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Abstract
Background  Alzheimer’s disease (AD) is a progressive, neurodegenerative disorder with insidious onset. Some 
scholars believe that there is a close relationship between pyroptosis and AD. However, studies with evidence 
supporting this relationship are lacking.

Materials and methods  The microarray data of AD were retrieved from the Gene Expression Omnibus (GEO) 
database with the datasets merged using the R package inSilicoMerging. R software package Limma was used to 
perform the differential expression analysis to identify the differentially expressed genes (DEGs). We further performed 
the enrichment analyses of the DEGs based on Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) databases to identify the metabolic pathways with a significant difference. The Gene Set Enrichment 
Analysis (GSEA) was applied to identify the significant pathways. The protein-protein interaction (PPI) network was 
constructed based on the STRING database with the hub genes identified. Quantitative real-time PCR (qRT-PCR) 
analyses based on HT22 cells were performed to validate the findings based on the microarray analysis. Gene 
expression correlation heatmaps were generated to evaluate the relationships among the genes.

Results  A new dataset was derived by merging 4 microarray datasets in the hippocampus of AD patients in the 
GEO database. Differential gene expression analysis yielded a volcano plot of a total of 20 DEGs (14 up-regulated and 
6 down-regulated). GO analysis revealed a group of GO terms with a significant difference, e.g., cytoplasmic vesicle 
membrane, vesicle membrane, and monocyte chemotaxis. KEGG analysis detected the metabolic pathways with a 
significant difference, e.g., Rheumatoid arthritis and Fluid shear stress and atherosclerosis. The results of the Gene Set 
Enrichment Analysis of the microarray data showed that gene set ALZHEIMER_DISEASE and the gene set PYROPTOSIS 
were both up-regulated. PPI network showed that pyroptosis-related genes were divided into two groups. In the 
Aβ-induced HT22 cell model, three genes (i.e., BAX, IL18, and CYCS) were revealed with significant differences. Gene 
expression correlation heatmaps revealed strong correlations between pyroptotic genes and AD-related genes.
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Introduction
Alzheimer’s disease (AD) is the most common neuro-
degenerative disease of the elderly, and its incidence 
increases with age in populations around the world [1]. 
For example, in 2017, approximately 6.08 million Ameri-
cans were diagnosed with clinical AD or mild cognitive 
impairment due to AD, and this number is expected to 
reach 15  million by 2060.[2]. The most typical clinical 
manifestation of AD is the gradual decline of cognitive 
ability in patients, which appears in the early stage of 
AD without the two pathological signs of senile plaques 
and neurofibrillary tangles [3, 4]. Although the molecu-
lar mechanisms of these two pathological changes have 
been well studied, therapeutic strategies targeting these 
changes have not been successful in the treatment of AD. 
So far, there are no effective drugs to prevent or treat 
cognitive decline in AD patients.

Pyroptosis, also known as inflammatory necrosis, is a 
type of programmed cell death characterized by the con-
tinuous expansion of cells until the cell membrane rup-
tures, resulting in the release of cellular contents and 
the activation of a strong inflammatory response [5]. As 
a new type of programmed cell death discovered and 
confirmed in recent years, pyroptosis is characterized 
by its dependence mainly on caspase-1, caspase-4, cas-
pase-5, and caspase-11 and accompanied by the release 
of a large number of pro-inflammatory factors [6]. The 
morphological characteristics, occurrence, and regula-
tory mechanism of pyroptosis are different from those of 
other programmed cell death conditions such as apop-
tosis and necrosis [7]. Pyroptosis mainly relies on the 
activation of a group of proteins of the caspase family by 
the inflammasome, cleaving and activating the gasder-
min protein, which is translocated to the membrane to 
form holes and to make cell swell, causing the cytoplas-
mic outflow and finally leading to cell membrane rupture 
and pyroptosis [8]. Studies have shown that pyroptosis is 
widely involved and plays important roles in the occur-
rence and development of infectious diseases, nervous 
system-related diseases, and atherosclerotic diseases 
[9–11]. Pyroptosis also plays important role in AD. For 
example, studies have shown that amyloid-β induces 
NOD-like receptor (NLR) family pyrin domain-con-
taining 1 (NLRP1)-dependent neuronal pyroptosis in 
a mouse model of AD [12], Parkinson disease protein 7 
(PARK7/DJ-1) affects oxidative stress and pyroptosis in 
hippocampal neurons of a mouse model of AD by reg-
ulating the nuclear factor-erythroid 2-related factor 2 

