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Abstract 

Background  Hepatocellular carcinoma (HCC) remains a global health threat. Finding a novel biomarker for assessing 
the prognosis and new therapeutic targets is vital to treating this patient population. Our study aimed to explore the 
contribution of basement membrane-related regulators (BMR) to prognostic assessment and therapeutic response 
prediction in HCC.

Material and methods  The RNA sequencing and clinical information of HCC were downloaded from TCGA-LIHC, 
ICGC-JP, GSE14520, GSE104580, and CCLE datasets. The BMR signature was created by the Least Absolute Shrinkage 
and Selection Operator (LASSO) algorithm and used to separate HCC patients into low- and high-risk groups. We con-
ducted analyses using various R 4.1.3 software packages to compare prognoses and responses to immunotherapy, 
transcatheter arterial chemoembolization (TACE), and chemotherapeutic drugs between the groups. Additionally, 
stemness indices, molecular functions, and somatic mutation analyses were further explored in these subgroups.

Results  The BMR signature included 3 basement membrane-related genes (CTSA, P3H1, and ADAM9). We revealed 
that BMR signature was an independent risk contributor to poor prognosis in HCC, and high-risk group patients pre-
sented shorter overall survival. We discovered that patients in the high-risk group might be responsive to immuno-
therapy, while patients in the low-risk group may be susceptible to TACE therapy. Over 300 agents were screened to 
identify effective drugs for the two subgroups.

Conclusion  Overall, basement membrane-related regulators represent novel biomarkers in HCC for assessing prog-
nosis, response to immunotherapy, the effectiveness of TACE therapy, and drug susceptibility.
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Introduction
Hepatocellular carcinoma (HCC) continues to be a global 
health threat, with  incidence rates increasing worldwide 
[1, 2]. By 2025, the number of new cases of HCC is antici-
pated to exceed 1,000,000 per year [3]. Despite the advent 
of novel therapeutic strategies, including immunother-
apy and targeted therapies, the outcomes of HCC remain 
unsatisfactory [4–6]. Therefore, discovering new targets 
or identifying new biomarkers for treating this patient 
population is a high priority for researchers in this field.
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The basement membrane (BM) is an extracellular 
matrix located beneath the epithelial cells of animals 
[7], of which collagen, laminin, and integrins are the 
main components. It is now understood that in malig-
nant tumors of epithelial origin, tumor cells pass through 
the BM before further invasion and metastasis. Colla-
gen, laminin, and integrins play a crucial role in cancer 
development by contributing to essential stages of onco-
genesis, such as proliferation, apoptosis, angiogenesis, 
invasion, and metastasis [8–12]. Current evidence sug-
gests that laminin-5 (LN5), a component of BM, is associ-
ated with a highly metastatic phenotype of HCC and can 
be utilized as a diagnostic indicator to identify metasta-
ses in adjacent tumor tissues [13]. Moreover, extracel-
lular matrix protein I has been found to promote tumor 
progression in HCC after heat treatment [14]. The recent 
literature has suggested that BM might be  a prognostic 
marker and target for HCC patients [15, 16]. The above 
studies overlap in their assertion that BM has enormous 
prospects for treating HCC. 

Despite extensive research on the basement membrane 
in recent years, most studies have been limited to the 
morphological level. Therefore, it is essential to explore 
the function of basement membrane-associated genes in 
HCC from a gene regulation perspective. For instance, 
LAMA4 is reportedly highly expressed in HCC patients 
and could be a promising target for HCC treatment [17]. 
Recent studies have also defined a range of basement 
membrane-associated genes [18]. To our knowledge, no 
study has hitherto explored the role of these BM-related 
genes in HCC. Therefore, it is essential to examine the 
association between BM-related clusters and the progno-
ses and immune profiles of patients with HCC.

Herein, we revealed that the basement membrane-
related regulators (BMR) played favorable roles in deter-
mining prognoses, immunotherapy responses, and drug 
sensitivity in HCC patients. 

Materials and methods
Data acquisition and procession
The RNA sequencing and clinical information of patients 
with HCC were downloaded from The Cancer Genome 
Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) 
(https://​portal.​gdc.​cancer.​gov/), International Cancer 
Genome Consortium (IGCG)-JP (https://​dcc.​icgc.​org/) and 
Gene Expression Omnibus (GEO) (https∶/http://​ww.​ncbin​
lm.​nih.​gov/​geo/) (GSE14520 and GSE104580) databases. 

