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Abstract
Background  We aimed to build a novel model with golgi apparatus related genes (GaGs) signature and relevant 
clinical parameters for predicting progression-free interval (PFI) after surgery for papillary thyroid carcinoma (PTC).

Methods  We performed a bioinformatic analysis of integrated PTC datasets with the GaGs to identify differentially 
expressed GaGs (DE-GaGs). Then we generated PFI-related DE-GaGs and established a novel GaGs based signature. 
After that, we validated the signature on multiple external datasets and PTC cell lines. Further, we conducted uni- and 
multivariate analyses to identify independent prognostic characters. Finally, we established a signature and clinical 
parameters-based nomogram for predicting the PFI of PTC.

Results  We identified 260 DE-GaGs related to PFI in PTC. The functional enrichment analysis showed that the 
DE-MTGs were associated with an essential oncogenic glycoprotein biosynthetic process. Consequently, we 
established and optimized a novel 11 gene signature that could distinguish patients with poorer prognoses and 
predicted PFI accurately. The novel signature had a C-index of 0.78, and the relevant nomogram had a C-index of 0.79. 
Also, it was closely related to the pivotal clinical characters of and anaplastic potential in datasets and PTC cell lines. 
And the signature was confirmed a significant independent prognostic factor in PTC. Finally, we built a nomogram 
by including the signature and relevant clinical factors. Validation analysis showed that the nomogram’s efficacy was 
satisfying in predicting PTC’s PFI.

Conclusion  The GaGs signature and nomogram were closely associated with PTC prognosis and may help clinicians 
improve the individualized prediction of PFI, especially for high-risk patients after surgery.
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Background
Thyroid cancer (TC) has become the most commonly 
diagnosed endocrine tumor over the past decades [1]. 
Should the recent trends of TC prevail, it may become 
the fourth most common cancer in the United States by 
2030 [2]. The most common and least aggressive histo-
logic type of TC is papillary TC (PTC), comprising 80% 
of all cases. PTC is characterized by a favorable out-
come after adequate total thyroidectomy, with or with-
out regional lymphadenectomy [3]. However, one of the 
primary concerns after the initial surgery is a recurrent 
disease, which is 5.7% at five years and 9.4% at ten years, 
as Karl et al. reported in 52,173 PTC surgery patients [4]. 
Re-operations for the recurrent disease could result in 
a higher risk of surgical complications [5]. Clinical pre-
dictive models such as the American Thyroid Associa-
tion (ATA) risk stratification have been widely used [6]. 
However, the clinical and pathological character-based 
models developed thus far do not reflect individual char-
acteristics at the molecular level [7]. Therefore, novel 
prognostic tools for guiding personalized surveillance, 
especially for patients with a high risk of recurrence, are 
urgently needed. Developing a predictive model based 
on sensitive biomarkers would facilitate personalized 
monitoring, reducing the possibility of advanced, recur-
rent diseases in the postoperative follow-up period. 
Recently, progression in high-throughput sequencing has 
led to optimistic expectations about personalized medi-
cine. Signatures based on biomarkers such as mRNA or 
lncRNA have great potential to predict cancer prognosis 
[8, 9]. These omics-based models can also reliably predict 
the prognosis of PTC [10, 11].

The Golgi apparatus is a processing and sorting hub 
in transporting and targeting soluble cargo proteins and 
lipids to different destinations in the cell [12]. Involved 
in fundamental molecular and cell biological processes 
that occur in cancer, such as cancer cell invasion, cell 
matrix adhesion, cancer angiogenesis, immune modula-
tion and metastasis, accumulating reports and evidences 
indicated that the Golgi apparatus functioning disorders 
played pivotal roles in multiple human cancers including 
prostate cancer, breast cancer, gastric cancer and thyroid 
cancer [13–16]. Hence, abnormally functioned Golgi 
apparatus genes (GaGs) based on predictive models may 
be closely related to the prognosis of PTC. Therefore, we 
identified differentially expressed GaGs (DE-GaGs) after 
the intersection with the experimentally supported GaGs 
derived from MsigDB database [17]. Then we proposed 
a novel golgi apparatus related to the 11-gene signature 
and constructed a nomogram with relevant clinical fac-
tors. Validation analyses indicated the predicting abil-
ity of GaG signature and relevant prognostic model was 
satisfactory.

