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Abstract
Background  Pancreatic adenocarcinoma (PDAC) is a malignant tumor with high heterogeneity and poor prognosis. 
In this study, we sought to identify the value of platelet-related genes in prognosis and heterogeneity of PDAC 
through multiple transcriptomic methods.

Methods  Based on datasets from Gene Expression Omnibus and The Cancer Genome Atlas (TCGA), platelet-related 
genes were screened out, and the TCGA cohort (n = 171) was identified into two subtypes by unsupervised clustering. 
The platelet-related risk score model (PLRScore) was constructed by univariate Cox and LASSO regression, and the 
predictive ability was evaluated by Kaplan-Meier test and time-dependent receiver operating characteristic (ROC) 
curves. The results were validated in two other external validation sets, ICGC-CA (n = 140) and GSE62452 (n = 66). 
Furthermore, predictive nomogram containing clinical characteristics and PLRScore was established. In addition, we 
determined the possible correlation between PLRScore and immune infiltration and response of immunotherapy. 
Finally, we analyzed the heterogeneity of our signature in various types of cells using single-cell analysis.

Results  Platelet-related subtypes that have significant difference of overall survival and immune states (p < 0.05) were 
identified. PLRScore model based on four-gene signature (CEP55, LAMA3, CA12, SCN8A) was constructed to predict 
patient prognosis. The AUCs of training cohort were 0.697, 0.687 and 0.675 for 1-, 3-and 5-year, respectively. Further 
evaluation of the validation cohorts yielded similar results. In addition, PLRScore was associated with immune cell 
infiltration and immune checkpoint expression, and had promising ability to predict response to immunotherapy of 
PDAC.

Conclusions  In this study, the platelet-related subtypes were identified and the four-gene signature was constructed 
and validated. It may provide new insights into the therapeutic decision-making and molecular targets of PDAC.
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Introduction
Pancreatic adenocarcinoma (PDAC) is one of the malig-
nant tumors with high morbidity and mortality [1]. 
Extensive intra-and inter-tumor heterogeneity has been 
revealed to be an important cause of poor prognosis, 
so it is crucial to improve the accuracy of clinical treat-
ment decisions based on the molecular characteristics 
of PDAC [2]. In recent years, molecular subtypes have 
guided the development and treatment strategies for a 
wide range of malignancies [3]. Various molecular sub-
types have been identified in PDAC, including the Collis-
son’s [4] and Moffitt’s [5] subtypes. Molecular subtyping 
strategy enabled patients to predict the optimal treat-
ment strategy before treatment, thus improving the over-
all survival of patients.

The experimental evidences showed that platelets not 
only inhibit blood loss and promote wound healing, 
but also play an active role in tumor growth, tumor cell 
extravasation and tumor metastasis [6]. Platelets and 
their derived growth factors play an essential role in pro-
tecting and promoting tumor metastasis, such as assist-
ing tumor evasion from host immune surveillance [7]. In 
addition, increased platelets in cancer patients were asso-
ciated with poorer survival [8]. Recently, platelet tran-
scriptomics has emerged as a highly sensitive method for 
characterizing malignant tumors, where the combination 
of large data cohorts and machine-learning algorithms 
enables precise feature selection and potential prognos-
tication [9]. However, the study of platelet-related genes 
in molecular subtypes of pancreatic cancer has not been 
reported.

In conclusion, platelets are closely related to the growth 
and progression of cancer. In this study, platelet-related 
genes were collected and characterized by multi-omics 
analysis. Then we identified the platelet-related subtypes 
in PDAC and analyzed the biological characteristics of 
the subtypes. Then we screened the prognostic factors to 
construct a prognostic risk model that could differenti-
ate the prognosis of PDAC. Furthermore, the correlation 
between risk score and clinical features or immune infil-
tration of PDAC was analyzed.

Materials and methods
A schematic presentation of the research procedure is 
shown in Fig. 1.