In addition, a list of BM-related genes was extracted from 
existing publications [18]. The somatic mutation files of 
HCC patients were acquired from the Genomic Data 
Commons (GDC) database. Moreover, the mRNA expres-
sion data of HCC cell lines were retrieved from Cancer 
Cell Line Encyclopedia (CCLE) database [19]. We applied 
the "limma" [20] and "sva" [21] packages to normalize the 
expression data originating from the GEO database. 

Prognostic analyses
Date Processing before construction of the BMR signature
We first utilized the "limma" [20] package (|logFC)|≥ 1 and 
FDR < 0.05)  to filter differentially expressed genes (DEGs) 
in HCC tissue versus liver tissue from the list of basement 
membrane-associated genes. The obtained DEGs underwent 
univariate Cox regression analysis to identify genes associated 
with prognosis (adjusted P-value<0.05),  regarded as candi-
date genes. Subsequently, we employed "igraph" [22], "psych", 
"reshape2" [23], and "RColorBrewer" packages to construct a 
correlation network of these candidate genes.

The unsupervised clustering ’Pam’ based approach was 
applied to identify different molecular isoforms based on 
the expression of these candidate genes using the "Con-
sensusClusterPlus" [24] package. The  Kaplan–Meier 
method was applied to compare the overall survival (OS), 
disease-specific survival (DSS), progression-free interval 
(PFI), and disease-free interval (DFI) of distinct clusters in 
the TCGA-LIHC cohort. We further determined whether 
the expression of these genes differed in different clusters.

Construction and validation of BMR
The least absolute shrinkage and selection operator 
(LASSO) was applied to select genes to  construct the 
BMR risk score with the "glmnet" [25] package.

The risk score was determined by expressing the value 
of the gene multiplied by the variable coefficient as 
follows.

The median risk score was used to stratify patients into 
low- and high-risk groups. Next,  the  receiver operating 
curve (ROC), temporal ROC curve, Kaplan–Meier (KM) 
method, principal component analysis (PCA) and t-Dis-
tributed Stochastic Neighbor Embedding (t-NSE) were 
applied to assess the performance of BMR in predict-
ing prognosis in patients with HCC by diverse packages. 
Furthermore, the risk scores and other clinical indicators 

Risk score = expression level of geneA ∗ coefficient of geneA

+ expression level of geneB ∗ coefficient of geneB

+ expression level of genei ∗ coefficient of genei

https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
http://ww.ncbinlm.nih.gov/geo/
http://ww.ncbinlm.nih.gov/geo/
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were analyzed by univariate and multivariate Cox regres-
sion analysis using the "survival" package to determine 
whether BMR acted as an independent risk factor for 
prognosis. In addition, risk scores for all patients in the 
ICGC cohort were generated using the same formula as 
in the TCGA cohort, and the predictive performance of 
BMR for prognosis was verified in the ICGC cohort.

Comparison of BMR with other studies
To determine whether BMR conferred a clinical benefit 
for predicting OS in HCC patients, we conducted addi-
tional analyses, including Decision Curve Analysis (DCA) 
and Concordance Index analysis. These assessments were 
performed using the "ggDCA", "rms" [26], and "survival" 
packages to compare BMR with other relevant studies.

Somatic mutation analysis
Since gene mutations may impact the prognosis of patients 
with HCC, we further determined whether somatic muta-
tions differed between those subgroups. Accordingly, we 
analyzed the top 20 mutated genes in HCC patients in the 
two subgroups, and waterfall plots were generated to vis-
ualize these 20 genes by the "maftool" [27] package. Addi-
tionally, we calculated the tumor mutation burden (TMB) 
for each patient with HCC and examined whether there 
were any significant differences in TMB between these 
subgroups. Notably, the impact of TMB on HCC progno-
sis was explored using the "survival" package.