Methods
Obtain of TCGA-THCA RNA sequencing data and clinical 
information
We used Genomic Data Commons Application Program-
ming Interface (GDC API) to download RNA sequencing 
data from The Cancer Genome Atlas Thyroid carcinoma 
(TCGA-THCA) up to 21 Jul 2019, including 507 PTC 
cases and relevant follow-up information. Transcript per 
million (TPM) transformation followed by base-2 loga-
rithm normalization was applied. Cases with a follow-up 
period of less than a month were excluded. Consider-
ing the very low cancer-related death rate, we extracted 
progression-free interval (PFI) data from the University 
of California Santa Cruz (UCSC) Xena database as a 
specific survival outcome [10]. Both structural evidence 
(includes distant metastasis, locoregional recurrence, and 
new primary tumor) and biochemical evidence of recur-
rence was defined as progression. We also retrieved clini-
cal and mutational data from the Cbioportal.

Identification of DE-GaGs and GEO datasets acquisition
A differential gene expression analysis was applied based 
on all the 502 PTC cases with 58 normal thyroid tissues 
from TCGA-THCA dataset using the R package “EdgeR”. 
We identified DEGs according to the criteria of false 
discovery rate (FDR) < 0.05 and |Log2FC| >1 [18]. GaGs 
were extracted from Gene Set: “GOCC_GOLGI_APPA-
RATUS” of the MsigDB database which curated 1613 
golgi apparatus-related genes. After the intersection with 
the reliable DEGs, DE-GaGs were generated. After that, 
we searched the GEO database to obtain datasets includ-
ing poorly or undifferentiated PTC. The keywords for 
the search included “Thyroid cancer,” “Homo sapiens,” 
“undifferentiated,” “poorly differentiated” and “anaplas-
tic” The research focused on “cell lines,” and “xenografts” 
was excluded. Cases of childhood PTC, PTC in young 
adults, and radiation-induced PTC were also excluded. 
Raw data were normalized using the RMAExpress soft-
ware [19]. Probe names were transformed into official 
symbols based on Thermo Fisher Scientific Inc’s annota-
tion file. The median value was replaced if more than one 
probes to a single gene symbol.

Functional enrichment analysis
We carried out functional enrichment analyses using 
the “clusterProfiler” package of R to explore the poten-
tial enriched function of the DE-GaGs [20, 21]. The 
Benjamini and Hochberg method was used for FDR 
correction, defining adjusted p < 0.05 as statistically 
significant.
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Construction and verification of the novel GaGs based 
signature
According to the general assumption in deep learning 
that more training data leads to better performance, we 
randomly divided the TCGA-THCA dataset into training 
and testing datasets in the ratio of 0.8 [22]. We used the 
univariate Cox regression model to identify the DE-GaGs 
that were significantly associated (p < 0.05) with PFI in 
the training set. The PFI-related DE-GaGs were further 
included. Then we applied the Least absolute shrinkage 
and selection operator (LASSO) analysis, often used in 
high-dimensional data to reduce the dimension by penal-
izing the number of regression coefficients, to further 
select valid variables using the “glmnet” R package [23]. 
The “cv.glmnet” function of the package is used to build 
the model. Cross-validation used different lambda values 
to observe the model error. Then cv plot was generated, 
and the best lambda value was chosen. Then a panel of 
gene signature was found. The predictive efficacy of the 
signature was then assessed with the ROC curve and 
C-index by the “timeROC” package and the “survcomp” 
package of the R software [24].

External validation of 11-gene signature in GEO datasets
The expression pattern of GaG-based signature from 
three datasets (GSE29265, GSE33630 and GSE76039 
[25]) including PTC, anaplastic thyroid carcinoma (ATC) 
and poorly differentiated thyroid carcinoma (PDTC) 
samples were extracted. Each sample’s risk score was 
generated to evaluate the potential clinical utility of the 
11-gene signature. P-value of < 0.05 as statistically signifi-
cant. All the GSE datasets were obtained in Gene Expres-
sion Omnibus (GEO).

Cell culture and lysis
Normal human thyroid follicular cell line Nthy-ori 3.1 
[26]and PTC cell line KTC-1 [27] were kindly provided 
by Dr. Lv from Hunan Key Laboratory of Organ Fibrosis. 
Nthy-ori 3.1 and KTC-1 were cultured in 5% CO2, 37 °C, 
RPMI Medium 1640 (Invitrogen) with 10% fetal bovine 
serum (FBS), Non-essential Amino Acids, Glutamax, 
and Sodium Pyruvate added. Medium and additional 
reagents were purchased from Invitrogen, FBS was pur-
chased from Gibco. TRIzol (Lablead) was used to lysate 
and isolate RNA from cells in logarithmic growth phase 
according to the manufacturer’s protocol.

Quantitative real-time polymerase chain reaction 
(RT-qPCR)
RT-qPCR was conducted after reverse transcription 
and performed essentially as described previously with 
housekeeper (GAPDH) mRNA for normalization via 
the 2−ΔΔCt method [28]. Each experiment was repeated 

3 times. Sequences of primers were listed as shown in 
Table 1.