(Nrf2) pathway [13], while schisandrin inhibits NLRP1 
inflammasome-mediated neuronal pyroptosis in a mouse 
model of AD [14]. To date, the molecular mechanisms 
regulating the development of pyroptosis are still unclear. 
Therefore, it is important to identify and investigate 
the pyroptosis-related genes differentially expressed in 
AD, to help understand the occurrence of pyroptosis in 
related diseases, and to further explore their functions in 
the development, prognosis, and clinical prevention and 
treatment of these diseases.

In our study, in order to explore the roles of pyroptosis-
related genes in AD, microarray datasets from the hip-
pocampus of AD patients were first merged to identify 
the differentially expressed genes (DEGs) related to AD. 
The DEGs were further annotated and enriched based 
on Gene Ontology (GO; http://geneontology.org/) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG; 
https://www.genome.jp/kegg/) databases. Through 
the Gene Set Enrichment Analysis (GSEA) database, 
the overall gene expression variations associated with 
AD and pyroptosis were detected. The protein-protein 
interaction (PPI) network was constructed based on 
the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING; https://string-db.org/) database to 
analyze the relationships among the pyroptosis-related 
genes. The findings were validated with both the dataset 
GSE48350 and the cellular models of AD, showing that 
the expressions of genes associated with pyroptosis were 
significantly altered in AD, providing novel insights into 
the pathogenesis and potential clinical treatment of AD.

Materials & methods
Data preparation
Gene expression profiles of AD were obtained from the 
Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/; accessed April 23, 2021). 
The sample informations involved in all GEO data-
sets in this study are in Supplementary File S2. The 
GSE36980 (https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA157435) dataset contains gray matter RNA sam-
ples from the frontal, temporal cortex, and hippocampus 
of 88 postmortem brains, 26 of which were pathologi-
cally diagnosed AD or AD-like disorder. High-quality 
RNA (RIN ≥ 6.9) samples were subjected to microarray 
analysis using the Affymetrix Human Gene 1.0 ST plat-
form, and only results that passed the Human Gene 1.0 
ST array quality control check were retrieved. In total, 
gene expression profiles were collected from three 
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sets of samples: 33 frontal cortex samples (15 from AD 
patients), 29 temporal cortex samples (10 AD patients), 
and 17 hippocampal samples (7 AD patients). In par-
ticular, in the dataset GSE1297 (https://www.ncbi.nlm.
nih.gov/bioproject/PRJNA90219), we have analyzed 9 
controls and 22 different severities based on 31 indepen-
dent microarrays of Hippocampal gene expression in AD 
subjects and correlation of these gene expressions with 
MiniMental Status Examination (MMSE) and neurofi-
brillary tangles (NFT) scores in all 31 subjects. In data-
set GSE28146 (https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA139561), where the major white matter tracts have 
been excluded using laser capture microdissection, we 
extracted formalin from the same subjects’ CA1 hippo-
campal gray matter was selectively collected from fixed, 
paraffin-embedded (FFPE) hippocampal sections. The 
samples in GSE29378 (https://www.ncbi.nlm.nih.gov/
bioproject/PRJNA140105) were based on total RNA 
from 60  μm frozen human hippocampal sections. Con-
trol and AD brains were well matched for all non-disease 
characteristics. Both CA1 and CA3 sections of the same 
individual were taken from the same section. Several 
regional and disease-related comparisons were made. 
Four datasets (GSE36980, GSE1297, GSE28146, and 
GSE29378) were combined for deg detection in the hip-
pocampus. The dataset GSE 48,350 (https://www.ncbi.
nlm.nih.gov/bioproject/PRJNA209800) contains cases 
from normal controls (NC; ages 20 to 99 years) and AD. 
The expression changes of synaptic and immune-related 
genes were analyzed, and the age-related changes, AD-
related changes, and region-specific change patterns of 
gene expression were investigated. These AD cases were 
processed concurrently with controls (young and old) in 
dataset GSE11882, which only contains data from normal 
controls. The dataset GSE 48,350 was used to validate 
the DEGs identified in the hippocampus. The final data 
were obtained by combining multiple datasets using the 
R package from silicomerging [15] to generate a single 
data matrix (Table S1) and further processing the data 
matrix using the method of Johnson et al. [16] to remove 
the batch effects matrix. (Table S2).