Molecular function analysis
We gathered the genes involved in tumorigenesis and 
progression pathways and used the ssGSEA algorithm 
to compute the enrichment scores for each pathway in 
every sample.  We further identified whether the scores 
for these pathways varied between these subgroups. To 
investigate the molecular mechanisms underlying the 
difference in prognosis between patients in the high-risk 
and low-risk groups, we filtered the   DEGs (Padj < 0.05 
and |logFC)|≥ 1) between both groups using the "limma" 
package [20]. The function of DEGs was evaluated by 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes  (KEGG)  using the "enrichplot", "circlize" 
and "clusterProfiler" [28] packages.

The role of BMR in immune features
The tumor microenvironment (TME) comprises essen-
tial components such as immune cells and BM, which 
may interact and influence each other. The "estimate" [29] 
package was applied to assess the proportion of immune-
matrix components in TME, which consisted of the fol-
lowing three main scores: Immune score, Stromal score, 
and ESTIMATE score. Moreover, we quantified immune 
cells and immune function using single-sample sequence 

set enrichment analysis (ssGSEA) and the CIBERSORT 
algorithm and then further applied the "ggpubr" package 
to explore whether immune cell infiltration and immune 
function differed between the two subgroups. In addi-
tion, we examined the correlation between the expres-
sion of immune checkpoints and risk scores.

It has been reported that potential immune checkpoint 
blockade (ICB) responses in patients could be predicted by 
the "TIDE" algorithm (http://​tide.​dfci.​harva​rd.​edu/​login/) 
[30]. Using the TIDE algorithm, we determined the TIDE 
scores for each sample and examined if there were any 
differences in TIDE scores between the subgroups. Addi-
tionally, we utilized the  "TCIA" algorithm (https://​tcia.​
at/​home) to identify whether patients in both subgroups 
were  responsive to treatment with  PD-1 and CTLA-4. 
Recent studies have shown that T-cell inflammation score 
(TIS), FNAP signature, CD8A, and STAT1 are reliable indi-
cators for assessing the effectiveness of immunotherapy 
[31–33]. Therefore, we investigated whether there were any 
differences in TIS, FNAP, CD8A, and STAT1 between the 
subgroups.

Stemness indices analysis
The mRNA expression-based stemness index (mRNAsi) 
can reportedly be calculated by the  one-class logistic 
regression (OCLR) algorithm [34]. In this study, we applied 
the OCLR algorithm to   compute the mRNAsi for each 
sample and identified differences in mRNAsi between the 
two subgroups.

The role of BMR in assessing the response to TACE therapy
In the  GSE104580 cohort, we computed the  risk scores 
for each sample and verified whether risk scores differed 
between responders and non-responders. Furthermore, 
we explored the AUC values for evaluating the efficacy 
of TACE by risk score.

Drug sensitivity
The "pRRophetic" [35] package was used to select poten-
tially effective drugs from more than 300 drugs for both 
subgroups of patients. We performed a correlation analysis 
between drug sensitivity and risk scores, using IC50 values 
as a sensitivity indicator for this investigation.

Statistical analyses
OS, DSS, and PFI were compared between different sub-
groups using the Kaplan–Meier method and the log-rank 
test. We applied the "ComplexHeatmap" [36] package to 
explore the correlation between risk scores and clinical 
indicators. Then, we developed and validated the nomo-
gram with the "rms" [26] and "regplot" packages. In our 
study, statistical analyses were performed by R 4.1.3 and 
Perl software. P value < 0.05 was statistically significant.

http://tide.dfci.harvard.edu/login/
https://tcia.at/home
https://tcia.at/home
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Results
The BMR signature exhibited excellent prognostic 
performance 
Identification of Basement membrane‑related subtypes 
in HCC
The flow diagram of the study is illustrated in Fig. 1. First, 
we identified 109 differentially expressed genes among 
222 basement membrane-related genes (Fig.  2A, Addi-
tional file  1). We further selected 27 candidate genes 
among these 109 genes, and the correlation network is 
shown in Fig. 2B.

Furthermore, we employed an unsupervised clustering 
approach to classify HCC patients into two distinct clus-
ters, A and B, based on the expression levels of genes that 
influenced prognosis (Fig. 2C). Notably, the survival rate 
of patients in cluster B was significantly lower than in 
cluster A (Fig. 2D–G). Moreover, enhanced expression of 
these candidate genes was observed in cluster B (Fig. 2H).