Gene set enrichment analysis (GSEA) of the 11-gene 
signature
We explored the potential molecular alterations of the 
signature by GSEA [29]. 488 PTC samples from the 
TCGA-THCA dataset were defined as low- or high-
risk by the optimal cut-off value generated by X-Tile 
[30]. GSEA v4.2 has then applied to find the biological 
alteration in the high-risk group. The gene sets included 
C2: KEGG [24], C5: GO, and C6: oncogenic signatures. 
FDR < 0.05 with |NES| > 1 were considered to indicate 
significant enrichment.

Independent prognostic parameters in PTC
We performed uni- and multivariate Cox analyses to find 
the correlated prognostic parameters in PTC. Clinical 
parameters included age, gender, ethnicity, BRAFV600E 
mutation, RAS mutation, extrathyroidal extension, neo-
plasm size, histological type, anatomic sites of tumors, 
residual tumor and disease TNM stage. The univariate 
analysis was performed first, then the factors with p < 0.2 
were enrolled in multivariate analysis to identify indepen-
dent ones. A p-value of < 0.05 is statistically significant.

Table 1  Sequences of primers for RT-qPCR analyses
Target gene Primer Sequence (5'-3')
GAPDH forward AGTCCCTGCCACACTCAG

reverse TACTTTATTGATGGTACATGACAAGG

POSTN forward CACCAATGAGGCTTTTGAGAAA

reverse GACTGCTCCTCCCATAATAGAC

KIF20A forward GAATGTGGAGACCCTTGTTCTA

reverse CCATCTCCTTCACAGTTAGGTT

ATG9B forward TGCCAACCAACCAAGTAACCATACC

reverse CACTGGGCTGAGGGTAGGATGG

RNF144A forward GTGCCTGAAACAGTATGTTGAG

reverse CAAACAGCACCTCTCTTTCAAA

TMEM130 forward GCAGGAAACCCTTCGAGGCATC

reverse CAGGAAGTTCAAGGTCACGGTCATC

PKMYT1 forward CTGTGTGGAGCAAAGAGGTTTC

reverse TGTTAATGACCATACAAACGCC

MANEAL forward CGTCCTGGTCCTGTCCTGGTAC

reverse GCCACCTGGATGCTGTACTGATG

CAPAN8 forward GGCGGAAGGAAGAACTGGACAAG

reverse CCGAGAGAACTGCCTCACGAAATC

ABCA12 forward AGAACAATCATTCTGTCAACGC

reverse GGAGATGTGATTGGATCATTGC

SOD3 forward GGAGTGGATCCGAGACATGTA

reverse CGAAGAAGGCGTCGAGCTT

SPRR3 forward CTACACCAAGGTCCCTGAAC

reverse ACAGGAACTTTGGTGTATCCTT
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Construction of the novel nomogram
After the collinearity diagnosis, a novel stepwise Cox 
regression model incorporating independent and rel-
evant clinical factors was built and visualized as a nomo-
gram for predicting the 1-, 3-, and 5-year PFI survival of 
PTC. The length of each parameter stands for its” weight 
in regression model. We then evaluated the nomogram’s 
predictive power with the ROC curve, C-index, calibra-
tion curve and decision curve analysis (DCA) [31]. The 
calibration curve was generated by a bootstrap method 
with 1000 resamples.

Statistical analysis
We used R v3.6.3 and GraphPad Prism 8.4.3 (GraphPad 
Software, U.S.) for statistical analysis. Categorical vari-
ables were analyzed using Chi-squared test. Normality 
of continuous data was analyzed using Shapiro-Wilk test. 
Continuous data were analyzed using unpaired t-test or 
Mann Whitney test. A p-value of < 0.05 was considered 
statistically significant.

Results
DE-GaGs identification and GEO datasets acquisition
Figure  1 indicated the main methodological process 
of the study. We enrolled 488 PTC cases using total 
follow-up information (follow-up days longer than 30 
days) for our analysis. Volcano plot showed the identi-
fication of 5,284 DEGs (2,738 up- and 2,546 downregu-
lated) (Fig. 2A). Furthermore, we downloaded the list of 
1,613 GaGs from the golgi apparatus-related gene set on 
the Molecular Signatures Database (https://www.gsea-
msigdb.org/gsea/msigdb/index.jsp). And we made an 
intersection between the 1,613 GaGs and the 5,284 DEGs 
(2,738 up- and 2,546 downregulated), then the intersec-
tion contained 260 DE-GaGs (194 up and 66 downregu-
lated) (Fig. 2B). Supplementary Tables 1 and 2 presented 
the full list of the 1,613 GaGs and the 260 DE-GaGs. 
After that, we enrolled 3 datasets focused on PDTC or 
ATC: GSE29265 contributed by Tomas G, et, al (20PTCs, 
20Normals, 9ATCs), GSE33630 [32] (49PTCs, 45Nor-
mals, 11ATCs) and GSE76039 [25] (20ATCs, 17PDTCs).

