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Abstract
Background  Increasing evidence has indicated that ferroptosis engages in the progression of Parkinson’s disease 
(PD). This study aimed to explore the role of ferroptosis-related genes (FRGs), immune infiltration and immune 
checkpoint genes (ICGs) in the pathogenesis and development of PD.

Methods  The microarray data of PD patients and healthy controls (HC) from the Gene Expression Omnibus (GEO) 
database was downloaded. Weighted gene co-expression network analysis (WGCNA) was processed to identify the 
significant modules related to PD in the GSE18838 dataset. Machine learning algorithms were used to screen the 
candidate biomarkers based on the intersect between WGCNA, FRGs and differentially expressed genes. Enrichment 
analysis of GSVA, GSEA, GO, KEGG, and immune infiltration, group comparison of ICGs were also performed. Next, 
candidate biomarkers were validated in clinical samples by ELISA and receiver operating characteristic curve (ROC) 
was used to assess diagnose ability.

Results  In this study, FRGs had correlations with ICGs, immune infiltration. Then, plasma levels of LPIN1 in PD was 
significantly lower than that in healthy controls, while the expression of TNFAIP3 was higher in PD in comparison 
with HC. ROC curves showed that the area under curve (AUC) of the LPIN1 and TNFAIP3 combination was 0.833 
(95% CI: 0.750–0.916). Moreover, each biomarker alone could discriminate the PD from HC (LPIN1: AUC = 0.754, 
95% CI: 0.659–0.849; TNFAIP3: AUC = 0.754, 95% CI: 0.660–0.849). For detection of early PD from HC, the model of 
combination maintained diagnostic accuracy with an AUC of 0.831 (95% CI: 0.734–0.927), LPIN1 also performed 
well in distinguishing the early PD from HC (AUC = 0.817, 95% CI: 0.717–0.917). However, the diagnostic efficacy was 
relatively poor in distinguishing the early from middle-advanced PD patients.

Conclusion  The combination model composed of LPIN1 and TNFAIP3, and each biomarker may serve as an efficient 
tool for distinguishing PD from HC.
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Background
Parkinson’s disease (PD) is a common neurodegenera-
tive disorder which involves in classic motor features of 
Parkinsonism including tremor, akinesia and bradykine-
sia, as well as nonmotor symptoms such as constipation, 
sleep disturbance and cognitive impairment and so on [1, 
2]. The typical pathologic characteristics of PD are patho-
logic accumulation of cytoplasmic misfolded α-synuclein, 
in form of Lewy bodies and progressive loss of dopami-
nergic neurons in the substantia nigra pars compacta 
(SNpc). The incidence increases with age while relatively 
little is known of the exact neurodegenerative pathogen-
esis, which relates to multiple factors including genetics, 
oxidative stress, immune activation, mitochondrial dys-
function or lipid dyshomeostasis [3].

Ferroptosis, an iron-dependent non-apoptotic regu-
lated programmed cell death, was firstly proposed in 
2012 [4], which is mainly driven by iron dyshomeostasis 
and lipid peroxidation, leading to oxidative stress in cells 
and affecting metabolic processes of protein, nucleic acid, 
carbohydrates and lipids, ultimately leads to cell death 
[4, 5]. However, ferroptosis distinguishes from apoptosis, 
necrosis, autophagy and other forms of cell death in mor-
phologically, biochemically and genetically [4]. Previous 
studies on ferroptosis mainly focused on cancer, and iron 
metabolism has become a hot spot in tumorigenesis, pro-
gression and treatment prognosis. To data, ferroptosis-
related genes (FRGs) have been recognized as diagnostic 
biomarkers for multiple cancers [6, 7]. A rat organotypic 
hippocampal slice culture model showed that erastin 
induced ferroptosis can promote neuronal death by cre-
ating a void in the antioxidant defenses of cell, but Fer-1 
prevents glutamate-induced neurotoxicity [4]. Iron is an 
oxidant and excess free iron can induce oxidative stress, 
inflammation and excitotoxicity, causing cellular damage 
and neurodegeneration [8, 9]. The dyshomeostasis and 
intracellular retention of iron are associated with senes-
cence of mutiple types of cells, including neurons, which 
accelerates aging by inducing DNA damage and blocking 
genomic repair systems [10].

A recent discovery that α-synuclein oligomers can bind 
to the plasma membrane and drive cell ferroptosis via 
altered membrane conductance, abnormal calcium influx 
and lipid peroxides production, which provides the direct 
evidence that ferroptosis is referred as an essential patho-
genic mechanism in synucleinopathies [11]. Ever increas-
ing evidence linking α-synuclein to the metabolism of 
iron and lipids, suggesting a possible role of α-synuclein 
in ferroptosis [11]. Previous research has found that 
selective iron deposition pattern in substantia nigra is 
greatly influenced by the age of PD onset [12]. Activated 
glia promote dysregulation of iron homeostasis, thereby 
aggravating microglial activation, which plays a pivotal 
role in ferroptosis and subsequent neurodegeneration 

[13]. Characteristics of ferroptosis, such as iron accu-
mulation, glutathione (GSH) depletion, lipid peroxida-
tion and elevated reactive oxygen species (ROS), may be 
observed in PD patients [14]. Moreover, ferric ammo-
nium citrate (FAC)-induced ferroptosis in dopaminergic 
cells is related to the phosphorylation of p53 signaling 
pathway not MAPK pathway [15]. However, the con-
troversial results in erastin-treated Lund human mes-
encephalic cells indicate that whether erastin-induced 
ferroptosis is RAS-dependent needs further investigation 
[16, 17]. Conservative iron chelation modality (avoiding 
changes in systemic iron levels) established in mamma-
lian models and clinical trials that offers a new therapeu-
tic strategy based on iron scavenging and redeployment 
for neuroprotection [18].

In the present study, we investigated the biological 
pathways of pathophysiology from the perspective of fer-
roptosis in PD based on bioinformatics analysis and iden-
tified gene co-expression modules by WGCNA, further 
examine the relationship of FRGs with immune infiltra-
tion and immune checkpoint genes (ICGs). Moreover, 
the expression profiles of candidate genes were detected 
in clinical blood samples. The possible role and function 
of core genes in regulating ferroptosis and immune infil-
tration in PD were also explored.

Methods
The work flow of this study is shown in Fig. 1.

Data acquisition and preprocessing
We applied “Parkinson’s disease”, “human beings”, 
“peripheral blood”, “expression profiling by array” as key 
words and ensured that each group has more than 10 
subjects, the gene expression matrix of GSE18838 data-
set [19] was obtained from the NCBI Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/) (Accessed: 1 May 2022). The GSE18838 dataset 
included 17 PD and 11 healthy control (HC) whole blood 
samples, which was performed on GPL5175 platform 
([HuEx-1_0-st] Affymetrix Human Exon 1.0 ST Array 
[transcript (gene) version]). The clinical characteristics of 
participates in GSE18838 are detailed in (Additional file 
1: Table S1).