Construction and validation of BMR
The 27 candidate genes identified were subjected to 
LASSO analysis, which resulted in the selection of 3 
genes, namely ADAM9, CTSA, and P3H1, to establish 
the BMR signature (Fig. 3A, B). Analysis of the ICGC-JP 
and GSE14520 datasets revealed that these 3 genes were 
overexpressed in HCC tissues (Fig. 3C, D). Additionally, 

the expression levels of CTSA, ADAM9, and P3H1 in 
HCC cell lines were confirmed using the CCLE database 
(Fig. 3E).

According to the above formula, the risk scores of HCC 
patients in the TCGA cohort were obtained, and the HCC 
patients in the TCGA-LIHC cohort were assigned to the 
high- and low-risk groups according to the median risk 
score. Our analysis showed that patients with higher risk 
scores had a lower OS and increased mortality (Fig. 4A). 
PCA and t-NSE analyses revealed a significant clustering 
of HCC patients into low- and high-risk groups (Fig. 4B). 
As shown in Fig.  4C, D, BMR was a strong predictor of 
OS in patients with HCC in the TCGA-LIHC cohort. KM 
curves demonstrated worse prognoses for patients in the 
high-risk group (P < 0.01) (Fig.  4F–H). Our findings indi-
cated that BMR outperformed TNM stage, age, and gender 
in predicting the prognosis of HCC patients (Fig. 4E). Fur-
thermore, we found that BMR represented an independent 
risk factor for OS in HCC patients (Fig. 4I, J). The median 
risk score was used to classify patients in the ICGC-JP 

BMR risk score =[expression of ADAM9× (0.008810)]

+ [expression of CTSA× (0.002283)]

+ [expression of P3H1× (0.055080)]

Fig. 1  Flowchart of overall study design
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cohort into low- and high-risk groups. Fig. 5A–H demon-
strated that the results of the ICGC-JP cohort were com-
parable to those of the TCGA-LIHC cohort. Overall, our 
BMR signature could be a valuable tool for predicting the 
prognosis of HCC patients  (The baseline clinical charac-
teristics of patients in the TCGA-LIHC cohort and ICGC-
JP cohort are provided in  Additional file 2).

Additional file 3 demonstrated that in the  GSE14520 
cohort, the  risk score was an independent risk factor 
for unfavorable  prognoses in HCC. Notably, TNM-
stage, CLIP-satge, and BCLC-stage were not identified 
as independent risk factors for poor prognosis of HCC, 
which further highlights the remarkable predictive per-
formance of the BMR signature for HCC prognoses.

Fig. 2  Data processing before the construction of BMR signature A Differential expression of basement membrane-related genes in HCC 
tissues versus normal tissues in the TCGA-LIHC cohort. B The correlation network of candidate genes in the TCGA-LIHC cohort. C Unsupervised 
classification of candidate genes in the TCGA-LIHC cohort. D Comparison of OS between A and B clusters in the TCGA-LIHC cohort. E Comparison 
of DSS between A and B clustersin the TCGA-LIHC cohort. F Comparison of DFI between A and B clusters in the TCGA-LIHC cohort. G Comparison 
of PFI between A and B clusters in the TCGA-LIHC cohort. H Comparison of the expression levels of candidate genes in cluster A and cluster B in 
the TCGA-LIHC cohort
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Correlation of the BMR risk score with clinical parameters
Patients with advanced pathological stage and tumor 
grade had higher risk scores (Fig. 6A–D), which further 
validated the prognostic significance of BMR in HCC. 
These results suggest a higher risk score may indicate a 
poorer prognosis in HCC patients. However, there were 
no significant associations between risk scores and sex, 
age group, or tumor status (Fig. 6A, E).