Data availability and preprocessing multi-omics
To identify the platelet related genes, the gene expres-
sion data were downloaded from The Genotype-Tissue 
Expression (GTEx, https://gtexportal.org/) and Gene 
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/) dataset GSE160252 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE160252). The RNA-seq 
raw read count, fragments per kilobase million (FPKM) 

and the related clinical information from patients with 
PDAC were extracted from The Cancer Genome Atlas 
(TCGA, https://portal.gdc.cancer.gov/projects/TCGA-
PAAD/) database which were used for the construction 
of our signature. Only samples with survival informa-
tion were screened for follow-up analysis (TCGA-PAAD, 
n = 171). For validation of the prognostic model, the clini-
cal follow-up and gene expression were obtained from 
GSE62452 (n = 66, https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE62452) and International Cancer 
Genome Consortium (ICGC-CA, n = 140, https://dcc.
icgc.org/). In addition, the Expression profiling and ther-
apeutic information of GSE78220 (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE78220) was down-
loaded for use in immunotherapy-related analysis.

Identification of platelet-related genes
The differentially expressed platelet-associated genes 
were selected (p value < 0.05, |log2FoldChang| > 1) 
according to the GSE160252, and 1459 genes were 
obtained. Then, based on the differential expression 
genes between PDAC and normal pancreatic tissue, 573 
differential platelet-related genes (PRGs) were selected 
from 1,459 genes using DEseq2 package (FDR < 0.01, 
|log2FoldChang| > log2(3)). The PRGs in the study were 
performed for Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway [10] 
enrichment analysis by using the ‘clusterProfiler’ R 
package.

Identification of platelet-related subtypes in PDAC
Using the ‘Non-negative matrix factorization (NMF)’ 
R package (rank = 2: 6), patients were consensus clus-
tered into two subtypes based on PRGs, and the Kaplan-
Meier (K-M) method with log-rank test was performed 
to compare overall survival (OS) differences between 
the subgroups. In order to study the differences between 
two subtypes in platelet-related pathways, gene set varia-
tion analysis (GSVA) algorithm was used to analyze the 
angiogenesis and epithelial to mesenchymal transition 
(EMT)-related pathway scores. To analyze the differences 
of immune infiltration status between the two subtypes, 
CIBERSORT and ESTIMATE algorithms were carried 
out using R. Then, immune profile differences between 
subtypes were estimated by Wilcoxon test.

Construction and validation of Prognostic Model based on 
PRGs
Firstly, the PRGs were tested using the univariate Cox 
analysis to determine the prognostic value. Subsequently, 
based on the candidate genes with p < 0.05 in the univari-
ate Cox analysis, a least absolute shrinkage and selection 
operator (LASSO) regression model was constructed 
by “glmnet” package. Finally, the hazard ratios (HR) and 
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Fig. 1  Workflow of the current study

 



Page 4 of 14Zhao et al. BMC Medical Genomics          (2023) 16:106 

regression coefficients for each gene used in the con-
struction of the final prognostic signature. The risk score 
was calculated using the following formula:

	 riskscore = e
∑n

k=1coefkexpressionk

where e refers to the natural constant, expressionk is 
the expression of the kth selected gene, and coefk is its 
regression coefficient. The survival analysis was imple-
mented to compare the OS of the two subgroups. The 
time-dependent receiver operating characteristic (ROC) 
analysis at 1, 3, and 5 years of prognostic value was used 
to assess discrimination of the model in predicting OS 
of PDAC using the R package ‘survivalROC’. External 
validation was conducted in ICGA-CA and GSE62452 
cohorts, respectively.

Assessment of prognostic factors and construction of a 
predictive nomogram
To assess whether the risk score was able to combined 
with clinical factors as an independent prognostic factor, 
uni- and multi-Cox regressions were used to verify the 
prognostic role of them. Then, a nomogram was estab-
lished using R package ‘rms’ based on risk score and clin-
ical factors. The predictive effect of the nomogram was 
validated by ROC and calibration curve.

Correlations between risk score and immunocyte 
infiltration
CIBERSORT algorithm and single sample gene set 
enrichment analysis (ssGSEA) was applied in analyzing 
the differences of immune infiltration status between 
high- and low-risk groups. The boxplot was also used to 
show the difference in the expression of immune check-
point between high- and low-risk groups.

Single cell analysis
Expression matrix for single cell transcriptome analy-
sis and clinical characteristics of PDAC were obtained 
from CRA001160 in the Genome Sequence Archive 
(GSA, https://ngdc.cncb.ac.cn/gsa/browse/CRA001160) 
database. To demonstrate the heterogeneity of our sig-
nature in the single-cell dimension, the expression of 
platelet-related signature in each cell was calculated and 
compared among different cell types. ‘Seurat’ R package 
was used to generate t-distributed Stochastic Neighbor 
Embedding (t-SNE) plot for cell type visualization. Com-
parisons among all cell types were conducted through 
Kruskal-Wallis test.