FerrDb (http://www.zhounan.org/ferrdb/) (Accessed: 2 
May 2022) collected 259 ferroptosis-related genes (FRGs) 
including driver, suppressor and marker [20]. The confi-
dence level of recorded genes involved in ferroptosis was 
assigned to 4 degrees including validated, screened, pre-
dicted and deduced.

WGCNA analysis and intersect between DEGs and 
interesting module
In this study, we utilized a gene expression profile of 
GSE18838 to construct a weighted gene co-expression 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.zhounan.org/ferrdb/
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network between PD and HC using the “WGCNA” 
package in R software [21] and analyzed the relation-
ships between gene modules and clinical phenotype of 
PD. Briefly, cluster analysis was used to explore whether 
there was outlier samples in the GSE18838 dataset to 
ensure the accuracy of further exploration. According 
to the scale-free topology criterion, we used the func-
tion pickSoftThreshold to select soft powers β = 12 and 
the soft thresholding parameter showed strong relations 
between genes while penalized the weak correlation. 
Then, the adjacency matrix was transformed into a topo-
logical overlap matrix (TOM) to measure the network 

connectivity of genes as well as the corresponding dis-
similarity (1-TOM). A hierarchical clustering tree dia-
gram of the 1-TOM matrix was constructed to classify 
genes showing similar expression profiles with gene co-
expression modules. Then dynamic tree cut method was 
performed to separate different modules of all genes and 
merged the similar models using MEDissThres = 0.25. The 
different branches represented a different module. Sub-
sequently, module-trait relationships were estimated via 
pearson analysis and the module with high correlation 
coefficients was considered as interesting module. The 
genes in the module were selected for following research.

Fig. 1   The work flow of this study
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Differentially expressed genes (DEGs) between PD and 
HC were identified utilizing the “limma” package in R 
software based on the following threshold: p-value < 0.05 
and |log2FC|>0.5 in the GSE18838 dataset. The p-value 
was adjusted by Benjamini–Hochberg method to control 
the false discovery rate (FDR). The DEGs were visualized 
as volcano plot by using " ggplot2” package in R software.

Then, the intersect between DEGs, FRGs and co-
expression genes that were extracted from interesting 
module was visualized as Venn diagram.

Enrichment analysis of GSVA and GSEA
Gene set variation analysis (GSVA) was performed on 
the expression profile of GSE18838 using “GSVA” pack-
age in R software and the reference gene sets were hall-
mark gene sets, GO-BP, GO-CC, GO-MF, KEGG and 
C7: immunologic signatures, which were downloaded 
from the MSigDB database (https://www.gsea-msigdb.
org/gsea/msigdb) [22] (Accessed: 2 May 2022). Gene Set 
Enrichment Analysis (GSEA) was operated using “GSEA” 
R package to investigate relate pathways of the candidate 
diagnostic genes and the reference gene set were KEGG. 
The number of random sample permutations was set at 
1000, p < 0.05 was considered as significant enrichment.

Machine learning algorithm for candidate genes
After identifying DEGs, we performed three machine 
learning algorithms as least absolute shrinkage and selec-
tion operator (LASSO) logistic regression, random for-
est (RF) and support vector machine-recursive feature 
elimination (SVM-RFE) to screen candidate genes for 
PD using “glmnet”, “randomforest”, and “e1071” package 
in R software, respectively. Then, we combined the genes 
from LASSO, RF and SVM-RFE algorithms for further 
analysis. The expression of the candidate gene was firstly 
validated in GSE18838 dataset and a two-sided p < 0.05 
was considered statistically significant. Ultimately, the 
area under the receiver operating characteristic (ROC) 
curve analysis (AUC) was calculated to evaluate the accu-
racy of selected genes for diagnosing PD patients. The 
transcription factor (TF)-miRNA coregulatory network 
was constructed on NetworkAnalyst (https://www.net-
workanalyst.ca) (Accessed: 2 June 2022).

GO and KEGG analysis
To explore the potential molecular mechanism of key 
genes associated with PD, Gene Ontology (GO) includ-
ing biological process (BP), cellular component (CC) 
and molecular function (MF), and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analyses were operated 
using “clusterProfiler” R package [23]. The metascape 
database (http://metascape.org/) (Accessed: 10 June 
2022) is an online database used for gene annotation, 
functional enrichment, interactome and membership 

analysis, used for KEGG and Reactome pathway analy-
sis in the present study. p value < 0.05 as the screening 
threshold.

Infiltration of immune cells and correlation analysis
The “CIBERSORT” algorithm was applied to calculate 
the ratios of immune infiltrating cells in PD and HC 
samples [24]. The number of permutations of default sig-
nature matrix was set to 1000 and the standard immune 
cell expression file (LM22.txt) was obtained from official 
website (https://cibersort.stanford.edu/) (Accessed: 7 
June 2022). The different proportion of immune cells and 
expression of immune checkpoint genes associated with 
T cells (Additional file 2: Table S2) between two groups 
were detected by Wilcoxon rank sum test [25] and spear-
man correlation analysis was performed on candidate 
genes and infiltrating immune cells, ICGs.

Patient enrollment and blood acquisition
70 PD patients and 39 healthy controls were recruited 
in this study at the Tianjin Huanhu Hospital. The Eth-
ics Committee of Huanhu Hospital approved this study 
and written informed consent was obtained from all 
study participants. Disease severity was evaluated using 
the modified Hoehn and Yahr (H&Y) scale. PD patients 
were divided into early stage (early) and middle-advanced 
stages (mid-advanced) groups according to their HY 
scale. Early stage contained 30 patients (H&Y sca1e 
1-2.5) and middle-advanced stage included 40 patients 
(H&Y scale 3–5). The scale of MDS-UPDRS III (MDS 
Unified-Parkinson Disease Rating Scale) was used to 
examine movement function of PD patients. All patients 
were diagnosed by at least 3 professional and fellowship-
trained movement disorders neurologists according to 
the UK Society Brain Bank Criteria for the diagnosis of 
PD. Healthy control subjects had no personal or family 
history of neurodegenerative diseases. Exclusion criteria 
were as follows: a history of deep brain stimulation and 
anticancer therapy; major depression; dementia; hepa-
torenal disease; stroke or other cerebrovascular disease.

2ml EDTA-K2 anticoagulant whole blood was col-
lected in the morning after the subjects fasted for 10 h. 
Blood was centrifuged at 1000 g for 15 min at room tem-
perature to obtain plasma then stored at -80℃ for further 
analysis.

Enzyme-linked immunosorbent assay
Plasmic concentrations of LPIN1 and TNFAIP3 in 
PD and HC were determined by commercially avail-
able enzyme-linked immunosorbent assay (ELISA) 
kits obtained from Herbal Source (Nanjing, China) and 
CUSABIO (Wuhan, China), respectively. The assay was 
performed according to the manufacturer’s instructions 
and the results were detected using SpectraMax iD5 

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://www.networkanalyst.ca
https://www.networkanalyst.ca
http://metascape.org/
https://cibersort.stanford.edu/


Page 5 of 17Xing et al. BMC Medical Genomics           (2023) 16:55 

multifunctional microplate reader at 450 nm (Molecular 
Devices, the USA).