Fig. 1  Flowchart describing the process of establishment, optimization and validation of the novel 11-gene signature and prognostic nomogram

 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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Functional enrichment analysis of the 260 DE-GaGs
Annotation of the 260 DE-GaGs by GO and KEGG path-
way analyses is shown in Fig.  3. For the biological pro-
cess (BP) category, the DE-GaGs were mainly enriched 
in glycoprotein biosynthetic, aminoglycan biosynthetic, 
and glycoprotein metabolic processes. In terms of the 
cellular component (CC) category, the DE-GaGs were 
mainly enriched in the endoplasmic reticulum lumen, 
collage-containing extracellular matrix, and golgi lumen. 
In the molecular function (MF) category, the DE-GaGs 
were mainly enriched in transferase activity, transferring 
glycosyl groups, acetylgalactosaminyltransferase activ-
ity, and transferase activity, transferring hexosyl groups. 
Regarding KEGG pathways, the DE-GaGs were mainly 

enriched in Proteoglycans in cancer, Mucin type O-gly-
can biosynthesis, and Glycosphingolipid biosynthesis-
globo and isoglobo series (Fig.  3A). Enrichment results 
accompanied with respective Z-scores and LogFC were 
as shown in Fig. 3B. A full list of functional enrichment 
results was listed in supplementary Table 3.

Screening of significant DE-GaGs and construction of the 
novel 11-gene signature
Table 2 shows the baseline information of the training and 
testing sets allocated from 488 PTC cases. In total, 23 DE-
GaGs related to PFI were identified. Figure 4 A shows forest 
plots of each item’s logfc, P-value and hazard ratio. LASSO 
penalty regression analyses reduced and constructed a novel 

Fig. 3  Functional enrichment analysis of the 260 DE-GaGs. (A) The top 20 enriched gene ontology (GO), biological process (BP), cellular components (CC) 
and the molecular function (MF) terms of the DE-GaGs [21]. (B) The enriched terms in combination of each value of LogFC of the DE-GaGs.

 

Fig. 2  Identification of DE-GaGs in PTC. (A) Volcano map presenting the 5,284 DEGs (2,738 up- and 2,546 downregulated) in PTC. (B) 260 DE-GaGs (194 
up and 66 downregulated) were identified based on the intersection
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11 gene signature, as shown in Fig. 4B, C. The GaGs signa-
ture risk score was calculated as follows: risk score = exp/
SOD3 ⋅ (-0.145442888) + exp/ABCA12 ⋅ 0.187674472 + exp/
CAPN8 ⋅ 0.009918277 + exp/MANEAL ⋅ 0.098075693 + exp/
PKMYT1 ⋅ 0.101879373 + exp/TMEM130 ⋅ 
(-0.243464188) + exp/RNF144A ⋅ 0.158935422 + exp/ATG9B 
⋅ 0.313666103 + exp/KIF20A ⋅ 0.131711125 + exp/SPRR3 ⋅ 
0.057542545 + exp/POSTN ⋅ 0.000852346.

Verification of the discriminatory power of the novel 
11 gene signature.

Figure  5  A-C shows the relationships between signa-
ture risk score and recurrence events as scatter plots. In 
the training set, the AUC for PFI prediction based on the 
11 gene signature was 0.789 (95% CI 0.711–0.867). In the 
testing set, the AUC was 0.759 (95% CI 0.636–0.881). 
In the TCHA total dataset, the AUC was 0.784 (95% CI 
0.717–0.850). The optimal cut-off value for discriminat-
ing high-risk patients of PTC on Illumina Hiseq 2500 
platform was 1.06 according to X-Tile software [30].