Comparison of BMR with other gene signatures
Our findings revealed that the C-index of BMR was 
0.675, which was higher than the C-index values 
reported in other studies (Fig.  7A). When compared 
to the cuproptosis-, immune-, pyroptosis-, inflamma-
tory response-, ferroptosis-, and metabolism-related 
signatures reported in previous studies [37–46], BMR 

Fig. 3  A Lasso coefficient profiles. B Candidate basement membrane-related genes were filtered by the Lasso algorithm. C Comparison of the 
expression levels of ADAM9, CTSA, and P3H1 between HCC and normal tissues in the ICGC-JP dataset. D Comparison of the expression levels of 
ADAM9, CTSA, and P3H1 between HCC and normal tissues in the GSE14520 dataset. E Identification of the expression levels of ADAM9, CTSA, and 
P3H1 in JHH-2 and SNU-387 cells in the CCLE dataset
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demonstrated greater clinical applicability in evaluating 
the prognoses of HCC (Fig.  7B–H). These results fur-
ther validated the strong predictive ability of BMR in 
assessing the OS of HCC patients.

Construction of a BMR‑based nomogram
We created a nomogram in the TCGA-LIHC cohort 
based on the risk score and other clinical indicators for 
the prediction of OS (Fig. 8A). As illustrated in Fig. 8B, 

Fig. 4  Assessment of the prognostic signature (BMR) in the TCGA-LIHC cohort. A Survival status distribution of HCC patients in low- and high-risk 
groups. B PCA analysis of low- and high-risk groups; t-NSE analysis of low- and high-risk groups. C ROC curve of age, gender, stage, and risk score. 
D timeROC curve of risk score. E C-index curve of age, gender, stage, and risk score. F Comparison of OS between low- and high-risk groups. G 
Comparison of DSS between low- and high-risk groups. H Comparison of PFI between low- and high-risk groups. I Univariate Cox analysis of risk 
score, gender, stage, and age. J Multivariate Cox analysis of risk score and stage
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C, F, the nomogram exhibited superior performance 
in accurately predicting prognoses of HCC than other 
features. The calibration curves indicated that the pre-
dicted survival values for 1-year, 3-year, and 5-year 
were highly consistent with the actual values (Fig. 8D). 

Based on the total score obtained from the nomogram, 
we observed a significant clustering of HCC patients 
(Fig.  8E). These results suggest that our nomogram 
based on risk score has huge prospects for accurately 
predicting the OS of HCC patients.

Fig. 5  Validation of the prognostic signature (BMR) in the ICGC-JP cohort. A Survival status distribution of HCC patients in low- and high-risk 
groups. B PCA analysis of low- and high-risk groups; t-NSE analysis of low- and high-risk groups. C ROC curve of age, gender, stage, and risk score. 
D timeROC curve of risk score. E C-index curve of age, gender, stage, and risk score. F Comparison of OS between low- and high-risk groups. G 
Univariate Cox analysis of risk score, gender, stage, and age. H Multivariate Cox analysis of risk score and stage
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The role of BMR in mRNAsi analysis
The high-risk group showed an increase in mRNAsi 
and a positive correlation between the risk score and 
mRNAsi (Fig. 9A, B). The results imply that the poorer 
prognosis observed in the high-risk group may be 
attributed to mechanisms associated with mRNAsi.

The role of BMR in assessing the somatic mutation
Waterfall plots were generated to visualize the top 20 
genes mutated in these subgroups (Fig.  9C, D). Our 
results indicated that TP53 mutations were more com-
mon in the high-risk group, while CTNNB1 mutations 
were more prevalent in the  other group. As shown in 

Fig. 6  The correlation between BMR and clinical indicators. A The correlation heatmap about BMR and common clinical indicators. B Comparison 
of tumor grade between the low- and high-risk groups. C Comparison of tumor stage between low- and high-risk groups. D Comparison of 
T-stage between low- and high-risk groups. E Comparison of gender between low- and high-risk groups. (* and ** representing p < 0.05 and 
p < 0.01,respectively.)
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Fig.  9E, TMB was not significantly different between 
these subgroups. The OS of patients in the high-TMB 
group was significantly lower than in the low-TMB group 
(Fig.  9F). Interestingly, the OS of patients in the high-
TMB group was significantly lower than in the low-TMB 
group (Fig. 9F). It is worth noting that the combination 
of TMB with risk score demonstrated higher OS in the 
group with low risk and high TMB (P < 0.001) (Fig. 9G).

The role of BMR in molecular function analysis
As shown in Fig.  10A, GO analyses revealed that the 
DEGs of the  high- and low-risk groups were signifi-
cantl enriched in pathways mediating immune func-
tion. KEGG analysis demonstrated that the DEGs were 
associated with nuclear division and organelle fission 
(Fig.  10B). Furthermore, apoptosis, DNA repair, ferrop-
tosis, and angiogenesis pathways related to oncogenesis 
and tumor progression were significantly enriched in 
patients belonging to the high-risk group (Fig. 10C).

