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Abstract 

Background  Atherosclerosis is the main pathological change in atherosclerotic cardiovascular disease, and its under-
lying mechanisms are not well understood. The aim of this study was to explore the hub genes involved in atheroscle-
rosis and their potential mechanisms through bioinformatics analysis.

Methods  Three microarray datasets from Gene Expression Omnibus (GEO) identified robust differentially expressed 
genes (DEGs) by robust rank aggregation (RRA). We performed connectivity map (CMap) analysis and functional 
enrichment analysis on robust DEGs and constructed a protein‒protein interaction (PPI) network using the STRING 
database to identify the hub gene using 12 algorithms of cytoHubba in Cytoscape. Receiver operating characteristic 
(ROC) analysis was used to assess the diagnostic potency of the hub genes.The CIBERSORT algorithm was used to 
perform immunocyte infiltration analysis and explore the association between the identified biomarkers and infiltrat-
ing immunocytes using Spearman’s rank correlation analysis in R software. Finally, we evaluated the expression of the 
hub gene in foam cells.

Results  A total of 155 robust DEGs were screened by RRA and were revealed to be mainly associated with cytokines 
and chemokines by functional enrichment analysis. CD52 and IL1RN were identified as hub genes and were validated 
in the GSE40231 dataset. Immunocyte infiltration analysis showed that CD52 was positively correlated with gamma 
delta T cells, M1 macrophages and CD4 memory resting T cells, while IL1RN was positively correlated with monocytes 
and activated mast cells. RT-qPCR results indicate that CD52 and IL1RN were highly expressed in foam cells, in agree-
ment with bioinformatics analysis.

Conclusions ​ This study has established that CD52 and IL1RN may play a key role in the occurrence and development 
of atherosclerosis, which opens new lines of thought for further research on the pathogenesis of atherosclerosis.
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Introduction
Atherosclerotic cardiovascular disease (ASCVD) remains 
the leading cause of death worldwide and is a major 
component of the world disease burden. Atheroscle-
rosis is the main pathological change in ASCVD, and 
often causes ischaemic heart disease, ischaemic stroke, 
peripheral artery disease and other major diseases [1–4]. 
Despite considerable efforts to elucidate the cellular and 
molecular mechanisms underlying atherosclerosis, its 
complex mechanisms are still not fully understood [5, 
6]. Therefore, an in-depth exploration of the pathological 
mechanisms of atherosclerosis is of great research and 
clinical importance for the prevention and treatment of 
ASCVD.

In recent years, bioinformatics analysis has become an 
important method in modern medical science research. 
GEO public database has been widely used to explore 
candidate genes and new mechanisms of different dis-
eases [7–9]. Therefore, the exploration of transcrip-
tome data through bioinformatics analysis can tap into 
some potential mechanisms of atheroma to provide new 
diagnostic biomarkers and contribute to future clinical 
research.

In this study, we aimed to explore the underlying 
mechanisms of atherosclerosis and identify clinically 
valuable diagnostic biomarkers through comprehensive 
bioinformatics analysis. To minimize the impact of differ-
ent laboratories, technical platforms, and different data 
processing methods, we downloaded three microarray 
datasets of atherosclerosis from GEO and obtained inte-
grated differentially expressed genes (DEGs) using the 
robust rank aggregation (RRA) method. Subsequently, 
we performed connectivity map (CMap) analysis, gene 
ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis of the DEGs 
and constructed a PPI network using the STRING data-
base to identify the hub gene using the 12 algorithms 
of cytoHubba in Cytoscape. We assessed the diagnostic 
power of the hub genes by Receiver operating character-
istic (ROC) analysis, performed immunocyte infiltration 
analysis with the use of the CIBERSORT algorithm, and 
explored the association between the identified biomark-
ers and infiltrating immunocytes using Spearman’s rank 
correlation analysis in R software. Finally, we evaluated 
the expression levels of the hub genes in foam cells. A 
flowchart summarizing this study is shown in Fig. 1.