Statistical analysis
All data were analyzed using SPSS statistical software 
(version 26.0), GraphPad Prism software (Version 8.0) 
and R software (version 4.3.1; including “GEOquery”, 
“limma”, “WGCNA”, “FactoMineR”, “clusterProfiler”, 
“GSVA”, “GSEA”, “glmnet”, “randomforest”, “e1071”, 
“CIBERSORT”, “pROC”, “ggplot2” and “stats” package). 
For all analysis, p value < 0.05 was considered statistically 
significant. Data normality was first evaluated using Sha-
piro–Wilk test, then t test was used to compare data with 
normal distribution between two groups, and Mann-
Whitney U test was used to compare data of non-normal 
distribution between two groups. One-way ANOVA 
analysis or Kruskal-Wallis test was used to compare data 
among three groups. Data were presented as mean ± stan-
dard deviation (SD) or median (quantile). Chi-square test 
was used for comparing sex ratios between PD patients 
and healthy controls. Receiver operating characteristic 

(ROC) curves were generated to evaluate their sensi-
tivities and specificities in distinguishing PD from the 
healthy controls.

Results
Identification of key WGCNA module and DEGs
After the cluster analysis, no samples were removed 
(Additional file 3: Figure S3). The WGCNA network was 
constructed based on the GSE18838 dataset to identify 
the meaningful gene modules related with PD. A soft 
threshold power of 12 was selected, the scale-free topol-
ogy fit index R^2 reached 0.84, and mean connectivity 
is 18.10, indicating that a scale-free network was estab-
lished (Fig.  2A, B). Co-expression gene modules were 
identified through the dynamic tree cut method, after 
merging similar modules, the key modules were further 
screened based on MEDissThres = 0.25 (Fig. 2C, D). Then 
we analyzed the relationship between the key modules 
and clinical phenotype, and the heatmap of all genes 
in the key modules was displayed (Fig.  2E, F). Among 
the 10 modules analyzed, the greenyellow module was 

Fig. 2   WGCNA network and module detection. A Selection of the soft-thresholding powers. The left panel displays the scale-free index versus soft-
thresholding power. The right panel shows the mean connectivity versus soft-thresholding power. The x-axis represents weighting parameters (power). 
The y-axis represents the scale-free fit index and connectivity for each power. B Histogram of the number of node connections and validation that 
the network conforms to a scale-free distribution at a given threshold. C Module division. D Module merge. Each color represents a module in the co-
expression network by WGCNA. E Heatmap of the correlation between module and PD samples traits. F The heatmap visualizing the gene network. G 
Scatterplot showing the correlation between gene significance and module membership in the greenyellow module
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significantly associated with the clinical traits of PD and 
was chosen as a key module (cor = 0.49, p = 0.008, Fig. 2E). 
We selected 884 genes for following research accord-
ing to the criterion of q.weighted < 0.05. Besides, a high 
correlation was observed between PD and the greenyel-
low module (cor = 0.492) while the correlation between 
module memberships (MM) and gene significance (GS) 
in the greenyellow module is 0.28 (cor = 0.28, p = 2.3e-07, 
Fig. 2G).

Additionally, 399 DEGs between PD and HC samples 
were obtained through the PCA and different expression 
analysis (Fig. 3A, B). The intersect between DEGs, FRGs 
and co-expression genes in interesting module was visu-
alized by Venn plot (Fig. 3C), thus we screened 15 ferrop-
tosis-related-WGCNA genes and 179 WGCNA-DEGs.

GSEA and GSVA
We performed GSEA and GSVA analysis to screen bio-
logical differences between PD and HC. The enrichment 
analysis results of GO-BP, GO-CC and GO-MF were dis-
played (Fig.  4A, B, C). When KEGG and hallmark gene 
sets as the reference sets, the GSVA enrichment analysis 
revealed that PI3K-AKT-mTOR signaling, reactive oxy-
gen species pathway, P53 signaling pathway and regula-
tion of autophagy were involved in the pathogenesis of 
PD (Fig. 4D, E). We also found some related immunologic 
pathways significantly enriched between PD and HC 
(Fig.  4F). In addition, GSEA analysis of KEGG pathway 
uncovered some underlying pathways in PD (Table  1), 
such as autophagy, apoptosis, necroptosis, NOD-like 
receptor signaling pathway, TNF signaling pathway, 
ubiquitin mediated proteolysis, cellular senescence, 
mitophagy, Parkinson disease, alcoholic liver disease and 
neutrophil extracellular trap formation.

Candidate genes selected by machine learning methods
We used LASSO logistic regression algorithm to identify 
8 genes from 15 ferroptosis-related-WGCNA genes as 
key biomarkers for PD (Fig. 5A), RF and SVM-RFE algo-
rithm were also used to screen candidate genes (Fig. 5B, 

C). Overlapped genes obtained via three algorithms were 
considered as candidate biomarkers, and finally two 
genes, LPINI and TNFAIP3 were attained as the biomark-
ers (Fig.  5D). The KEGG pathway of GSEA analysis on 
two characteristic genes were shown (Fig. 6A, B). LPINI 
involved in alcoholic liver disease and TNFAIP3 mainly 
related to Epstein-Barr virus infection, measles, necrop-
tosis, NOD-like receptor signaling pathway and TNF 
signaling pathway. In order to further test the diagnos-
tic efficacy of LPINI and TNFAIP3 for PD, we analyzed 
the expression levels and validated with the GSE18838 
microarray expression matrix. Then we found the two 
genes were downregulated in PD whole blood and ROC 
curve indicated that they had better diagnostic potential, 
the AUC is 0.872 (95% CI: 0.723-1.000) and 0.818 (95% 
CI: 0.647–0.989) for LPINI and TNFAIP3, respectively 
(Fig. 6C, D). Moreover, GSE72267 was treated as a vali-
dation data set including 40 PD patients and 20 healthy 
controls (Additional file 4: Figure S4). The TF-miRNA 
coregulatory network of LPIN1 and TNFAIP3 was estab-
lished on NetworkAnalyst (Fig. 6E).

GO and KEGG analysis
GO analysis was performed to illustrate the functional 
annotations of 179 WGCNA-DEGs. The result of cell 
composition for GO analysis was shown in Fig. 7A. The 
most enriched GO terms in the biological process cat-
egory were mitochondrial respiratory complex I assem-
bly, positive regulation of autophagy, response to reactive 
oxygen species and T cell activation/differentiation, and 
in the molecular function category were NADH dehy-
drogenase (ubiquinone) activity, MHC protein binding, 
immune receptor activity, and ATP metabolism process, 
Ras protein signal transduction, response to reactive oxy-
gen species and positive regulation of I-kappaB kinase/
NF-kappaB signaling and so on (Fig. 7B, C). KEGG and 
Reactome analysis was conducted to investigate the 
related signaling pathways. Among the Reactome path-
ways, macroautophagy, MHC class II antigen presenta-
tion, metabolism of lipids, toll-like receptor cascades and 

Fig. 3   PCA plot of gene chip and volcano plot of different expression genes. A PCA analysis plot of GSE18838 gene chip. B Volcano plot of differential 
expressed genes between PD and HC samples in GSE18838 dataset. C Venn diagram displaying the overlap between DEGs, FRGs and PD-related genes 
identified by WGCNA.
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cellular responses to stress were involved in PD (Fig. 7D). 
In addition, KEGG pathway analysis also revealed that 
lysosome, FoxO signaling pathway, diabetic cardiomy-
opathy and PD-L1 expression and PD-1 checkpoint path-
way in cancer may related to PD (Fig. 7E).