The role of BMR in immune profiling
The correlation between BMR and immune features
Our study showed that patients in the high-risk group 
had increased immune scores (Fig. 11C). The subgroups 
did not exhibit significant differences in the ESTIMATE 
or Stromal scores. As shown in Fig.  11A, D, patients in 
the low-risk group demonstrated a more substantial 
percentage of macrophages and NK cells, although the 
other group displayed a higher abundance of Th2 and 
Treg cells. In terms of immune function, the type-I IFN 
response and type-II IFN response were significantly 
enhanced in the low-risk group, while the high-risk 
group showed higher expression of immune checkpoints 
(Fig.  11B, E). We found that patients in the high-risk 
group exhibited immunosuppression.

The role of BMR in predicting responses to immunotherapy
Considering the clinical potential of immune checkpoints 
for immunotherapy, we explored potential distinctions 

Fig. 7  A C-index curve of BMR and other studies. B–H Decision curve analysis of BMR with other gene signatures
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in immune checkpoint expression between the two sub-
groups (Fig. 11E).

The high-risk group exhibited immunosuppression, as 
indicated by the lower TIDE score (Fig. 12A). Conversely, 
it is highly unlikely that the low-risk group would ben-
efit from therapies with PD-1 and CTLA-4, as evidenced 
by an analysis of the TCIA database (Fig. 12B). Further-
more, the high-risk group showed elevated NFAG and 
TIS (Fig.  12C, D), suggesting that immunotherapy may 
improve prognoses for these patients.

BMR for prediction of responses to TACE therapy
As shown in Fig. 12E, reduced risk scores were observed 
in TACE-treated responders. The AUC value for the 
risk score to estimate the efficacy of TACE was 0.760 
(Fig.  12F). Accordingly, patients in this subgroup might 
be more responsive to TACE treatment.

The role of BMR in predicting drug sensitivity
We identified nine drugs, including "crizotinib", 
"cyclopamine", "paclitaxel", "MG-132", "rapamycin", 

Fig. 8  Nomogram based on BMR, stage, gender, and stage for prediction of OS in TCGA-LIHC cohort. A Nomgram based on BMR, stage, gender, 
and stage in TCGA-LIHC cohort. B timeROC curve of the nomogram. C C-index curve of the nomogram, age, gender, stage, and risk score. D 
Calibration curve of the nomogram. E PCA plot of the nomogram. F DCA curve of BMR and nomogram
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"S-Trityl-L-cysteine", "sunitinib" and "VX-680", which 
appeared more favorable for the high-risk group, whereas 
"erlotinib" may be  more beneficial for another group 
(Fig.  13A). Furthermore, we computed the correla-
tion coefficient between the  risk score and IC50 values 
(Fig. 13B), indicating that patients belonging to the high-
risk group may exhibit a better response to "paclitaxel".

Discussion
This study utilized an unsupervised clustering approach 
and demonstrated that BM genes could potentially 
serve as a prognostic marker for HCC. A BMR sig-
nature was  established by employing data from the 
TCGA cohort and then validated in the ICGC cohort 
and GSE14520 cohort. We found that patients in the 

Fig. 9  Somatic mutation and mRNAsi analyses in TCGA-LIHC cohort. A Matfools of the high-risk group. B Matfools of the low-risk group. C 
Comparison of TMB between high- and low-risk groups. D Comparsion of OS between the low-TMB and high-TMB groups. E Comparsion of OS 
between low-TMB + low-risk, low-TMB + high-risk, high-TMB + low-risk, and high-TMB + high-risk groups. F Comparison of mRNAsi between 
high- and low-risk groups. G The correlation between risk score and mRNAsi
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high-risk group had the worse prognoses. In addition, 
we revealed that various pathways related to the devel-
opment and progression of tumors were significantly 
enriched  in the high-risk group of patients. Overall, we 
substantiated  that patients in the high-risk group might 
benefit from immunotherapy, whereas patients in the 
other group might be responsive to TACE treatment. 
Eventually, effective drugs were screened for patients in 
these subgroups, respectively. Our results corroborate 

the importance of BMR in predicting outcomes and guid-
ing therapy for individuals with HCC.