Materials and methods
Collection and pretreatment of microarray data
Microarray gene expression datasets were retrieved from 
the GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​gds) 
for atherosclerosis and matched controls. We used “ath-
erosclerosis” as the key word for retrieval in the GEO 

database, and selected the atherosclerotic microarray 
dataset according to the following criteria: (1) samples of 
human atherosclerotic vascular tissue and normal vas-
cular tissue, (2) gene expression profile of mRNA, (3) at 
least three samples per group, (4) expression profiling by 
array as the study type. Based on the above screening cri-
teria, four datasets were eventually included in the study: 
GSE43292, GSE97210, GSE100927, and GSE40231. Of 
these, GSE43292, GSE97210, GSE100927 were used 
for joint analysis and identification of hub genes, and 
GSE40231 was used as a validation set to assess the diag-
nostic efficacy of hub genes. The fundamentals of these 
microarray datasets were listed in Additional file  1: 
Table  S1. In the R (https://​www.r-​proje​ct.​org/​versi​onr-
4.​1.1), the “arrayQualityMetrics” package was used for 
quality control of samples in the dataset, and the “affy” or 
“the linear models for microarray data (limma)” packages 
were used to standardize presentation data. The values 
of DEGs, adjusted p value < 0.05 and | log2 Fold change 
(logFC) | >1 between atherosclerosis and control samples 
in each dataset were identified as statistically significant 
by the “limma” packet in R. Volcanic and thermal maps 
were plotted using the “ggplot2”package and the “pheat-
map” package in R, respectively.

Robust rank aggregation analysis
To integrate the DEGs of the three microarray data sets, 
we ranked the up-regulation and down-regulation genes 
for |logFC| >1.0 in each dataset by their logFC and then 
determined the robust DEGs using the “RobustRankAg-
greg” packet in R. RRA is a standard method of minimiz-
ing deviations and errors between multiple datasets [10]. 
Genes with |logFC| >1.0 and p < 0.05 were considered 
significant robust DEGs. The heatmap is drawn using the 
“pheatmap” package in R.

The “clusterProfiler” package in R was used to perform 
the GO and KEGG pathway enrichment analyses for 
robust DEGs [11–13]. The GO term and the KEGG path-
way that met both p-value < 0.05 and q-value < 0.05 were 
considered to be statistically significant enrichment. The 
package ‘ggplot2’ in R was used to visualize the results of 
these enrichment analyses.

Connectivity map (CMap) analysis
Robust DEGs were analyzed using the CMap database 
(https://​clue.​io/) to explore potential anti-atherosclerosis 
agents [14]. CMap is an online database that can analyze 
the characteristics of gene expression profiles of diseases 
and find small molecule compounds with similar or 
opposite effects, which is often used to predict potential 
therapeutic drugs for diseases.

https://www.ncbi.nlm.nih.gov/gds
https://www.r-project.org/,versionr-4.1.1
https://www.r-project.org/,versionr-4.1.1
https://clue.io/
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Construction of PPI networks and identification of hub 
genes
The PPI network of robust DEGs was constructed in the 
STRING online database (https://​string-​db.​org/, ver-
sion 11.5) using default parameters, and the results were 
imported into the Cytoscape software (http://​cytos​cape.​
org/; version 3.7.2) for visualization [15]. The hub genes 
were then identified using the 12 algorithms of cyto-
Hubba in Cytoscape software, and visualization was per-
formed using the “UpSetR” package in R.

Diagnostic value of hub genes in atherosclerosis
The ROC curve was generated by the “pROC” packet in 
R to evaluate the diagnostic efficacy of the identified hub 
genes in the GSE43292, GSE97210, and GSE100927 data-
sets (27). The area under the ROC curve (AUC) value was 
used to determine the diagnostic effectiveness of distin-
guishing between atherosclerosis and the control sample. 
These hub genes were further validated in the GSE40231 
dataset. The “ggpubr” in R was used to visualize differ-
ences in the expression of hub genes in the GSE40231 
dataset.

Fig. 1  Flowchart of the research

https://string-db.org/
http://cytoscape.org/
http://cytoscape.org/
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Immune Infiltration by CIBERSORT Analysis
The CIBERSORT algorithm performed immunocyte 
infiltration analysis on the GSE40231 dataset [16]. The 
levels of 22 immune cells between the two groups were 
compared using the “vioplot” package, and the “corrplot” 
package was used to make the correlation heatmap of 22 
immune cells. The Spearman rank correlation analysis in 
R software explored the association between character-
istic genes and infiltrating immune cells, and visualized 
it using the “ggplot2” package. P < 0.05 were considered 
statistically significant.