Clinical correlation and verification of the GaG-signature
Next, we analyzed the correlation between the GaG-
signature and clinical characters after normality test. In 
groups divided by T stage, patients in T1/T2 had a lower 
signature risk score than those in an advanced disease 
stage (T3/T4) (Fig.  6A). Patients in stage 1/2 had lower 
signature risk score than those in stage 3/4 (Fig.  6B). 
Patients in N1 had higher signature risk score than those 
without lymphnode metastases (N0) (Fig.  6C). Patients 
with aggressive histological (tall cell) type have higher 
signature risk score than those with non-aggressive his-
tological type (Fig.  6D). In groups divided by residual 
tumor, patients without residual tumor had a lower sig-
nature risk score than those with residual tumor (Fig. 6E). 
In groups divided by recurrence status, patients without 
recurrence had lower signature risk scores than patients 
with disease progression (Fig.  6F). The differences were 
statistically significant (P < 0.05). We also validated the 
pattern of GaG-signature in 3 external GEO datasets and 
compared the signature risk score between ATC/PDTC/
PTC. In the datasets, GSE 29,265 and GSE 33,630, signa-
ture risk scores were higher in ATC samples than PTC 
samples (p < 0.0001, respectively), as shown in Fig.  6G, 
H. In the dataset GSE 76,039, signature risk scores were 
higher in ATC samples than in PDTC samples (p < 0.001), 
as shown in Fig. 6I.

RT-qPCR quantification of GaG-signatures in PTC cell lines
The relative 11 gene expression level of Golgi signature in 
Nthy-ori 3.1 and KTC-1 cell were generated through RT-
qPCR quantification. In the 11 genes of Golgi signature, 
the expression level of POSTN was higher in KTC-1 than 
Nthy-ori 3.1, while SOD3, SPRR3, RNF144A, PKMYT1, 
ABCA12, TMEM130, KIF20A, ATG9, MANEAL and 

Table 2  Baseline characters of 488 TCGA-THCA patients
Characteristic Training Testing p
n 381 107

Progression, n (%) 1.000

free 343 (70.3%) 96 (19.7%)

progression 38 (7.8%) 11 (2.3%)

RAS_status, n (%) 1.000

Mutated 46 (9.4%) 13 (2.7%)

Wild type 335 (68.6%) 94 (19.3%)

BRAF_status, n (%) 0.958

Mutated 217 (44.5%) 60 (12.3%)

Wild type 164 (33.6%) 47 (9.6%)

Extrathyroid_extension, n (%) 0.642

Minimal (T3) 102 (21.7%) 28 (5.9%)

Moderate/Advanced (T4) 16 (3.4%) 2 (0.4%)

None 253 (53.7%) 70 (14.9%)

Histological_type, n (%) 0.918

Classical/usual 274 (56.1%) 77 (15.8%)

Follicular 78 (16%) 23 (4.7%)

Tall Cell 29 (5.9%) 7 (1.4%)

Neoplasm_focus_type, n (%) 0.562

Multifocal 167 (34.9%) 51 (10.7%)

Unifocal 206 (43.1%) 54 (11.3%)

Anatomic_site, n (%) 0.861

Bilateral 62 (12.9%) 19 (3.9%)

Isthmus 18 (3.7%) 4 (0.8%)

Unilateral 298 (61.8%) 81 (16.8%)

Residual_tumor, n (%) 0.122

R0 296 (69.5%) 75 (17.6%)

R1 35 (8.2%) 16 (3.8%)

R2 4 (0.9%) 0 (0%)

Ajcc_stage, n (%) 0.083

Stage I 221 (45.5%) 52 (10.7%)

Stage II 34 (7%) 17 (3.5%)

Stage III 82 (16.9%) 28 (5.8%)

Stage IV 43 (8.8%) 9 (1.9%)

M_stage, n (%) 1.000

M0 373 (76.6%) 106 (21.8%)

M1 7 (1.4%) 1 (0.2%)

N_stage, n (%) 0.677

N0 179 (40.9%) 46 (10.5%)

N1 165 (37.7%) 48 (11%)

T_stage, n (%) 0.496

T1 111 (22.8%) 30 (6.2%)

T2 126 (25.9%) 35 (7.2%)

T3 123 (25.3%) 40 (8.2%)

T4 19 (3.9%) 2 (0.4%)

Gender, n (%) 0.620

Female 277 (56.8%) 81 (16.6%)

Male 104 (21.3%) 26 (5.3%)

Age, n (%) 0.860

< 55 255 (52.3%) 70 (14.3%)

≥ 55 126 (25.8%) 37 (7.6%)

Progression_free_interval, 
meidan (IQR)

938 (491, 
1463)

678 (509, 
1259)

0.195
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CAPN8 were lower in KTC-1 than Nthy-ori 3.1, the dif-
ferences were statistically significant (P < 0.05), as shown 
in Fig. 6J.

GSEA
GSEA in the 488 PTC cases from the THCA dataset 
showed the representative altered biological functions 
of the high-risk group (Fig. 7A-C). For KEGG pathways, 
the molecular alterations in the high-risk group samples 
were related to the homologous recombination, cell cycle, 
and DNA replication. For the c5 gene ontology terms, 
the molecular alterations were related to mitotic spin-
dle assembly. For the oncological signatures, the altera-
tions included the KRAS dependency signature. Detailed 
GSEA results were presented in Supplementary Table 4.