BM has been implicated in promoting invasion, 
migration and distant metastasis in several types of 
cancer, including lung cancer, esophageal cancer, breast 
cancer, and pancreatic adenocarcinoma [47–50]. More 
importantly, the BM has been proposed as a target for 
some malignant tumors [51–54]. There is a rich litera-
ture available substantiating that the BM is involved in 

Fig. 10  Functional analysis of DEGs between high- and low-risk groups based on TCGA-LIHC cohort. A Go analysis of DEGs between high- and 
low-risk groups. B KEGG analysis of DEGs between high- and low-risk groups. C Comparison of tumor-related pathways between low- and high-risk 
groups
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the progression of HCC via multiple mechanisms and 
that it may be considered as a biomarker for monitor-
ing the prognosis of HCC patients [15, 16]. These find-
ings also suggest that the BM has huge potential as a 
novel target for HCC  therapy. Therefore, studying the 
role of the BMR in HCC is of great significance. In 
this study, our BMR signature comprised ADAM9, 
CTSA and P3H1. It has been established that ADAM9 

promotes the progression of advanced HCC and might 
be applied as a biomarker during immunotherapy for 
HCC [55, 56]. Cathepsin A (CTSA) is a lysosomal pro-
tease established to be a promising biomarker for the 
diagnosis and prognosis of HCC [57]. Moreover, P3H1 
may be associated with the immunosuppressed state of 
other malignant tumors [58]. However, the role played 
by P3H1 in HCC is unclear, and our study provided 

Fig. 11  The analyses of immune features in the TCGA-LIHC cohort. A Comparison of immune cell infiltration between high- and low-risk groups 
with ssGSEA algorithm. B Comparison of immune function between high- and low-risk groups with ssGSEA algorithm. C Comparison of ESTIMATE 
score, stromal score, and immune score. D Comparison of immune cell infiltration between high- and low-risk groups with CIBERSORT algorithm. 
E Comparison of expression levels of immune checkpoints between the high- and low-risk groups. (*, **, *** representing p < 0.05, p < 0.01 and 
p < 0.001,respectively.)
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Fig 12  The analysis of response to immunotherapy and TACE. A Comparison of TIDE score between high- and low-risk groups. B Comparison of 
IPS score (negative PD-1 and negative CTLA-4) between high- and low-risk groups. C Comparison of TIS between the low- and high- risk groups. 
D Comparison of NFAG between low- and high-risk groups. E Comparison of risk scores between responders and non-responders to TACE therapy 
group. (*, **, *** representing p < 0.05, p < 0.01 and p < 0.001,respectively.)
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hitherto undocumented evidence that higher expres-
sion of P3H1 is positively associated with poor progno-
sis in HCC.

Data from the ICGC-JP and TCGA-LIHC databases 
proved that the BMR signature yielded good performance 
in determining the prognoses of HCC. Notably, patients 
in the high-risk group exhibited lower survival rates. 
Additionally, the BMR signature was an independent risk 
factor for predicting prognosis in HCC. To better imple-
ment BMR in clinical practice, we created a nomogram 
based on clinical features and our risk score. The calibra-
tion curves and C-index curves both demonstrated the 
precise discrimination ability of  the nomogram for pre-
dicting the prognoses of HCC patients.

Little is currently known about the mechanism underly-
ing the difference in prognoses between the two subgroups, 
nor is it clear whether a genetic mutation could contrib-
ute to this outcome. Accordingly, we performed somatic 
mutation analysis and found that the most common gene 
mutation in the high- and low-risk groups were TP53 and 

CTNNB1, respectively. It has been reported that patients 
with a higher incidence of CTNNB1 changes in liver cancer 
presented with smaller tumor sizes and well-differentiated 
tumors [59]. TP53 mutations are positively correlated with 
tumor invasion of blood vessels in malignant tumors [60]. 
As a result, distinct genetic changes between two subgroups 
may contribute to the  heterogeneity in prognoses. 

