cycle and 
apoptosis [58]. However, the role of RBBP6 has not been 
studied in AD, and it may be a new target related to AD 
pathology. What’s more, we performed the GSEA and 
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Fig. 7  The validation of 4 key genes in 5XFAD and WT mice.A–D The relative mRNA levels of Kdelr1, Sptan1, Cdc16 and Rbbp6 in WT and 5XFAD 
mice. ns p > 0.05, *p < 0.05, **p < 0.01 and ***p < 0.001. Statistical analysis was performed by t test
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Fig. 8  The GSEA results of 4 key genes.A–D The GSEA results of the group with high expression of KDELR1, SPTAN1, CDC16 and RBBP6

Fig. 9  The mRNA-miRNA-lncRNA regulatory network of 4 key genes
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mRNA-miRNA-lncRNA regulatory network to have a 
more comprehensive knowledge of the roles of key genes 
in AD.

To sum up, the current study initially assessed the 
abundance of immune cells in the hippocampus and 
identified monocytes were associated with AD. We iden-
tified and verified 4 key genes associated with the occur-
rence of AD by multiple methods, and also revealed the 
signaling pathways associated with immune response in 
AD, which might provide new insights for immunological 
studies in AD pathology.
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