Differential gene expression analysis
Limma [17] is a differential quality articulation screen-
ing technique in light of summed up straight models. We 
played out the differential investigation in light of the R 
programming bundle Limma (Form 3.40.6) to acquire 
the DEGs between various examination gatherings and 
control gatherings. In particular, we originally played 
out the Log2 change of the articulation range dataset 
and afterward utilized lmFit capability to play out the 
numerous straight relapse examination. We further uti-
lized eBays capability to compute the directed t-insights, 
directed f-measurement, and log-chances of differential 

articulation by observational Bayes balance of the stan-
dard blunders towards a typical value, and lastly got 
the massive distinction of every quality. The changed 
P-esteem was broken down to address the misleading 
positive outcomes in the GEO datasets. The boundar-
ies " Adjusted P < 0.05 and Log2 (Fold Change) > 0.6 or 
< − 0.6” were characterized as the edges for the screening 
of differential articulation of mRNAs. The crate plot and 
heatmap were produced by the capabilities ggplot2 and 
heatmap, separately, of the R programming bundle.

GO annotation and KEGG pathway enrichment analysis
We played out the improvement investigations of the 
DEGs distinguished by Limma in light of KEGG [18] 
rest Programming interface (https://www.kegg.jp/kegg/
rest/keggapi.html) to recognize the metabolic path-
ways enhanced with massive distinction. The GO com-
ments of the DEGs were performed in view of the R 
bundle org.hs.eg.db (Version 3.1.0) as the foundation 
and the R programming bundle clusterProfiler (Version 
3.14.3) to acquire the quality sets enhanced with tremen-
dous contrast in light of P < 0.05 and false discovery rate 
(FDR) < 0.25. The base and most extreme qualities were 
set to 5 and 5000, separately.

Gene set enrichment analysis
This GSEA (https://www.gseamsigdb.org/gsea/index.
jsp) is commonly used to determine statistically signifi-
cant differences between two biological states (e.g., phe-
notypes) in an innately defined set of genes [19]. In our 
study, GSEA was applied to identify important pathways 
in the merged datasets. The Spearman correlation coef-
ficient between genes and sample labels is defined as the 
weight of genes [20]. Statistical significance was assessed 
by comparing the enrichment scores to the enrichment 
results generated by random permutation of 1000 gene 
sets to obtain nominal P-values. The significance level 
of metabolic pathways was determined by normalized 
enrichment score (NES) ≥1.0, FDR ≤ 0.25, P ≤ 0.05.

Protein-protein Interaction (PPI) analysis
A PPI network based on protein-protein interaction (PPI) 
analysis was established in the STRING database (Ver-
sion 11.0; http://string-db.org/) [21].