For 15 ferroptosis-WGCNA genes, the significantly 
enriched GO terms indicated that cellular response to 
TOR signaling, signaling transduction by p53 class medi-
ator, selective autophagy, response to active oxygen spe-
cies or metal ion or oxidative stress, fatty acid metabolic 
process and neuron death were associated with ferrop-
tosis and PD (Table  2). The KEGG results suggest that 
mTOR signaling pathway, cellular senescence, neutrophil 
extracellular trap formation, pathways of neurodegen-
eration-multiple diseases, NF-kappa B signaling path-
way and so on, which may play an important role in PD 
(Table 3).

Estimation of infiltrating immune cells and correlation 
analysis
Firstly, we estimated the proportion of 22 infiltrat-
ing immune cells using the gene matrix of 28 samples 
by “CIBERSORT” algorithm. Compared to the results 
for HC, the proportions of naïve B cells, plasma cells, 
naïve CD4 T cells, regulatory T cells, macrophages M0, 
and macrophages M1 were significantly lower in the 
PD samples, while the proportions of memory B cells, 
gamma delta T cells, and resting dendritic cells were sig-
nificantly higher (Fig. 8A). Positive and negative relation-
ships between candidate genes and infiltrating immune 
cells were all discovered via spearman analysis. LPINI 
had positive correlation with naïve B cells, plasma cells 
and naïve CD4 T cells, while had negative correlation 
with memory B cells, gamma delta T cells and resting 
dendritic cells. TNFAIP3 had positive correlation with 
naïve B cells, naïve CD4 T cells, regulatory T cells, mac-
rophages M0 and macrophages M1, while had negative 

Fig. 4   The results of different reference gene sets of GSVA. A GO-BP gene sets. B GO-CC gene sets. C GO-MF gene sets. D KEGG gene sets. E Hallmarker 
gene sets. F Immunologic signatures gene sets
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correlation with gamma delta T cells and resting den-
dritic cells (Fig. 8B).

In addition, for immune checkpoint genes expressed on 
T cells, TNFRSF18, TNFRSF25, CD28, CTLA-4, ICOS, 
BTLA, MYLK, CD27, CD226, ADORA2A and CD40L 
were different significantly between two groups (Fig. 8C). 
For correlation analysis between candidate genes and 
immune checkpoint genes, which were displayed on 
Fig.  8D. LPIN1 had significant correlations with all the 
above different ICGs, however, TNFAIP3 only was corre-
lated with TNFRSF18, TNFRSF25, CD28, ICOS, MYLK, 
CD226, ADORA2A and CD40L.

Demographic and clinical characteristics of the PD patients 
and healthy controls
Demographic characteristics of participants are sum-
marized in Table  4, the clinical characteristics of early 
and middle-advanced PD patients are shown in Table 5. 
Between the healthy controls and PD patients, RBC, Hb, 
Hct, the ratio of monocyte and lymphocyte were signifi-
cantly different (p = 0.000, p = 0.000, p = 0.000, p = 0.031). 
Furthermore, the difference in WBC, RBC, Hb, Hct were 
also statistically significant between the HC and early-
stage PD patients (p = 0.031, p = 0.000, p = 0.000, p = 0.000) 
(Table  4). For the comparison of early and middle-
advanced stage PD patients, age, disease duration (years), 
the score of MDS-UPDRS III “off”, WBC, neutrophils (%), 
lymphocyte (%), the ratio of neutrophils and lymphocyte, 
the ratio of monocyte and lymphocyte also had statisti-
cal difference (p = 0.002, p = 0.000, p = 0.000, p = 0.026, 
p = 0.003, p = 0.001, p = 0.002, p = 0.031) (Table  5). There 
was a significant difference in the UPDRS score between 
the early and middle-advanced stage of PD, which was in 
line with the disease degree of two stages.

Plasmic levels of LPIN1 and TNFAIP3 in PD patients and 
healthy controls
The plasmic concentration of LPIN1 in patients with PD 
(105.7 ng/mL [range 56.98 to 161.3 ng/mL]) was signifi-
cantly lower than that in HC (121.0 ng/mL [range 87.03 
to 773.4 ng/mL]) (p < 0.0001) (Fig. 9A). While there was 
a significant increase of TNFAIP3 plasma concentration 
in PD patients (45.91 pg/ml [range 4.61 to 193.9 pg/ml]) 
compared with HC (20.50 pg/ml [range 5.84 to 159.5 pg/
ml]) (p < 0.0001) (Fig.  9B). When the PD patients were 
divided into early stage and middle-advanced stage, the 
plasma level of LPIN1in early stage PD (101.7 ng/mL 
[range 77.96 to 137.7 ng/mL]) was significantly lower 
than that in HC (p < 0.0001), while there was no statisti-
cally significant difference between early and middle-
advanced stage PD patients (110.0 ng/mL [range 56.98 to 
161.3 ng/mL]) (p = 0.2806) (Fig. 9C). A significant eleva-
tion of TNFAIP3 level in early stage PD patients (35.06 
pg/mL [range 4.61 to 135.2 pg/mL]) compared with HC 
was found (p = 0.0407), as well as there was also signifi-
cant difference between early stage and middle-advanced 
stage PD patients (50.63 pg/mL [range 7.75 to 193.9 pg/
mL]) (p = 0.0459) (Fig.  9D). Furthermore, a correlation 
plot between the expression levels of two molecules and 
clinical parameter was shown in Additional file 5: Figure 
S5, TNFAIP3 had a weak correlation with age, basophil, 
Hoehn and Yahr scale, disease stage.