In this study, we conducted a functional enrichment 
analysis of the DEGs. Interestingly, most genes were sig-
nificantly enriched in immune-related pathways. Thus, 
we assumed that the mechanism behind the adverse 
prognosis in the high-risk group might be linked to 
immune features. Our results revealed that the TME sig-
nificantly differed between the two subgroups. Regarding 
immune cells, the high-risk group exhibited an increase 
in Th2 and Treg cells and a decreased in NK cells. Current 
evidence suggests that Th2 cells and Treg cells may facili-
tate the escape of malignant cells from immune system 
surveillance [61], and NK cells have been demonstrated 
to be promising immune cells, given their tumor-killing 

Fig 13  Drug sensitivity analyses based on the TCGA-LIHC cohort. A Comparison of drug sensitivity between high- and low-risk groups. B The 
correlation between risk score and drug sensitivity
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effects [62]. Our study also revealed notable differences 
in immune function between the two risk groups. In this 
regard, we observed weaker type-I and type-II IFN reac-
tions in the high-risk group, indicating a significant state 
of immunosuppression in these patients. Tumor cells in 
an immunologically suppressed state can escape from 
immune surveillance, thus contributing to the prolifera-
tion of tumors [63].

In addition, our study found that higher mRNAsi was 
observed in patients of the high-risk group, and enhanced 
mRNAsi represent more dedifferentiated tumor cells and 
more aggressive tumors. This finding may help explain 
the adverse prognoses of high-risk patients from another 
perspective.

Further investigation is warranted to determine if there 
are notable differences in the treatment of patients within 
these subgroups.

Immunotherapy holds great promise as a treatment 
for many HCC patients. The effectiveness of such ther-
apy depends not only on the ability of immune cells to 
adequately penetrate the tumor microenvironment but 
also on the sufficient expression of immune checkpoints 
within the cancerous tissue. Lately, inhibitors of immune 
checkpoints (ICIs) aimed at CTLA-4 and PDCD1 have 
shown promising results in treating patients with HCC 
[64]. Our findings indicate that high-risk group patients 
had higher expression levels of common immune check-
points, suggesting that they may be more responsive to 
immunotherapy. This was further supported by the TIDE 
and IPS scores. Additionally, we observed higher TMB in 
high-risk group patients, and recent studies have shown 
that higher TMB is associated with better response to 
immunotherapy. [65]. Notably, low-risk group patients 
had more CTNNB1 synapses, indicating non-inflam-
matory T-cell tumor tissues resistant to immunotherapy 
[66]. Therefore, BMR can provide valuable guidance 
for immune intervention in HCC patients from various 
perspectives.

TACE represents a potential therapeutic  option for 
advanced patients with HCC. Our results indicated that 
low-risk patients might be more sensitive to TACE ther-
apy, and BMR played  an  active role in determining the 
effectiveness of TACE therapy for HCC patients. Chemo-
therapy remains the mainstream treatment modality for 
many advanced HCC patients. However, with over 300 
chemotherapeutic agents, it may be challenging for cli-
nicians to select suitable drugs for patients with HCC. 
Based on BMR, we screened sensitive chemotherapeutic 
agents for these subgroups, which may guide physicians 
to  carry out personalized treatment of HCC patients. 
Our results indicated that high-risk patients might be 
most susceptible to "paclitaxel".

Few studies have investigated the role of basement 
membrane-associated gene sets in HCC, and our findings 
lay the groundwork for further investigations, which hold 
significant importance. Interestingly, BMR performed 
better in assessing the prognosis of HCC patients com-
pared to other genetic biomarkers. Indeed, our study was 
also subject to limitations. Similar to the literature, we 
utilized  public datasets and did  not validate these find-
ings on clinical samples. Moreover, the nomogram in our 
study lacked methemoglobin, which may slightly impact 
the accuracy of our nomogram in predicting the progno-
ses of HCC patients.

Conclusion
To summarize, our study introduced a new gene signature 
(BMR) consisting of three basement membrane-related 
genes, which yielded strong predictive performance for 
the prognosis and response to immunologic and TACE 
therapies in HCC patients. Moreover, we used BMR to 
identify potentially effective drugs from a pool of over 300 
agents for patients in high- and low-risk groups. Overall, 
BMR has huge prospects for application as a biomarker 
for making diagnostic and therapeutic decisions.
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