Validation of pyroptosis-related genes
Validation of the pyroptosis-related genes identified in 
the microarray datasets was performed based on dataset 
GSE48350. The pyroptosis-related genes in GSE48350 
were compared using the Wilcoxon test. A total of five 
datasets (i.e., GSE1297, GSE28146, GSE29378, GSE36980, 
and GSE48350) were used to investigate the association 
between pyroptosis-related genes and AD-related genes. 
The two-gene and multiple-gene correlation maps were 
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generated by the R software packages ggstatsplot heat-
map, respectively. Spearman’s correlation analysis was 
performed to analyze the correlations between quanti-
tative variables without normal distributions with the 
significant difference set to P < 0.05. The quantitative 
real-time PCR (qRT-PCR) analysis was performed using 
the mouse hippocampal neuron cell line HT22 as the 
validated cell model induced by 10 µM Aβ1–42 (P9001, 
rPeptide, Beyotime, Beijing, China) to verify the expres-
sion patterns of pyroptosis-related genes revealed in the 
microarray analysis. The primer sequences were synthe-
sized by RIBOBIO Corporation, Guangzhou, China (File 
S1). Trizol (Thermo Fisher Scientific Inc., MA, USA) 
method was employed to extract the total RNA from 
HT22 cells in each group according to the manufacturer’s 
protocol. The total RNA (1  µg) was reverse-transcribed 
to cDNA by use of PrimeScript RT Reagent Kit with 
gDNA Eraser (Accurate Biotechnology Co., Ltd., Hunan, 
China). All genes involved in the experiment were exam-
ined by a quantitative real-time PCR amplifier (Applied 
Biosystems QuantStudio 5, ABI Company, Oyster Bay, 
New York, USA) with SYBR® Premix Ex Taq (Accurate 
Biotechnology Co., Ltd., Hunan, China). PCR procedure: 
pre-denaturation at 95 °C for 30 s, 40 cycles of denatur-
ation at 95 °C for 5 s, annealing at 60 °C for 30 s, exten-
sion at 72 °C for 30 s, and finally melting at 95 °C for 30 s.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 
(version 8.0.0). The data of the GEO dataset were tested 
for normality and homogeneity of variance. Data that 
passed these two tests were compared between the two 
groups using the t-test. P values less than 0.05 were con-
sidered statistically significant.

Results
Analysis of differentially expressed genes (DEGs) in the 
combined datasets
Firstly, we merged four gene sets (Table S1) based on 
the number of genes in the dataset (Fig. 1A). And then, 
we remove the batch effect between these gene sets. 
The Uniform Manifold Approximation and Projection 
(UMAP) plot showed these changes before and after 
removal (Fig. 1B, C). These are also displayed by the box-
plot which showed that the data distributions between 
the datasets become much more consistent, i.e., the 
medians existed along the same line (Fig.  1D, E; Table 
S2). Next, the dataset after the batch effect removal was 
executed for the differential gene analysis. The volcano 
plot showed that a total of 20 DEGs existed, including 
14 up-regulated and 6 down-regulated (Table 1; Fig. 1F). 
Their relative expression levels between samples are dis-
played in the cluster map and heatmap in Fig. 1G.

GO annotation and KEGG pathway enrichment analysis
To further explore the functions and relevant pathways 
of the potential target genes, the DEGs were analyzed 
by functional enrichment analyses and KEGG analy-
sis (Fig.  2; Table S3). GO analysis revealed these DEGs 
mainly focused on the functions such as cytoplasmic vesi-
cle membrane, vesicle membrane, monocyte chemotaxis, 
cytoplasmic vesicle part, whole membrane, cytoplasmic 
vesicle, intracellular vesicle, mononuclear cell migration, 
lateral plasma membrane, and cell chemotaxis. KEGG 
analysis revealed the following metabolic pathways with 
a significant difference: Rheumatoid arthritis, Fluid 
shear stress and atherosclerosis, Type I diabetes mellitus, 
Leishmaniasis, MAPK signaling pathway, Th1 and Th2 
cell differentiation, IL-17 signaling pathway, Hematopoi-
etic cell lineage, Chagas disease (American trypanoso-
miasis), Th17 cell differentiation, TNF signaling pathway, 
and Yersinia infection. These results may indicate that 
immunity, inflammation, and metabolic abnormalities 
could participate in the occurrence and progress of AD.