Statistical methods
Comparisons between two groups were conducted 
through the Wilcoxon test. The survival curve was gen-
erated by Kaplan-Meier method and the log-rank test 

was used to determine the significance of the differ-
ence. All statistical analyses were performed using the R 
programming language (Version 4.1.0). A difference of 
p < 0.05 indicated statistical significance unless specified 
otherwise.

Results
Selection and Functional Enrichment of PRGs
1459 platelet-associated factors were obtained from the 
GSE160252 dataset, and 573 PRGs were selected by dif-
ferential analysis between PDAC and normal tissues. 
The results were visualized by volcano plot (Fig. 2A) and 
heatmap (Fig.  2B). Principal component analysis (PCA) 
showed a significant distribution difference of PRGs 
between PDAC and normal tissues (Fig. 2C). In order to 
explore the potential biological functions and pathways 
of PRGs, we performed functional enrichment analysis. 
Interestingly, the KEGG analysis showed that PRGs were 
highly enriched in several biological processes, includ-
ing protein digestion and absorption, ECM − receptor 
interaction, arrhythmogenic right ventricular cardioamy-
opathy and one carbon pool by folate (Fig. 2D). And the 
PRGs were significantly enriched in the pathways associ-
ated with intercellular communication and the promo-
tion of fibrogenesis in the tumor microenvironment in 
GO analysis (Fig. 2E-G).

Different characteristics of platelet-related subtypes
In order to reveal the heterogeneity of platelet-related 
genes in PDAC, 171 patients were divided into two 
subtypes according to the expression profile of PRGs 
(Fig.  3A). And there was significantly difference of OS 
between the two subtypes (Fig.  3B). Subtype2 (n = 127) 
had an inferior prognosis than subtype1 (n = 44) which 
promoted us to find the difference of biological pro-
cesses and immunocyte infiltration between two plate-
let-related subtypes. The heatmap showed GSVA scores 
of the angiogenic (Fig.  3C) and EMT-related pathways 
(Fig. 3D). And there were significant differences in apop-
tosis-associated pathways between the two subtypes. 
The immune landscape of the two subtypes was further 
studied (Fig. 3E). The subtype1 had higher immune score, 
stromal score, ESTIMATE score and lower tumor purity 
than the subtype2. In addition, the CIBERSORT algo-
rithm was used to analyze 22 different immune cell types 
in the two subtypes. In the subtype1, CD8 T cells, CD4 
memory resting T cells, monocytes and rest mast cells 
were up-regulated, and macrophages (M0), Regulatory 
T cells (Tregs) and memory B cells were down-regulated 
significantly (p < 0.05).

https://ngdc.cncb.ac.cn/gsa/browse/CRA001160


Page 5 of 14Zhao et al. BMC Medical Genomics          (2023) 16:106 

Construction of platelet-related risk score (PLRScore) 
model
Platelet-related subtypes could distinguish patients with 
different prognosis, but the number of genes is too large 
for clinical application. To build a simple scoring model, 
univariate Cox regression showed that 112 PRGs were 
potential prognostic factors, and the results were partly 
shown by forest plot (Fig.  4A). And the patients were 
divided into two groups based on the median expression 
of these potential prognostic factors, significant survival 

differences between the two groups were identified (the 
six most significant were shown, Fig.  4B). To establish 
PLRScore in patients with PDAC in the TCGA dataset, 
these 112 PRGs were included in the LASSO regression 
(Fig.  4C). An optimal 4 genes (CEP55, LAMA3, CA12, 
SCN8A) signature and coefficient of each were identified 
(Fig. 4D).