Diagnostic value of plasmic LPIN1 and TNFAIP3 in PD
Receiver operating characteristic (ROC) curves were 
applied to evaluate the potential diagnostic value of 
LPIN1 and TNFAIP3 in PD. The area under ROC curve 

Table 1  The KEGG pathway of GSEA analysis
ID Description Set 

size
En-
rich-
ment 
core

NES Rank

hsa04140 Autophagy - animal 127 -0.488 -1.840 3669

hsa04145 Phagosome 127 -0.423 -1.594 2572

hsa05169 Epstein-Barr virus 
infection

187 -0.524 -2.050 2794

hsa04062 Chemokine signaling 
pathway

173 -0.454 -1.766 2868

hsa04210 Apoptosis 130 -0.432 -1.634 3326

hsa04621 NOD-like receptor signal-
ing pathway

162 -0.423 -1.638 2793

hsa04910 Insulin signaling pathway 130 -0.443 -1.677 3804

hsa04514 Cell adhesion molecules 128 -0.464 -1.749 1477

hsa04218 Cellular senescence 144 -0.459 -1.756 3332

hsa04142 Lysosome 125 -0.515 -1.929 3342

hsa05206 MicroRNAs in cancer 159 -0.454 -1.751 3033

hsa04936 Alcoholic liver disease 134 -0.424 -1.608 2460

hsa05152 Tuberculosis 165 -0.494 -1.916 2480

hsa05161 Hepatitis B 155 -0.510 -1.962 3092

hsa05162 Measles 134 -0.520 -1.970 2403

hsa04613 Neutrophil extracellular 
trap formation

102 -0.556 -2.039 3033

hsa04071 Sphingolipid signaling 
pathway

111 -0.498 -1.840 2794

hsa04650 Natural killer cell medi-
ated cytotoxicity

110 -0.554 -2.041 3065

hsa04668 TNF signaling pathway 110 -0.534 -1.967 3122

hsa04931 Insulin resistance 104 -0.515 -1.886 3804

hsa04144 Endocytosis 222 -0.361 -1.429 2580

hsa04120 Ubiquitin mediated 
proteolysis

130 -0.398 -1.505 3719

hsa04620 Toll-like receptor signal-
ing pathway

94 -0.435 -1.577 3316

hsa04080 Neuroactive ligand-
receptor interaction

342 0.358 1.677 3930

hsa05012 Parkinson disease 220 0.317 1.416 1331

hsa04217 Necroptosis 122 -0.391 -1.465 3016

hsa01200 Carbon metabolism 105 -0.408 -1.495 1901

hsa04137 Mitophagy - animal 65 -0.444 -1.501 3894

hsa04730 Long-term depression 56 -0.465 -1.533 3459
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Fig. 6   The KEGG pathway and the validation in GSE18838 dataset of candidate genes. A The plot showing the KEGG pathways enriched by LPINI. B The 
plot showing the KEGG pathways enriched by TNFAIP3. C The expression levels of LPINI and TNFAIP3 in GSE18838. D The ROC curve of two candidate 
genes. E The TF-miRNA coregulatory network of LPINI and TNFAIP3. Circle represents protein, diamond represent transcription factor (TF), and arrow 
represent miRNA. ** p < 0.01, ***p < 0.001

 

Fig. 5   Identification of candidate genes associated with diagnosis using the machine learning method. A LASSO regression analysis. B Random Forest. 
C Support Vector Machine. D Venn diagram for screened candidate genes between LASSO, RF and SVM. RF: random forest; SVM: support vector machine; 
LASSO: least absolute shrinkage and selection operator analysis
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(AUC) of LPIN1 and TNFAIP3 for PD were 0.754 (95% 
CI: 0.659–0.849, p < 0.0001, sensitivity = 0.771, specific-
ity = 0.692) and 0.754 (95% CI: 0.660–0.849, p < 0.0001, 
sensitivity = 0.686, specificity = 0.821) (Fig.  10A) (Addi-
tional file 6: Table S6). In distinguishing the early 
stage PD from HC, the AUC of LPIN1 and TNFAIP3 
were 0.817 (95% CI: 0.717–0.917, p < 0.0001, sensitiv-
ity = 0.867, specificity = 0.692) and 0.650 (95% CI: 0.507–
0.794, p = 0.040, sensitivity = 0.667, specificity = 0.718) 
(Fig.  10B) (Additional file 7: Table S7). However, LPIN1 
and TNFAIP3 don’t performed well in distinguishing 
the early stage from middle-advanced stage PD patients 
(LPIN1: AUC = 0.599, 95% CI: 0.465–0.733, p = 0.146; 
TNFAIP3: AUC = 0.647, 95% CI: 0.510–0.783, p = 0.035) 
(Fig.  10C) (Additional file 8: Table S8). Then, we used 
logistic regression analysis and the results indicated that 
LPIN1 and TNFAIP3 performed better in combination 
for prediction (HC vs. PD, AUC = 0.833, 95% CI: 0.750–
0.916, p < 0.0001; HC vs. early PD, AUC = 0.831, 95% CI: 
0.734–0.927, p < 0.0001) (Fig. 10D, E), while the diagnos-
tic efficacy was relatively poor in discriminating early and 
middle-advanced PD (AUC = 0.637, 95% CI: 0.505–0.768, 
p = 0.041) (Fig. 10F).

Discussion
Herein, we performed WGCNA analysis, intersected 
between DEGs, FRGs and interesting module, then 
identified 15 ferroptosis-related WGCNA genes and 
179 WGCNA-DEGs genes. Enrichment analysis includ-
ing GSVA, GSEA, GO and KEGG were operated. LPINI 
and TNFAIP3, as candidate genes, were determined by 
machine learning method (LASSO, SVM and RF). More-
over, LPINI and TNFAIP3 were differently expressed in 
the plasma of PD patients and healthy controls detected 
by ELISA. With the estimation of infiltrating immune 
cells and correlation analysis, we found the FRGs was 
associated with ICGs, immune regulation. In addition, 
ROC curve indicated that LPINI and TNFAIP3 may pro-
vide a novel diagnostic biomarker for PD. These results 
demonstrated that candidate genes might participate in 
the processes of regulating immune cell infiltration and 
immune checkpoint genes expression in PD.

Aging is a major risk factor for various neurodegenera-
tive disorders and accompany with gently accumulation 
of iron in the brain that relates with lipid peroxidation 
and reactive oxygen species production that represents 
the state of oxidative stress [5]. Iron can upregulate the 
levels of α-synuclein, amyloid precursor protein (APP) 
and amyloid β-peptide (Aβ) [5]. Selective deposition of 

Fig. 7   GO and KEGG pathway enrichment results of WGCNA-DEGs. A, B, C The analysis of GO_CC, GO_MF and GO_BP. D, E The Reactome and KEGG 
pathway
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iron in SN is one of the essential pathogenic factors [12], 
glutathione (GSH) loss in SN and oxidative stress are pre-
dispositions to PD [5]. In addition, recent emerging evi-
dence suggests that ferroptosis is a prevalent cell death 
pathway for dopaminergic neurons [16]. For example, 
iron accumulation in aging glial cells could impair neu-
rons by increasing proinflammatory factors to establish 
neuroinflammation [26]. Ferroptosis is defined as Fe (II)-
dependent regulated necrosis accompanied lipid peroxi-
dation [27], a mitochondria-dependent type of cell death 
[28], which was an important cell death pathway in Lund 
human mesencephalic cells, these had been confirmed 
ex vivo (in organotypic slice cultures) and in vivo (in 
the MPTP mouse model of PD) [16]. A study found that 
when SH-SY5Y human neuroblastoma cells were treated 
with PQ (paraquat dichloride) and Fer-1 (a specific 
inhibitor of ferroptosis) together, Fer-1 could inhibit the 
production of lipid reactive oxygen species and amelio-
rate ferroptosis by upregulating the expression of GPX4 
(glutathione peroxidase 4) and SLC7A11 (cystine/gluta-
mate antiporter). Fer-1 also inhibited the accumulation 

of ferrous iron in mitochondria, protected against PQ-
induced damage, and maintained mitochondrial integrity 
[29]. Moreover, mounting studies have shown that poten-
tial physiological roles of ferroptosis in cancer, ischemia/
reperfusion injuries, neurodegeneration and other patho-
logical conditions, nevertheless the exact contribution of 
ferroptosis to these pathologies is unclear [5].