Gene Set Enrichment Analysis (GSEA)
To explore the merged hippocampal dataset more com-
prehensively, we conducted the GSEA. The results 
showed that the gene set ALZHEIMER_DISEASE was 
higher expressed in the AD group than in the NC group 
(Fig. 3A, B; Table S4). The relative expression levels of the 
representative genes between the samples were shown 
in Fig.  3A. Considering the DEGs enriched in inflam-
mation-related pathways, we carried out GSEA analysis 
based on the gene set PYROPTOSIS. Interestingly, the 
gene set ALZHEIMER_DISEASE and PYROPTOSIS 
from the merged hippocampal dataset showed similar 
expression trends(Fig.  4A, B; Table S5), implying that 
pyroptosis-related genes may participate in the occur-
rence of AD.

PPI network construction
Subsequently, all the pyroptosis-related genes were fur-
ther analyzed by the STRING database to construct the 
PPI network (Fig. 4C; Table. S6). A total of 12 nod genes 
(i.e., CASP5, BAX, CASP4, IRF2, IRF1, HMGB1, IL18, 
IL1A, IL1B, CASP1, CASP3, and CYCS) were revealed 
in the same collective, while another three nod genes 
(i.e., CHMP2A, CHMP6, and CHMP7) were defined in 
another collective.

Correlation between pyroptosis-related genes and 
AD-related genes
Then we carried out the correlation exploration between 
pyroptosis-related genes from GSEA and AD-related 
genes from Disgenet in the datasets (Table S7). A large 
number of genes between them showed significant cor-
relations. IRF1 was most positively correlated with ACE 
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Fig. 1  Analysis of differentially expressed genes (DEGs) based on combined datasets. (A) Characteristics of combined datasets. (B) The Uniform 
Manifold Approximation and Projection (UMAP) plot before dataset merging. (C) UMAP plot after dataset merging. (D) Relative expression levels of genes 
before dataset merging. (E) Relative expression levels of genes after dataset merging. (F) Volcano plot of DEGs after dataset merging. (G) Heatmap of 
DEGs after dataset merging
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in GSE1297 (Fig.  5A), IRF2 was most negatively corre-
lated with MAPT in GSE28146(Fig.  5B), IL18 was most 
negatively correlated with APP in GSE29378 (Fig.  5C), 
CASP4 was most positively correlated with PLAU in 
GSE48350(Fig. 5D), CYCS was most negatively correlated 
with ADAM10 in GSE36980 (Fig. 5E). Notably, GSE36980 
contained only 6 of the top 10 genes associated with AD 
due to the analyses based on different platforms.

Validation of pyroptosis-related genes
Lastly, the expression levels of the pyroptosis-related 
genes identified in the dataset were further evalu-
ated. Compared with the NC group, the expression of 
CASP5 (Fig.  6A) and IL18 (Fig.  6D) in the AD group 
was increased in GSE1297 and GSE48350 respec-
tively, while the expression of CYCS (Fig.  6A), IL1B 
(Fig. 6B) and CASP1(Fig. 6E) was decreased in GSE1297, 
GSE28146, and GSE36980 respectively, and the expres-
sions of CHMP7, CHMP2A, and CYCS were decreased 
in GSE48350 (Fig. 6D). In GSE29378, pyroptosis-related 
genes showed no statistical differences (Fig.  6C). In the 
Aβ-induced HT22 cell model of AD, a total of three genes 
(i.e., BAX, IL18, and CYCS) showed a significant differ-
ence in their expressions (Fig. 6F, Table S8). These results 
confirmed that pyroptosis-related genes may participate 
in the occurrence of AD.

Discussion
Studies have hinted that there might be a possible rela-
tionship between pyroptosis and AD development [42–
45], however, the experimental evidence supporting this 

correlation is sparse. In our study, we demonstrated that 
there was a strong relevance between pyroptosis-related 
and AD-related genes, and the pyroptosis-related genes 
were differentially expressed in the hippocampus of AD 
patients and models, which provided strong experimen-
tal evidence to support the involvement of pyroptosis in 
the development of AD.