Cell culture and treatment
Human THP-1 cells (CL-0233) were kindly provided 
by Procell Life Science&Technology (Wuhan, China) 
and subjected to STR authentication in Procell Life 
Science&Technology. THP-1 cells were cultured with 
RPMI-1640 (G4530-500ML, Servicebio, China) supple-
mented with 10% Fetal Bovine Serum (FBS) (FSP500, 
ExCell Bio, China) and 1% Penicillin-Streptomycin 
(P/S) (15,140,122, GIBCO, USA). The cells were inocu-
lated in 6-well plates at a density of 5 * 10^5/ml, and 
the cells were inoculated with phorbol 12-myristate 
13-acetate (PMA) (100 ng/ml; Hy-18,739, MedChem-
Express, USA) was cultured in the culture medium for 
48  h to differentiate into macrophages. THP-1 mac-
rophages differentiated from PMA were treated with 
80  µg/ml ox-LDL (Yiyuan Biotechnology, China) for 
24 h. Foam cell development was determined using Oil 
Red O staining. An incubator with 5% CO2 and 37  °C 
was used to culture cells.

Oil red O staining
Each well of the medium was sucked out, and the cells 
were washed gently with PBS for 3 to 5 times, fixed 
with 4% paraformaldehyde at 37℃ for 30  min, rinsed 
with PBS twice, and stained with oil red O (00625, 
Sigma-Aldrich, USA) at 37℃ for 30  min. Rinse with 
60% 2-propanol for 5s, and then 2–3 times with PBS. 
The lignin was counterstained for 20-60s and immedi-
ately rinsed 2–3 times with PBS. Oil red O staining was 
observed under a microscope. Measuring oil red posi-
tive area with image J software.

Real‑time quantitative PCR (RT‑qPCR)
Total RNA was extracted with E.Z.N.A Total RNA Kit I 
(R6834, OMEGA, USA) and cDNA synthesis was per-
formed by the All-In-One 5X RT MasterMix (G592, 
abm, Canada) according to the manufacturer’s instruc-
tions. LightCycler 480 II System (Roche, Switzerland) 
and ChamQ Universal SYBR qPCR Master Mix (Q711, 
Vazyme, China) were used for quantitative real-time 
PCR analysis. Data were normalized to β-ACTIN 

expression in each sample. The specific primers used 
for RT-qPCR were shown in Table 1.

Statistical analysis
In vitro validation data were analyzed using Prism 9.0 
(GraphPad, La Jolla, CA, USA). Data were expressed 
as the mean standard deviation (SD) of not less than 
three independent experiments, and differences were 
analyzed using t-test (two groups). The dataset was 
analyzed by R software (version 4.1.1), and the differ-
ence was analyzed by Wilcoxon test (two groups) and 
ANOVA (more than two groups). Significant differ-
ences were considered to be p < 0.05 unless otherwise 
noted.

Results
Identification of DEGs in each dataset
After normalization and analysis using the “limma” pack-
age in R according to predetermined thresholds, we 
screened out 174 DEGs (101 upregulated and 73 down-
regulated) in GSE43292, 2370 upregulated DEGs and 
2344 downregulated DEGs from GSE97210. Meanwhile, 
we also identified 761 up-regulated DEGs and 645 down 
regulated DEGs from GSE100927 (Additional file  2: 
Table  S2). Volcano plots present the differential expres-
sion results for the microarray dataset (Fig.  2A  C, E), 
and the top 50 ranked differential expression data with 
adjusted P value were visualized in heatmap (Fig. 2B, D 
and F).

Identification of robust DEGs by RRA method
We integrated the three data sets using the RRA method 
and determined a total of 155 robust DEGs, including 76 
up-regulated and 79 down-regulated genes (Additional 
file 3: Table S3). Based on the p-value of the robust DEGs, 
we visualized the expression of the top 40 robust DEGs 
(top 20 up-regulated and top 20 down-regulated genes) 
from the RRA analysis using the “pheatmap” package in 
R (Fig. 3A).