Lipin1 is a Mg2+-dependent phosphatidic acid phos-
phatase (PAP) enzyme closely related to glycolipid 
metabolism, produced by the expression of LPIN1 [30], 
referred as a member of the lipin family, which converts 
phosphatidic acid (PA) to diacylglycerol (DAG), a precur-
sor of triacylglycerol and phospholipids [30, 31]. Addi-
tionally, LPIN1 functions as a transcriptional coregulator 
via directly interacting with nuclear peroxisome prolifer-
ator-activated receptor α (PPARα) and PPARα co-stimu-
latory factor 1 α (PGC1α) to regulate the genes involved 
in fatty acid oxidation [32]. It is reported that LPIN1 can 
promote several processes, including cell differentiation, 
inflammation and autophagy [31]. The human lipin1 has 
three isoforms (lipin1α, lipin1β, lipin1γ) derived from 

Table 2  The enriched terms of Gene ontology for ferroptosis-WGCNA genes
Term ID Description p.adjust Gene ID
BP GO:0007568 aging 7.92E-04 MTOR/ATG7/MAPK8/ATM/MAPK3

BP GO:0000422 autophagy of mitochondrion 2.35E-03 HIF1A/ATG7/ATG13

BP GO:0008366 axon ensheathment 3.99E-02 MTOR/LPIN1

BP GO:0007569 cell aging 6.02E-03 MTOR/MAPK8/ATM

BP GO:0036473 cell death in response to oxidative stress 2.63E-02 HIF1A/ATG7

BP GO:0071347 cellular response to Interleukin-1 3.18E-02 HIF1A/MAPK3

BP GO:0090398 cellular senescence 2.60E-02 MAPK8/ATM

BP GO:0006631 fatty acid metabolic process 3.06E-02 MTOR/LPIN1/MAPK3

BP GO:0007612 learning 4.27E-02 MTOR/HIF1A

BP GO:0002260 lymphocyte homeostasis 1.69E-02 HIF1A/TNFAIP3

BP GO:0016236 macroautophagy 2.90E-05 MTOR/HIF1A/ATG7/ATG13/MAPK8/MAPK3

BP GO:0070997 neuron death 2.74E-02 MTOR/HIF1A/ATG7

BP GO:0034250 positive regulation of cellular amide metabolic process 4.97E-02 MTOR/MAPK3

BP GO:0010506 regulation of autophagy 3.60E-05 MTOR/HIF1A/ATG7/MAPK8/ATM/MAPK3

BP GO:0001959 regulation of cytokine-mediated signaling pathway 4.58E-02 HIF1A/TNFAIP3

BP GO:0035303 regulation of dephosphorylation 3.81E-02 MTOR/LPIN1

BP GO:0051090 regulation of DNA-binding transcription factor activity 3.85E-02 MAPK8/TNFAIP3/MAPK3

BP GO:0010821 regulation of mitochondrion organization 4.27E-02 HIF1A/MAPK8

BP GO:0031644 regulation of nervous system process 4.27E-02 MTOR/LPIN1

BP GO:1,903,203 regulation of oxidative stress-induced neuron death 7.98E-03 HIF1A/ATG7

BP GO:0031396 regulation of protein ubiquitination 1.18E-02 MTOR/TNFAIP3/HERPUD1

BP GO:0010038 response to metal ion 2.86E-02 HIF1A/MAPK8/MAPK3

BP GO:0006979 response to oxidative stress 2.15E-04 HIF1A/ATG7/MAPK8/ABCC1/TNFAIP3/MAPK3

BP GO:0000302 response to reactive oxygen species 2.11E-03 HIF1A/MAPK8/TNFAIP3/MAPK3

BP GO:0061912 selective autophagy 1.95E-02 ATG13/MAPK3

BP GO:0072331 signal transduction by p53 class mediator 9.24E-03 MTOR/CD44/ATM

BP GO:0031929 TOR signaling 5.64E-03 MTOR/HIF1A/ATM

CC GO:0000407 phagophore assembly site 2.29E-02 ATG7/ATG13

MF GO:0004707 MAP kinase activity 5.86E-03 MAPK8/MAPK3

MF GO:0106310 protein serine kinase activity 7.56E-03 MTOR/MAPK8/ATM/MAPK3

MF GO:0004674 protein serine/threonine kinase activity 7.56E-03 MTOR/MAPK8/ATM/MAPK3
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alternative mRNA splicing. Lipin1α and lipin1β are 
lowly expressed in the brain, conversely, lipin1γ is highly 
expressed in normal human brain, indicating that lipin1γ 
may be a specialized regulatory protein in brain lipid 
metabolism [32, 33]. Latest study confirmed the presence 

of cognitive impairment in the mice with hippocampus 
of Lipin1-deficient, including the worsen spatial learn-
ing and memory ability, decreased synapse number, 
reduced protein levels of BDNF, SYP and PSD95. Shang 
et al. reported that lipin1 impaired synaptic plasticity, 

Table 3  List of top enriched KEGG pathways of ferroptosis-WGCNA genes
ID Description GeneRatio BgRatio p.adjust Gene ID
hsa04140 Autophagy - animal 6/14 141/8149 1.05E-05 2475/3091/10,533/9776/5599/5595

hsa04930 Type II diabetes mellitus 3/14 46/8149 1.58E-03 2475/5599/5595

hsa04012 ErbB signaling pathway 3/14 85/8149 4.40E-03 2475/5599/5595

hsa05235 PD-L1 expression and PD-1 checkpoint pathway in cancer 3/14 89/8149 4.54E-03 2475/3091/5595

hsa04657 IL-17 signaling pathway 3/14 94/8149 5.00E-03 5599/7128/5595

hsa04066 HIF-1 signaling pathway 3/14 109/8149 6.85E-03 2475/3091/5595

hsa04668 TNF signaling pathway 3/14 112/8149 7.02E-03 5599/7128/5595

hsa04071 Sphingolipid signaling pathway 3/14 119/8149 7.58E-03 5599/4363/5595

hsa04068 FoxO signaling pathway 3/14 131/8149 9.14E-03 5599/472/5595

hsa04210 Apoptosis 3/14 136/8149 9.57E-03 5599/472/5595

hsa04910 Insulin signaling pathway 3/14 137/8149 9.57E-03 2475/5599/5595

hsa04150 mTOR signaling pathway 3/14 156/8149 1.24E-02 2475/23,175/5595

hsa04218 Cellular senescence 3/14 156/8149 1.24E-02 2475/472/5595

hsa05010 Alzheimer disease 4/14 384/8149 1.85E-02 2475/9776/5599/5595

hsa04621 NOD-like receptor signaling pathway 3/14 184/8149 1.85E-02 5599/7128/5595