The hippocampus is located between the thalamus 
and the medial temporal lobe of the brain. It is a part 
of the limbic system, mainly responsible for the storage, 
conversion, and orientation of short-term memory, and 
also confirmed to play an important role in the develop-
ment of AD [46]. Thus, we explored four hippocampal 
sequencing datasets of AD patients and found 20 DEGs 
between healthy people and AD patients. The previ-
ous research proved that most of them were involved in 
nervous diseases, for example, GAD1 was involved in 
the neuropathology of schizophrenia [21], RGS4 showed 
decreased mRNA levels in the prefrontal cortex from AD 
patient autopsies [47], CD44 was increased in lympho-
cytes derived from AD patients [39], and the FOS exhib-
ited the intensification of immunoreactivity in AD cases 
[48]. These DEGs played vital roles in nervous systems, 
hinting at their possible associations with AD.

Function analysis was performed based on these DEGs 
to delve into the exact pathway. KEGG models showed 
most of DEGs enriched in pathways relative to immunity 
and inflammation, like MAPK, IL-17 signaling pathway, 
and Th1, Th2, and Th17 cell differentiation, while GO 
models also showed in inflammation like monocyte che-
motaxis, mononuclear cell migration, and so on [49, 50]. 

Table 1  The 20 differentially expressed genes (DEGs) were identified in patients with Alzheimer’s disease (AD).
Gene Log2(Fold Change) P-Value Adjusted P-Value Regulation Reported

By
GAD1 –0.8673 2.26E-05 0.0033 Down Li S, et al. [22]

RGS4 –0.7349 7.44E-05 0.0062 Down Muma N, et al. [23]

MCTP1 –0.7328 3.19E-05 0.0041 Down Kim K, et al. [24]

DDX3Y –0.7314 0.0002 0.0109 Down Vakilian H, et al. [25]

NEFM –0.6817 0.0003 0.0145 Down George C, et al. [26]

CACNA2D3 –0.6288 0.0038 0.0523 Down Huang C, et al. [27]

RAB13 0.5865 0.0001 0.0088 Up Zhang X, et al. [28]

ABCA1 0.5894 0.0003 0.0159 Up Wahrle S, et al. [29]

DUSP1 0.5997 0.0001 0.0090 Up Leandro G, et al. [30]

AEBP1 0.6072 0.0001 0.0097 Up Piras I, et al. [31]

CCL2 0.6249 0.0006 0.0212 Up Hartlage-Rübsamen M, et al. [32]

ANXA1 0.6404 0.0001 0.0088 Up McArthur S, et al. [33]

NUPR1 0.6592 3.34E-07 0.0002 Up Montero-Calle A, et al. [34]

SLC14A1 0.6703 9.07E-07 0.0004 Up Recabarren D, et al. [35]

SERPINA3 0.6812 5.21E-05 0.0051 Up Norton E, et al. [36]

RASL12 0.7137 7.37E-07 0.0003 Up Mirza Z, et al. [37]

EMP1 0.7642 7.62E-08 9.73E-05 Up Ghani M, et al. [38]

CD44 0.8621 4.77E-08 7.82E-05 Up Uberti D, et al. [39]

HLA-DQA1 1.0364 0.0012 0.0300 Up Zhang X, et al. [40]

FOS 1.0745 2.35E-05 0.0033 Up Choi H, et al. [41]
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A study has shown that the main indications of pyroptosis 
include the formation of inflammasomes, the activation 
of caspase and gasdermin, and the release of a large num-
ber of pro-inflammatory factors [44]. The typical pathway 
involved in pyroptosis generally includes the caspase-1 
pathway identifying the detrimental effects through the 
inflammasome, recruiting, activating, and cleaving cas-
pase-1, activating inflammatory factors such as IL-18 and 
IL-1β, cleaving the N-terminal sequence of gasdermin D 
(GSDMD) to bind to membranes to create the membrane 

pores, ultimately leading to pyroptosis [51]. Therefore, we 
conducted a GSEA analysis of AD-related and pyropto-
sis-related genes based on the combined dataset. Nota-
bly, these two gene sets showed similar trends, indicating 
that lesions in the hippocampus were closely associated 
with AD, and the gene set of pyroptosis could participate 
in this disease. Subsequently, we conducted PPI network 
construction on a pyroptosis-related gene and correla-
tion analysis between pyroptosis-related genes and AD-
related genes. A large number of pyroptosis-related genes 