Functional Enrichment analysis of robust DEGs
The GO functional enrichment analysis results of 155 
robust DEGs were 555, including 524 biological pro-
cesses (BP), 18 cellular components (CC), and 13 

Table 1  Primers used for RT-qPCR

Gene Forward (5′–3′) Reverse (5′–3′)

β-Actin CAT​GTA​CGT​TGC​TAT​CCA​GGC​ CTC​CTT​AAT​GTC​ACG​CAC​GAT​

CD52 TCT​TCC​TCC​TAC​TCA​CCA​TCAG​ CCT​CCG​CTT​ATG​TTG​CTG​GA

IL1RN CAT​TGA​GCC​TCA​TGC​TCT​GTT​ CGC​TGT​CTG​AGC​GGA​TGA​A
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molecular functions (MF) (Additional file 4: Table 4). The 
GO enrichment analysis (Fig.  3B) revealed significantly 
enriched BP in cytokine regulation, immune and inflam-
mation regulation, and MAPK cascade regulation. For 
CC terminology, robust DEGs were mainly enriched in 
contractile fibers, myofibrils, sarcomere, endocytic vesi-
cle, endocytic vesicle membrane, secretory granule mem-
brane, etc. In addition, growth factor binding, immune 
receptor activity, amide binding, peptide binding, G 
protein-coupled receptor binding, fatty acid binding, and 
others were significantly enriched in MF. Meanwhile, 
KEGG pathway analysis showed (Fig.  3C) that the 155 
robust DEGs were significantly enriched in six pathways, 
such as chemokine signaling pathway, hematopoietic cell 
lineage, and regulation of lipolysis in adipocytes (Addi-
tional file 5: Table S5).

CMap analysis
To search for potential small molecule compounds to 
reverse robust DEGs expression profiles, CMap analysis 
was performed. We showed the most significant top 10 
negatively correlated drugs/molecules, including KU-
C103428N, desoxypeganine, MBCQ, phylloquinone, 

gossypol, kavain, flubendazole, VX-702, palonosetron, 
linsitinib (Table 2).

PPI Network Construction and hub genes identification
To further investigate the interaction of robust DEGs, 
we constructed a PPI network using a STRING database 
with the confidence > 0.9 and hidden disconnected nodes, 
and visualized it on Cytoscape software (Fig.  4). In the 
final network, there were 101 nodes and 267 edges. Then, 
we got top 40 robust DEGs from protein-protein network 
ranked by 12 different algorithms of cytoHubbaincluding 
Degree, Density of Maximum Neighborhood Compo-
nent (DMNC), Edge Percolated Component (EPC), Max-
imal Clique Centrality (MCC), Maximum Neighborhood 
Component (MNC), and centralities based on shortest 
paths, such as Bottleneck (BN), Closeness, EcCentric-
ity (EC), Radiality, Betweenness, Stress, and Clustering 
Coefficient (CC) were intersected. Finally, CD52 and 
IL1RN were identified as hub genes (Fig. 5).

Fig. 2  Volcano plot and heatmap of differential expression of GSE43292 (A, B), GSE97210 (C, D), and GSE100927 (E, F). In the volcano plot, the blue 
plots represent downregulated DEGs; the gray plots represent non-significant genes, and the red plots represent upregulated DEGs. The heatmap 
shows the two-way hierarchical clustering results of the top 50 ranked differential expression profiles and samples with adjusted P values. Each 
row in the heatmap represents a gene, and each column represents a sample. The color scale on the right side of the heatmap represents the 
homogenous expression value, ranging from blue (low expression) to red (high expression)
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Fig. 3  Identification and functional enrichment analysis of robust DEGs. A Robust DEGs for 3 microarray datasets were identified and integrated 
using the RRA. The rows represent the genes and the columns represent the GEO dataset. The color of the heatmap represents the homogenous 
expression value, ranging from blue (low expression) to red (high expression), and the value in the box represents the logFC value. NA means 
that the gene was not statistically significant in this dataset. B GO functional enrichment of robust DEGs, BP (biological processes), CC (cellular 
components), MF (molecular functions). C KEGG pathway enrichment of robust DEGs
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Clinical diagnostic significance of potential 
biomarkers for atherosclerosis
The ROC curve suggests that CD52 and IL1RN showed 
favorable diagnostic value in distinguishing between 
atherosclerosis and control data in the GSE43292, 
GSE97210, and GSE100927 datasets (Additional file  9: 
Figure S1 A-F). To further validate the diagnostic value of 
the above genes, we demonstrated their satisfactory dis-
crimination in the GSE40231 validation dataset, with an 
AUC of 0.788 in CD52 and 0.631 in IL1RN (Fig. 6A and 
B). In addition, expression levels of CD52 and IL1RN in 
the atherosclerosis samples were also significantly higher 
than in the normal samples (Fig. 6C and D).