hsa04613 Neutrophil extracellular trap formation 3/14 190/8149 1.96E-02 2475/10,533/5595

hsa05169 Epstein-Barr virus infection 3/14 202/8149 2.26E-02 960/5599/7128

hsa05208 Chemical carcinogenesis - reactive oxygen species 3/14 223/8149 2.57E-02 3091/5599/5595

hsa04920 Adipocytokine signaling pathway 2/14 69/8149 2.57E-02 2475/5599

hsa04137 Mitophagy - animal 2/14 72/8149 2.59E-02 3091/5599

hsa05022 Pathways of neurodegeneration - multiple diseases 4/14 476/8149 2.62E-02 2475/9776/5599/5595

hsa04658 Th1 and Th2 cell differentiation 2/14 92/8149 3.55E-02 5599/5595

hsa04933 AGE-RAGE signaling pathway in diabetic complications 2/14 100/8149 3.78E-02 5599/5595

hsa04064 NF-kappa B signaling pathway 2/14 104/8149 3.78E-02 7128/472

hsa04620 Toll-like receptor signaling pathway 2/14 104/8149 3.78E-02 5599/5595

hsa04660 T cell receptor signaling pathway 2/14 104/8149 3.78E-02 5599/5595

hsa05016 Huntington disease 3/14 306/8149 3.92E-02 2475/9776/5599

hsa04931 Insulin resistance 2/14 108/8149 3.92E-02 2475/5599

hsa04722 Neurotrophin signaling pathway 2/14 119/8149 4.53E-02 5599/5595

Fig. 8   The status of immune cell infiltration and expression of immune checkpoint genes. A Boxplots comparing the proportions of 22 major immune 
cell subsets between PD and HC samples. B Correlation between LPINI, TNFAIP3, and infiltrating immune cells by CIBERSORT. C The expression of immune 
checkpoint genes between PD and HC samples. D Correlation between LPINI, TNFAIP3, and ICGs.
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disturbed lipid homeostasis, and damaged spatial learn-
ing and memory by inhibiting DAG-PKD-ERK signal-
ing pathway in Fld mice (a mutation in the Lpin1 gene) 
[34]. In another research, authors considered that neu-
roprotection of LPIN1 was associated with inhibition of 
the PKD/Limk1/Cofilin signaling pathway, and LPIN1 
might ameliorate the cognitive impairments in Diabetic 
encephalopathy (DE) animal models [35]. The loss of 
Lipin1 decreases DAG expression, which may lead to 
lipid metabolism disorders, induce autophagy overaction 

and promote Diabetic Peripheral Neuropathy (DPN). In 
contrast, overexpression of Lipin1 can reduce autophagy 
disorders and alleviate DPN [36]. Autophagy plays an 
important role in neurodegenerative diseases and nerve 
tissue injury [37].

A20, also known as TNF-α-induced protein 3 
(TNFAIP3), is a ubiquitin editing enzyme with both E3 
ubiquitin ligase activity and deubiquitinating enzyme 
(DUB) activity [38], also functions as a key negative 
regulator of NF-κB transcription factors and an anti-
inflammatory molecule that plays an important part in 
both immune responses and cell death [39], which can 
suppress NF-κB signaling downstream from T cell recep-
tor (TCR), B cell receptor (BCR), tumor necrosis factor 
receptor (TNFR), interleukin 1 receptor (IL-1R), Toll-like 
receptors (TLRs), NOD-like receptors (NLRs) and so on 
[40]. NF-κB signaling pathway can activate the innate and 
adaptive immune system, yet its improper activation indi-
cates the development of chronic inflammation and cell 
death [41]. Moreover, NF-κB has been implicated in the 
pathogenesis of a variety of neurodegenerative diseases 
[42]. TNFAIP3, as a central negative regulator of NF-κB 
transcription factors by multiple mechanisms, which 
probably has functions in the regulation of NF-κB sig-
naling in astrocytes and in neurons within the CNS [42]. 
Microglia A20 deficiency exacerbated multiple sclerosis 
(MS)-like disease, due to hyperactivation of the NLRP3 
inflammasome leading to increased interleukin-1β 
secretion in mice, suggesting that A20 critically con-
trols microglia activation and inhibits inflammasome-
dependent neuroinflammation [43]. After deleting A20 in 
microglia, CD8 + T cells spontaneously infiltrate the CNS 
and acquire a viral response signature, also upregulate 
genes associated with the antiviral response and neuro-
degenerative diseases [44].

As a regulator of cell death, on the hand, A20 can 
inhibit TNFα-induced apoptosis through the inhibition 
of phospholipase A2 and caspase 8 activation, reduce 
production of reactive oxygen species, diminish collapse 
of mitochondrial membrane potential, suppress the c-Jun 
N-terminal kinase and pro-inflammatory cytokines [42]. 
A20 can also restrict necroptosis in T cells and macro-
phages via its deubiquitinating motif [38]. On the other 
hand, A20 may have a proapoptotic function and restrict 
cell survival, probably due to upregulation of NF-κB-
dependent antiapoptotic proteins Bcl-2 and Bcl-x [38]. 
A20 has been shown to promote survival of CD4 + T 
cells by restricting the ubiquitylation-dependent activa-
tion of mTOR and promoting autophagy [45]. Gradu-
ally, depending on the cell type and activated signaling 
pathway, more evidence indicates that A20 can indirectly 
counteract inflammatory response by protecting cells 
from death, which largely dependents on its ubiquitin-
binding properties [38, 46].

Table 4  Demographic and clinical characteristics of the PD 
patients and healthy controls used in this study
Variable PD (n = 70) HC (n = 39) p 

value
Age, years 65.42(8.85) 63.38(9.03) 0.254

Male/female ratio 41/29 25/14 0.571

Disease duration, years 7.16(3.94)

H&Y stage, off 
(1|1.5|2|2.5|3|4|5|)

5|7|10|8|28|10|2

MDS-UPDRS III “off” (0-132) 48.94(18.64)

WBC, 10^9/L 6.09(2.09) 6.29(1.15) 0.064

Neutrophils (%) 62.28(10.90) 59.03(6.63) 0.202

Lymphocyte (%) 29.14(9.66) 32.18(6.77) 0.084

Monocytes (%) 6.19(2.15) 6.02(1.35) 0.972

 N/L 2.87(2.94) 1.97(0.68) 0.121

M/L 0.24(0.15) 0.19(0.07) 0.031

RBC, 1012/L 4.37(0.48) 4.78(0.40) 0.000

Hb, g/L 133.97(13.98) 145.38(11.76) 0.000

Hct, L/L 0.402(0.04) 0.440(0.033) 0.000
Values are means ± SD unless otherwise stated. PD, Parkinson’s disease; HC, 
healthy controls; H&Y stage, Hoehn and Yahr scale; MDS-UPDRS III, Movement 
Disorders Society-Unified Parkinson Disease Rating Scale, motor part; N/L, 
neutrophils/lymphocyte; M/L, monocytes/ lymphocyte