Identification of independent prognosis-related 
parameters.

The univariate Cox analysis revealed that parameters 
including age (≥ 55), neoplasm size (≥ 2 cm), histological 
type (tall cell), T stage (T3/T4), M stage (M1), TNM stage 
and signature risk scores were significantly associated 
with prognosis (P < 0.05). After the exclusion of samples 
with incomplete information and P < 0.2 in univariate 
analysis, a total of 408 patients were enrolled in multi-
variate analysis. In multivariate analysis, neoplasm size 
(≥ 2 cm) and signature risk scores were significantly asso-
ciated with prognosis (P < 0.05), which were then identi-
fied as independent prognosis-related factors in both the 
uni- and multivariate analysis as shown in Table 3.

Establishment and validation of the novel signature-based 
nomogram
We constructed a stepwise Cox regression model includ-
ing riskscore, age, TNM stage, neoplasm size, residual 
tumor, histological type and RAS status. The model was 
visualized in a predictive nomogram, as shown in Fig. 8A. 
Evaluation of the predictive nomogram using the calibra-
tion curve and decision curve revealed the efficacy and 
robustness of the model for the prediction of the prog-
nosis of PTC patients (Fig. 8B, C). The AUCs for 1-year, 
3-year, and 5-year PFI predictions were 0.852, 0.789, and 
0.783, respectively, with a C-index of 0.787 (Fig. 8D).

Discussion
Most patients with PTC achieve a relatively good prog-
nosis. However, persistent disease or recurrences are 
observed in 5-20% of patients, associated with severe 
complications following re-operation or other therapies 
[33]. For patients with a low risk of recurrence, pro-
longed thyroid-stimulating hormone suppression therapy 
may cause multiple adverse effects such as osteoporosis, 
osteopenia and atrial fibrillation [34]. Considering the 
relatively excellent prognosis, developing novel diagnos-
tic tools with high sensitivity and specificity seems to 
have greater clinical significance than exploring neoad-
juvant therapies. Traditional staging systems such as the 
ATA risk stratification system allow evaluation of recur-
rence risk with a stratified population rather than indi-
vidualized risk, which indicates that a group of patients 

Fig. 4  Differential expression level and hazard ratios (HR) of the 23 DE-GaGs in training set. (A) Forest plot with hazard ratios (HR) representing the predic-
tive values of the 23 DE-GaGs that were PFI-related in PTC. (B) LASSO coefficient profiles of the 23 DE-GaGs. (C) Lasso deviance profiles of the 23 DE-GaGs. 
The lambda selection criterion was based on the value of lambda giving a minimum mean cross-validation error
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sharing the same clinical and pathological characteristics 
would have the same chance of recurrence [35]. How-
ever, the biological mechanisms underlying PTC pro-
gression are highly complex and heterogeneous, requires 
more accurate and personalized prediction models at 
the molecular level. Therefore, specified gene signatures 
would effectively predict the metastatic and recurrent 
potential tumors.

The incidence of PTCs has been continually increasing; 
however, the mortality rate has not changed substantially, 
which is may because most PTCs diagnosed incidentally 
are low-risk papillary thyroid microcarcinomas (PTMCs). 
Active surveillance appears to be safe except for tumors 
with high-risk features such as extrathyroidal extension, 
clinically evident LNM(+), and particular aggressive 
types [36]. It can replace immediate surgery for low-risk 
PTC [37]. Active surveillance begins when patients are 
diagnosed with low-risk PTC by ultrasound examina-
tion of fine-needle aspiration biopsy (FNAB). Since PTCs 
involve complex biological mechanisms, the decision to 
perform active surveillance based on genomic signatures 
followed by FNAB with a micro-assessing technique such 
as droplet digital PCR [38] (ddPCR) would be safer than 

assessments based on superficial clinical or imaging char-
acteristics. Therefore, patients with a higher risk score 
but with a low risk of clinical features would be treated 
more rationally.