Fig. 2  Identification of platelet-related genes in pancreatic adenocarcinoma (PDAC). (a) The differentially expressed platelet-associated genes were 
selected from GSE160252 and showed in volcano plot. (b) The heatmap showed that 573 platelet-related genes (PRGs) were selected by differential 
analysis between PDAC and normal tissues. (c) Principal component analysis (PCA) showed a significant distribution difference of PRGs between PDAC 
and normal tissues. The enrichment of PRGs by Kyoto Encyclopedia of Genes and Genomes (d) and Gene Ontology (e-g)
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Fig. 3  Identification of platelet-related subtypes in the TCGA cohort (n = 171). (a) The consensus matrix of the platelet-related genes. (b) Overall survival 
(OS) of patients in subtype1 and subtype2 (p < 0.05). The heatmap showed GSVA scores of the angiogenic (c) and EMT-related pathways (d). (e) The heat-
map showed immune infiltration of the two subtypes by CIBERSORT and ESTIMATE algorithms. * represents p < 0.05, ** represents p < 0.01, *** represents 
p < 0.01
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Analysis of prognostic efficiency of PLRScore model in 
training set and validation sets
According to the median PLRScore, patients were 
divided into PLRScore-high (n = 85) and PLRScore-low 
(n = 86). The increased PLRScore was accompanied by 
gradually decreasing survival time and increased mor-
tality (Fig. 5A). And the expression level of 4 genes sig-
nature was presented in form of heatmap (Fig.  5B). 
Kaplan-Meier survival analysis showed that OS of the 
PLRScore-high was significantly shorter than that of 
the PLRScore-low (Fig.  5C). The AUCs at 1, 3 and 5 
years were 0.697,0.687 and 0.675, respectively. (Fig. 5D). 
To verify the stability of the model constructed from 
the TCGA dataset, patients in the GSE62452 were also 
assigned to PLRScore-high and low groups relative to the 
median risk score which was calculated using the same 
formula as the training set (Fig. 5E). To avoid the extreme 

population allocation, patients in the ICGC dataset were 
assigned to PLRScore-high and low groups relative to the 
lower quartile risk score (Fig. 5F). There were significant 
differences in survival between the two groups of valida-
tion sets (p < 0.05). The AUCs of the PLRScore at 1, 3 and 
5 years in the GEO cohort were 0.649, 0.762 and 0.775 
(Fig. 5G) and in the ICGC cohort were 0.615, 0.574 and 
0.585 (Fig. 5H), which proved the generality of our model.

The independence of the PLRScore in predicting OS in 
PDAC
To evaluate whether PLRScore was an independent prog-
nostic indicator for OS, univariate and multivariate Cox 
regression analyses were performed. In the TCGA data-
set, both univariate Cox analysis and multivariate Cox 
analysis showed a significant correlation between N stage 
and PLRScore and overall survival (Fig. 6A, B). In order 

Fig. 4  Construction of the four-gene signature. (a) Forest plot of univariate Cox regression analysis showed that top 30 PRGs were associated with 
prognosis. (b) P values differed most significantly among the top 6 genes in the survival curve. (c) Selection of the tuning parameter (lambda) in the least 
absolute shrinkage and selection operator (LASSO) regression by 10-fold cross-validation based on minimum criteria for OS. (d) The coefficient of four 
genes of the signature

 



Page 8 of 14Zhao et al. BMC Medical Genomics          (2023) 16:106 

Fig. 5  Construction and validation of the platelet-related risk score (PLRScore) model. Distributions of risk scores, survival status (a) and expression of 4 
platelet-related genes (b) in the TCGA cohort (n = 171). (c) Kaplan-Meier (K-M) curves for the OS of patients in the high- and low-risk groups in the TCGA 
cohort. (d) The receiver operating characteristic (ROC) curve analyses of the prognostic PLRScore in the TCGA cohort. The OS of patients in the high- and 
low-risk groups in the GSE62452 cohort (e, n = 66) and ICGC cohort (f, n = 140). The ROC curves of the prognostic PLRScore in the GSE62452 cohort (g) 
and ICGC cohort (h)
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Fig. 6  Development of a prognostic nomogram based on clinical factors and PLRScore. Forest plot of univariate (a) and multivariate (b) Cox regression 
analysis showed that PLRScore was an independent factor for prognosis. (c) Nomogram based on risk score, age, race, gender, tumor stage and TNM 
stage. The ROC curves (d) and calibration curves (e-g) for the nomogram
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to establish a predictive tool for clinical use, a prognos-
tic nomogram was developed based on pathological 
TNM stage, age, race, tumor stage, gender and PLRScore 
(Fig. 6C). The AUC of the nomogram was 0.687 (Fig. 6D). 
The calibration curves showed that the nomogram has 
prediction consistency (Fig.  6E-G). These results indi-
cated that the PLRScore can be applied as an indepen-
dent prognostic factor combined with clinical indicators.