Table 5  Demographic and clinical characteristics of early and 
middle-advanced PD patients
Variable Early

(n = 30)
Mid-
advanced 
(n = 40)

p 
value

Age, years 61.60(9.58) 68.30(7.12) 0.002

Male/female ratio 16/14 25/15 0.441

Disease duration, years 5.28(3.46) 8.58(3.72) 0.000

MDS-UPDRS III “off” (0-132) 38.97(15.70) 56.43(17.24) 0.000

WBC, 10^9/L 5.51(1.79) 6.52(2.21) 0.026

Neutrophils (%) 57.89(10.40) 65.57(10.20) 0.003

Lymphocyte (%) 33.34(9.51) 25.99(8.60) 0.001

Monocytes (%) 6.71(2.68) 5.81(1.57) 0.146

 N/L 2.41(3.47) 3.21(2.46) 0.002

M/L 0.24(0.20) 0.24(0.08) 0.031

RBC, 10^12/L 4.38(0.48) 4.37(0.49) 0.927

Hb, g/L 133.27(14.68) 134.5(13.59) 0.718

Hct, L/L 0.400(0.041) 0.403(0.039) 0.739
Values are means ± SD unless otherwise stated. PD, Parkinson’s disease; HC, 
healthy controls; H&Y stage, Hoehn and Yahr scale; MDS-UPDRS III, Movement 
Disorders Society-Unified Parkinson Disease Rating Scale, motor part; N/L, 
neutrophils/lymphocyte; M/L, monocytes/ lymphocyte
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In the present study, when KEGG and hallmark gene 
sets as the reference sets, the GSVA enrichment analysis 
revealed that reactive oxygen species pathway, p53 path-
way and regulation of autophagy were involved in the 
pathogenesis of PD (Fig.  4D, E). For the KEGG analysis 
of GSEA, we found some pathways including autophagy–
animal, apoptosis, NOD-like receptor signaling path-
way, cellular senescence, lysosome, Parkinson disease, 
necroptosis and so on (Table 1). Furthermore, LPIN1 and 
TNFAIP3 were also involved in the regulation of men-
tioned signal pathway.

Lastly, we performed immune infiltration analysis on 
the peripheral blood microarray expression matrix of 
PD and compared the expression of immune checkpoint 

genes related to T cells, then revealed that the propor-
tion of immune cells and expression of ICGs were sig-
nificantly different between two groups. Previous work 
has started to elucidate the complex effects of ferroptosis 
on different aspects of the immune function [47]. on the 
one hand, ferroptosis affects the number and function of 
immune cells. On the other hand, ferroptotic cells can be 
recognized by immune cells and then trigger a series of 
specific inflammatory responses. Furthermore, ferropto-
sis of immune cells may destroy immune response, and 
ferroptosis of non-immune cells may cause the release 
of DAMPs (danger-associated molecular patterns) that 
induces immune activation [47]. As a programmed 
necroptosis, ferroptosis is inherently more immunogenic 

Fig. 9   The ELISA verification of two biomarkers. A, B The plasma level of LPIN1 and TNFAIP3 in HC and PD. C, D The plasma level of LPIN1 and TNFAIP3 in 
HC, early and middle-advanced PD patients. HC: healthy controls; PD: Parkinson’s disease; early: early stage; mid-advanced: middle and advanced stage. 
*p < 0.05, ****p < 0.0001. ns, no significance
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than apoptosis and results in the release of inflamma-
tory cytokines, leading to necro-inflammatory response, 
which can drive the pro-inflammatory state in certain 
biological contexts [48]. Because of its high metabolic 
activity, brain tissue is particularly susceptible to oxida-
tive stress that is a hallmark of various neurodegenerative 
disorders [49]. Cells under oxidative stress may release 
immunogenic molecules that triggers a systemic immune 
response, ultimately leading to cell necrosis [48]. In line 
with the above mentioned, the specific necrotic signal-
ing pathway of ferroptosis may produce pathogenic cyto-
kines peroxides that impairs the immune response via 
activating immune cells [48].

In addition, our experiment showed that LPIN1 was 
under-expressed and TNFAIP3 was upregulated in the 
plasma of PD patients that was consistent to the valida-
tion in GSE72267 (Additional file 4: Figure S4). A previ-
ous real-time PCR assay also showed decreased TNFAIP3 
expression in PD whole blood samples [50], while in the 
GSE18838 microarray expression matrix, LPIN1 and 
TNFAIP3 both were downregulated in PD whole blood. 
Each biomarker alone could discriminate the PD and 
HC (AUC > 0.75), however, TNFAIP3 didn’t performed 
well in distinguishing the early PD from healthy controls 
(LPIN1: AUC = 0.817, false positive rate = 0.308, false neg-
ative rate = 0.133; TNFAIP3: AUC = 0.650, false positive 
rate = 0.282, false negative rate = 0.333). The diagnostic 
model formed by the combination of two biomarkers had 
an AUC of 0.833 (sensitivity = 0.671, specificity = 0.923) 
in distinguishing PD from HC and an AUC of 0.831 

(sensitivity = 0.900, specificity = 0.692) in distinguishing 
the early PD from HC.

In this study, there are still some limitations. Firstly, The 
TNFAIP3 levels are inconsistent in different population 
samples, numerous variables can lead to the inconsis-
tent results, such as choices of assays, methods of sample 
acquisition, drug treatment, disease severity. Besides, 
existing clinical information remains incomplete, and 
validation is required at the genetic level of clinical sam-
ples by multiple methods. Therefore, to objectively evalu-
ate the diagnostic effects of LPIN1 and TNFAIP3, it is 
necessary to strictly control the inclusion and exclusion 
criteria of PD subjects and collect more complete, accu-
rate clinical data to regulate the influence of other miscel-
laneous variables on experiment.

Conclusion
In summary, our results confirmed abnormally under-
expression or upregulation of LPINI and TNFAIP3 in the 
PD plasma, ferroptotic cells and circulating immune sys-
tem responses are implicated in the pathogenesis of PD. 
Furthermore, ferroptosis-related genes have correlations 
with immune checkpoint genes, immune infiltration. 
Thus, this study further improved the understanding of 
the effect mechanism of ferroptosis on peripheral blood 
mononuclear cells (mainly including lymphocyte and 
monocyte). However, the specific mechanism of LPINI 
and TNFAIP3 regulate ferroptosis and immunity in PD is 
not clear. More research is needed to explore the biologi-
cal effects of LPINI and TNFAIP3 on peripheral immune 

Fig. 10   The ROC of two biomarkers. A, B, C Each biomarker plot one ROC (HC vs. PD, HC vs. early PD, early vs. middle-advanced PD). D, E, F Two bio-
markers combined using binary logistic regression model (HC vs. PD, HC vs. early PD, early vs. middle-advanced PD). sensitivity (true positive rate) and 
1-specificity (false positive rate); AUC: area under curve; CI: 95% confidence interval
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cells and provide reliably clinical diagnostic markers for 
PD.
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