Multiple shreds of evidence showed the pivotal role of 
malfunctioned Golgi apparatus gadgets in thyroid cancer 
invasion and progression [13, 39, 40]. Considering the main 
function of Golgi apparatus of processing, sorting, and then 
transporting the proteins to specific parts of cells or secret-
ing them outside [41], combined with the fact that cancer 
cells metabolize and grow vigorously to support its” invasion 
and metastasis, we assumed that the expression pattern of 
Golgi apparatus would be closely related with PTC progno-
sis, which motivated us to focus on differentially expressed 
GaGs derived from the MSigDB. Based on principles of 
machine learning, the contents of the training set should be 
as large as possible to be close to reality; then we applied the 
4/5 ratio of training set instead of a 1:1 split and confirmed a 
satisfied AUC in a testing cohort. We reduced the variables 
from 260 to 23 DE-GaGs that were PFI-related. GO enrich-
ment analysis showed that the 260 DE-GaGs were enriched 
in the glycoprotein biosynthetic process, aminoglycan bio-
synthetic process, and glycoprotein metabolic process, 

Fig. 5  Evaluation of the efficacy of the 11-gene signature in the TCGA-THCA dataset. The dataset was randomly divided into the training set, and the 
validation set with a 4/5 ratio. (A-C) Relationship between the signature risk-scores (up) and recurrence status of patients of high/low-risk (middle) in 
training/validation/total TCGA-THCA dataset. Time-dependent ROC for the predictions of PFI for the 11-gene signature in the training/validation/total sets
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which, consistent with the definition of GaGs, have been 
proven to be associated with cancer metastasis [16, 41]. In 
the identified 11 genes, several were previously proved to be 
associated with PTC progression through experiments. For 

example, stromal SOD3 had a stimulatory effect on thyroid 
cancer cell growth and an inhibitory effect on cancer cell 
migration [42], POSTN expression was activated by ΔNp73 
and modulated epithelial-mesenchymal transition of 

Fig. 6  Correlations between GaGs signature with clinical or biological characters in TGCA-THCA cohort, GEO datasets and PTC cell lines. (A-F) The distribu-
tion of the signature risk-scores according to different status of T stage, disease stage, lymph node metastasis, histological type, extrathyroidal invasion 
and progression status in the TCGA-THCA dataset. (G-I) The distribution of the signature risk-scores according to different type of tumor tissues from three 
external datasets. Papillary thyroid carcinoma (PTC), anaplastic thyroid carcinoma (ATC) and poorly differentiated thyroid carcinoma (PDTC). (J) Relative 
expression level of 11 Golgi signature genes to GAPDH (2−ΔΔCT) in Nthy-ori 3.1 and KTC-1 cell line (n = 3). Data are presented as interleaved bar plot. Scale 
of left Y axis was presented as log 10 format. Unpaired t test or Mann-Whitney test, *P < 0.05 ***P < 0.001
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thyroid cancer cells [43]. Thus, these genes have the poten-
tial to predict metastasis and recurrence in PTC. However, 
the fundamental role of left nine components had not been 
studied, which would be new targets for thyroid cancer biol-
ogy research.

Besides, we explored the potential molecular alteration by 
the 11-gene signature using GSEA. GSEA, which is based 
on careful consideration of all differential genes’ roles, can 
help reveal the complex behavior of genes in health and 
disease more accurately. In contrast, traditional strategies, 
including KEGG or GO, focus on identifying individual 
genes that exhibit differences [44]. Multiple gene expression 
alterations in the high-risk group were involved in tumor 
biology processes, such as homologous recombination 
and cell cycle pathways. Thus, the potential mechanisms 
underlying patients’ poor PFI in the high-risk group could 
be elucidated. Further, the signature’ ’s utility of differenti-
ating normal from PTC samples also had been validated 
in multiple external datasets. In the aspects of the clinical 
correlation, we found that patients with advanced or worse 
clinical status, such as advanced extra-invasion existence, 
advanced TNM stages, residual tumor, and tall cell histo-
logical type, had higher signature risk scores, which strongly 
demonstrated the clinical efficacy of the GaGs signature. To 

our knowledge, patients with ATC and PDTC only have a 
mean survival after diagnosis of 0.5 and 3.2 years, respec-
tively, and de-differentiation is a significant reason for the 
highly malignant degree [25]. The significantly higher gene 
risk scores in ATC samples could partly confirm our con-
jecture. Also, we applied qPCR experiment of 11 genes on 
PTC cell line KTC-1 and normal thyroid follicular cell line 
Nthy-ori-3.1. The KTC-1, which originated from advanced 
metastatic PTC and refractory to radio iodine therapy, was 
with low degree of differentiation and was highly invasive 
[27]. According to the results, the 2 major tumor suppressor 
genes (HR < 1 with negative coefficient in Golgi signature) 
(SOD3 and TMEM130) were expressed higher in Nthy-
ori-3.1, also confirmed the connection between Golgi signa-
ture with PTC invasion and de-differentiation.