The role of PLRScore in predicting the efficacy of 
immunotherapy
To further explore the correlation between immunity and 
PLRScore, enrichment scores of different risk groups and 
related functions or pathways were used in the ssGSEA 
analysis. As expected, the PLRScore-low group scored 
higher on the immune landscape, including CD8+ T cells, 
neutrophils, T helper cells, TILs, B cells, macrophages, 
NK cells, mast cells, activated dendritic cells (aDCs), 
iDCs, pDSs, Tfh and Th1 cells (Fig.  7A). CIBERSORT 
analysis showed differences of cell infiltration in tumor 
microenvironment between PLRScore-high and low 
groups. In the PLRScore-low group, infiltration scores 
of CD8+ T cells, naïve B cells and monocytes were sig-
nificantly augmented, along with decreased infiltration 
score of resting NK cells, M0 macrophages and aDCs 
(Fig.  7B). We also used boxplot to show the difference 
in the expression of immune checkpoints between the 
two groups. The differences in the expression of cyto-
toxic T-lymphocyte-associated protein 4 (CTLA-4) and 
CD86 between PLRScore-high and low groups were 
significant (Fig.  7C). To explore whether the PLRScore 
could predict responses of immunotherapy, a significant 
correlation between PLRScore and OS was observed 
in the GSE78220 data from 16 melanoma samples 
(Fig.  7D, E). The results demonstrated the ability of our 
PLRScore to predict the prognosis of patients undergoing 
immunotherapy.

Heterogeneity of the four-gene signature among cell 
populations in PDAC
Based on Peng’s et.al [10] study, we performed a prin-
cipal component analysis and unsupervised clustering 
of the variable expression genes in all cells and iden-
tified 33 clusters, and used well-established marker 
genes to classify the 33 clusters into 13 cell popula-
tions including type 1 ductal cell, type 2 ductal cell, 
Ki67+ cell, CD8+ T cell, CD4+ T cell, B cells, macro-
phages, endothelial cells, endocrine cells, fibroblasts, 
plasmocytes, stellate cells and acinar cells (Fig.  8A). 
We further investigated the expression of the four-
gene signature in single-cell populations, which was 
significantly increased in both type 2 ductal cells and 
Ki67+ cells (Fig.  8B). The heatmap showed the repre-
sentative marker genes for each cell cluster (Fig.  8C). 

And Kruskal-Wallis test showed the heterogeneity of 
our signature at the single-cell level (Fig. 8D).

Discussion
Our previous studies have found that some hemostatic 
parameters are independent prognostic factors for pan-
creatic cancer, and based on these hemostatic parameters 
we have developed a scoring system for predicting sur-
vival in patients with advanced pancreatic cancer [11]. 
Recent studies have shown that platelets participate in 
tumor growth and metastasis by stimulating tumor cell 
proliferation and promoting tumor angiogenesis through 
the release of various cytokines and chemokines [12]. In 
this study, we aimed to find relationship between plate-
let and prognosis of patients with PDAC at the level of 
the transcriptome. And two different prognostic platelet-
related subtypes were identified and a prognostic model 
was developed, which was validated by two independent 
external cohorts.

We identified two subtypes of pancreatic cancer with 
different prognosis by screening platelet-related genes, 
and attempted to speculate the reasons for their different 
prognosis. Subtype2, the one with poor prognosis, was 
upregulated in macrophages, Tregs and memory B cells 
and downregulated in CD8+ T cells, CD4+ memory rest-
ing T cells, monocytes and rest mast cells. Treg cells are a 
subtype of immune cells that work to suppress excessive 
immune activation [13]. A recent study has shown that 
Tregs mediate immunosuppression through adenosine 
in tumor microenvironment with abnormal metabolism 
[14]. In an independent cohort, M0 macrophages were 
found to be a poor prognostic factor for hepatocellular 
carcinoma, and angiogenic genes were highly enriched in 
the M0-high group [15]. These results suggested that the 
prognosis of platelet-associated subtypes may be related 
to the tumor immune microenvironment.