Fig. 2  KEGG and GO analysis of differentially expressed genes (DEGs). (A) KEGG analysis of DEGs. (B) Biological Process (BP) terms of GO analysis of 
DEGs. (C) Cellular Component (CC) terms of GO analysis of DEGs. (D) Molecular Function (MF) terms of GO analysis of DEGs.
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and AD-related genes in the datasets showed significant 
correlations, which confirmed our conjecture that pyrop-
tosis could play a vital role in AD.

It is well-known that inflammasomes play impor-
tant roles in the development of AD, especially NLRP3 
inflammasomes. [52, 53]. And activation of the NLRP3 
inflammasome could cause caspase-1-mediated produc-
tion of interleukin (IL)-1β and IL-18 in microglia [54]. 
A study reported that fatal epilepsy in IL18 KO/APP/
PS1 mice was completely reversed by the anticonvulsant 
levetiracetam, while the IL18-deficient AD mice with 
chemically induced seizures exhibited lower thresholds 
and increased gene expression associated with increased 
neuronal activity [55], which implied that IL18 might be 
involved in the development of AD. Our PCR analysis 
showed that the expressions of IL18 were increased in 
the AD model which confirmed this point. Meanwhile, 
the level of Bax was also raised. The research found that 
the localization of bax in senile plaques in the hippo-
campi of AD patients was correlated with the localiza-
tion of the β-amyloid protein in the adjacent sections of 
the same brain, while bax was generally strongly stained 
in tau-positive tangles in the AD hippocampi, suggesting 

its vital role in tangle formation [56, 57]. Furthermore, 
the levels of bax were decreased in the dentate granule 
cells of the AD hippocampi, which was probably related 
to the survival of the neurons in AD [58]. To date, rare 
studies revealed the functions of CYCS in AD. One paper 
mentioned its possible value in AD diagnosis, however, 
the exploration of the mechanism is scarce. It has been 
reported that CYCS plays a role in apoptosis, while the 
inhibition of anti-apoptotic members of the BCL-2 fam-
ily or the activation of pro-apoptotic members could 
lead to changes in the permeability of the mitochondrial 
membrane, thereby reducing the release of CYCS into 
the cytoplasm [59–61]. Our work found that the mRNA 
levels of CYCS decreased in the HT22 cell model of AD, 
which supported these points in depth.

Taken together, these results demonstrated that pyrop-
tosis played an important role in AD. Further verifi-
cations are needed for the DEGs and the molecular 
mechanisms with the metabolic pathways involved in the 
development of AD revealed in this study.

Fig. 3  GSEA analysis of merged datasets. (A) Differentially expressed gene (DEG) sets between Alzheimer’s disease (AD) and NC groups. (B) Heatmap 
of AD gene sets between AD and NC groups
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Fig. 4  GSEA analysis and protein-protein interaction (PPI) network of the pyroptotic gene set. (A) GSEA analysis of the pyroptotic gene set. (B) 
Heatmap of the pyroptotic gene set. (C) PPI network of the pyroptotic gene set
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Fig. 5  Heatmaps of the correlation between Alzheimer’s disease (AD)-related genes and pyroptosis-related genes of datasets GSE1297 (A), 
GSE28146 (B), GSE29378 (C), GSE48350 (D), and GSE36980 (E). The abscissa and ordinate represent genes. Different colors represent different correla-
tion coefficients, i.e., red for positive correlation and blue for negative correlation, with the darker color representing the stronger correlation
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Conclusion
The pyroptosis-related genes BAX, IL18, and CYCS were 
significantly different between AD patients and normal 
controls. This proves that the mechanism of pyroptosis 
is very important for AD, and these significantly differ-
entially expressed genes can be potential targets for the 
diagnosis and treatment of AD.
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