Nomograms are widely used for the ability to present the 
numerical probability of a particular clinical event by inte-
grating prognostic variables [45]. Nomograms, including a 
risk score based on gene signatures and clinicopathologi-
cal parameters, can predict prognosis more precisely after 
surgery [46, 47]. Moreover, numerical results are more 
comfortable for patients to understand than the traditional 
staging system. To the best of our knowledge, the GaGs-
based signature and the relevant nomogram achieved the 

Fig. 7  Gene set enrichment analysis (GSEA) analysis of the 11 gene signature. (A-C) Representative signaling pathways, biological functions, and onco-
genic signatures significantly enriched in the high-risk group identified by GSEA.
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highest AUC for predicting PFI in the TCGA-THCA cohort 
and has not been reported yet. The limited number of genes 
made it more practical and economically feasible than 
whole-genome sequencing. Moreover, since the significantly 
worse clinical outcomes with PDTC/ATC than with PTC, 
the unique advantage in discovering the de-differentiation 

potential of TC made the 11-gene signature feasible in indi-
vidualized follow-up.

There were limitations to our study. First, the primary 
source of RNA sequencing data and clinical information 
was the TCGA program, in which the source of samples 
was from North American people. When applying the 
model to patients from different countries or regions, 

Table 3  Uni- and multivariate analysis for identification of prognostic factors
Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value
Riskscore 488 4.531 (2.689–7.637) < 0.001 3.038 (1.648–5.598) < 0.001
Ethnicity 388

Not Hispanic or Latino 354 Reference

Hispanic or Latino 34 0.463 (0.112–1.918) 0.289

BRAF status 488

Wild type 211 Reference

Mutated 277 1.455 (0.801–2.645) 0.218

RAS status 488

Wild type 429 Reference

Mutated 59 1.640 (0.768–3.504) 0.201

Extrathyroid extension 471

Moderate/Advanced (T4) 18 Reference

None/Minimal 453 0.476 (0.171–1.326) 0.156 1.609 (0.457–5.668) 0.459

Neoplasm size 474

< 2cm 153 Reference

≥ 2cm 321 3.914 (1.547–9.901) 0.004 2.729 (1.040–7.159) 0.041
Histological type 488

Classical/Follicular 452 Reference

Tall Cell 36 2.417 (1.084–5.389) 0.031 1.305 (0.508–3.348) 0.580

Anatomic site 482

Unilateral 379 Reference

Bilateral 81 1.101 (0.513–2.365) 0.805

Isthmus 22 0.413 (0.057–3.004) 0.382

M stage 487

M0 479 Reference

M1 8 5.630 (2.021–15.687) < 0.001 1.422 (0.380–5.323) 0.601

Residual tumor 426

R0/R1 422 Reference

R2 4 2.027 (0.277–14.813) 0.486

Ajcc_stage 486

Stage III/IV 162 Reference

Stage I/II 324 0.363 (0.207–0.638) < 0.001 0.717 (0.279–1.845) 0.491

N stage 438

N0 225 Reference

N1 213 1.736 (0.950–3.172) 0.073 1.114 (0.559–2.218) 0.759

T stage 486

T1/T2 302 Reference

T3/T4 184 2.806 (1.569–5.018) < 0.001 1.151 (0.539–2.458) 0.716

Gender 488

FEMALE 358 Reference

MALE 130 1.747 (0.977–3.124) 0.060 1.322 (0.697–2.509) 0.393

Age 488

≥ 55 163 Reference

< 55 325 0.443 (0.252–0.776) 0.004 0.675 (0.291–1.567) 0.360
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Fig. 8  Construction and validation of the nomogram in predicting PFI of PTC in the TCGA-THCA dataset. (A) A nomogram based on the 11-gene sig-
nature and relevant clinical features for forecasting the PFI of PTC. (B) The calibration curve for internal validation of the nomogram. (C) The DCA curve 
showing the clinical utility of the nomogram in 5-year PFI. (D) Time-dependent ROC for predicting the 1-, 3- and 5-year PFI of PTC.

 



Page 13 of 14Liu et al. BMC Medical Genomics           (2023) 16:60 

possible deviations or biases would occur. Second, due 
to the lack of a large independent dataset of PTC with 
complete follow-up information, we validated the nomo-
gram’s power on the TCGA dataset itself. We carried out 
experimental and GEO datasets validation. Future valida-
tion of external datasets with complete follow-up data is 
necessary. Last, since the signature was based on high-
throughput sequencing data, the related cut-off point was 
suitable for data obtained from a similar platform but 
would not be directly applied in ddPCR results, which 
need further exploration in a large independent cohort.

Conclusion
We built a novel Golgi apparatus related 11-gene signa-
ture, then established a nomogram combining the sig-
nature and relevant clinical and pathological factors for 
predicting PTC PFI. The efficacy of novel GaGs signature 
and relevant nomogram was satisfying, which achieved 
the best efficacy in the TCGA-THCA cohort as the best 
we know. It would be helpful for individualized active 
and postoperative surveillance strategies.
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