To promote the clinical transformation of plate-
let-associated subtypes, we developed a four-gene 
signature that predict pancreatic cancer. CEP55 (Cen-
trosome protein 55) was considered essential for cell 
cycle processes, and there were increasing evidences 
that up-regulation of CEP55 was involved in the devel-
opment and progression of various malignancies, 
including liver cancer [16], bladder cancer [17], ana-
plastic thyroid cancer [18], non-small-cell lung cancer 
[19, 20] and colorectal cancer [21]. And overexpres-
sion of CEP55 was associated with genomic instabil-
ity [22, 23]. A number of recent bioinformatics studies 
have found that LAMA3 (Laminin subunit alpha3) was 
a poor prognostic factor for PDAC [24–26]. In addi-
tion, experiments have verified that LAMA3 showed 
an increasing trend in the occurrence and develop-
ment of PDAC [27]. In Gao’s et.al [28] risk predic-
tion model, CA12 (Carbonic anhydrase 12) showed 
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Fig. 7  The immune landscape between high- and low-risk groups. Single sample gene set enrichment analysis (a) and CIBERSORT algorithm (b) were 
applied in analyzing the differences of immune infiltration status between high- and low-risk groups. (c) The violin plot was used to show the difference 
in the expression of immune checkpoint between high- and low-risk groups. (d) K-M curve for the OS of patients in the high- and low-risk groups in the 
GSE78220 cohort. (e) The response of immunotherapy between the high- and low-risk groups. * represents p < 0.05, ** represents p < 0.01, *** represents 
p < 0.01, ns represents no significant difference
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Fig. 8  Single-cell analysis of heterogeneity of the four-gene signature in PDAC (a) The t-distributed stochastic neighbor embedding (t-SNE) plot dem-
onstrated main cell types in PDAC. (b) The expression of four-gene signature among the cell types. (c) Heatmap showing expression levels of specific 
markers in each cell type. (d) Kruskal-Wallis test showed the expression of four genes in different cell types were significantly different
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a higher expression level in the high-risk group, and 
similar to our findings, was a risk factor for prognosis 
in pancreatic cancer. In contrast, another study found 
that low CA12 expression was significantly associated 
with poor overall survival [29]. SCN8A (Sodium Volt-
age-Gated Channel Alpha Subunit 8), a member of the 
gene family encoding sodium channel α subunit [30], 
was found to be highly expressed in colorectal can-
cer tissues and positively correlated with lymph node 
metastasis of colorectal cancer [31]. And among epi-
thelial ovarian cancer samples, lower SCN8A expres-
sion was associated with improved overall survival 
[32]. However, SCN8A was defined in our signature as 
a protective factor for PDAC.

Immune checkpoint inhibitors, targeting CTLA-4 
and the programmed cell death protein-1 (PD-1)/pro-
grammed cell death ligand-1 (PD-L1) pathways have 
shown remarkable potential in malignant tumors [33]. 
CTLA4 has been shown to inhibit T cell activation by 
capturing and internalizing CD80 and CD86 in anti-
gen presenting cells [34]. In this study, the expression of 
CTLA4 and CD86 were higher in PLRScore-low group 
which suggested that the response of immunotherapy 
may differ between the two groups. And as we expected, 
the prognosis of patients with immunotherapy was signif-
icantly different between PLRScore-low and high groups. 
Their immune response rates were different, even though 
there was no significance due to the limited sample size.

Our study had the following limitations: First of all, 
although we combined bulk and single-cell sequenc-
ing data to establish and validate our model, further 
in vivo and in vitro mechanism exploration may still 
provide additional information and validation of 
platelet-related markers for improved treatment strat-
egy in PDAC. Second, the sample size of the external 
independent immunotherapy cohort we applied was 
too small, and further clinical trials are also entailed. 
Finally, we merely discussed the role of platelet in a 
transcriptomic aspect, the epigenetic process of plate-
lets which is essential in cardiovascular research [35], 
and the important role of miRNA in platelets [36] 
needs further discussion.

Conclusion
This study identified a new platelet-related classification 
of PDAC, and constructed a risk score model, PLRScore. 
Our platelet-related subtypes provided insights into 
the mechanisms associated with immunosuppression 
and poor prognosis in PDAC. This study described het-
erogeneity in PLRScore at bulk and single-cell tran-
scriptomic levels. Our four-gene signature, particularly 
those that have not been studied in PDAC, may provide 
new insights into the development of more effective 

biomarkers to predict prognosis and immunotherapy 
response in patients with PDAC.
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