Immune infiltration analyses
Immunocyte infiltration analysis on the GSE40231 data-
set showed that the proportions of CD4 memory resting 
T cells, gamma delta T cells, M0 macrophages, M1 mac-
rophages and activated mast cells in atherosclerosis tis-
sue were significantly lower than those in normal tissue. 
However, the proportion of CD4 naive T cells, regulatory 
Tregs T cells, activated dendritic cells, resting mast cells 
and neutrophils in atherosclerosis tissue was significantly 
higher than that in normal tissue (Fig. 7A). The correla-
tion heatmap (Fig.  7B) related to cell-type abundances 
showed a significant negative correlation between CD4 
memory resting T cells and CD8 T cells, naive B cells, 
and CD4 naive T cells. Regulatory Tregs T cells showed 
a significant positive correlation with plasma cells and 
a negative correlation with CD4 memory resting T cells 
and follicular helper T cells. Gamma delta T cells were 
positively correlated with CD4 memory resting T cells, 
M0 macrophages, and M1 macrophages, and negatively 
correlated with naive B cells. M0 macrophages were posi-
tively correlated with CD4 memory activated T cells and 
M1 macrophages. M1 macrophages were negatively cor-
related with CD4 naive T cells and naive B cells. Activated 

dendritic cells were positively correlated with CD4 naive 
T cells and naive B cells, and negatively correlated with 
M1 macrophages and gamma delta T cells. Resting mast 
cells were positively correlated with M2 macrophages, 
and negatively correlated with follicular helper T cells 
and gamma delta T cells. Activated mast cells were posi-
tively correlated with activated NK cells, follicular helper 
T cells, and negatively correlated with M2 macrophages 
and CD8 T cells. neutrophils and resting NK cells were 
positively correlated, and M2 macrophages, follicular 
helper T cells, and M1 macrophages were negatively cor-
related (Additional file 6, 7: Tables S6 and S7).

The correlation between hub genes and Immune cells
The correlation between hub genes and infiltrated 
immune cells was analyzed by Spearman’s rank correla-
tion in the R software (Additional file  8: Table  S8). The 
results showed that CD52 had a positive correlation with 
gamma delta T cells, M1 macrophages, CD4 memory 
resting T cells and M0 macrophages, and a negative cor-
relation with resting dendritic cells, resting mast cells, 
CD4 naive T cells, naive B cells, Neutrophils, regula-
tory Tregs T cells and activated dendritic cells (Fig. 8A). 
Meanwhile, IL1RN had a positive correlation with mono-
cytes and activated mast cells, and a negative correla-
tion with resting mast cells, M2 macrophages, regulatory 
Tregs T cells and plasma cells (Fig. 8B).

RT‑qPCR validation of the hub genes
After 48  h of PMA induction, THP-1 became mac-
rophages, which were treated with ox-LDL (80  µg/mL) 
for an additional 24  h to form foam cells (Fig.  9A). Oil 
red O staining results showed significantly higher lipid 
accumulation in ox-LDL-induced foam cells compared 
to untreated cells (Fig. 9B). We then further detected the 
expression of CD52 and IL1RN in the atherosclerotic 
cell model by RT-qPCR. Results showed significantly 

Table 2  List of the 10 most important small molecule compounds provided by CMap analysis based on robust DEGs

CMap name Description Target Score

KU-C103428N CDC inhibitor NFE2 − 95.01

Desoxypeganine Acetylcholinesterase inhibitor ACHE, MAOA − 91.59

MBCQ Phosphodiesterase inhibitor PDE5A − 90.16

Phylloquinone Vitamin K BGLAP, GGCX − 90.11

Gossypol BCL inhibitor BCL2, BCL2L1, MCL1, BCL2L2, CTGF, EGF − 89.72

Kavain Calcium channel modulator MTOR − 89.71

Flubendazole Tubulin inhibitor TUBB − 86.28

VX-702 p38 MAPK inhibitor MAPK14, MAPK11, MAPK12 − 85.43

Palonosetron Serotonin receptor antagonist HTR3A − 83.07

Linsitinib IGF-1 inhibitor IGF1R, INSR, INSRR − 81.75
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increased expression of CD52 and IL1RN in ox-LDL-
treated cells (Fig.  9C-D), suggesting that CD52 and 
IL1RN were induced in atherosclerosis cell models.

Discussion
ASCVD based on atherosclerosis often leads to ischae-
mic disease with high disability and mortality rates, 
which can seriously affect the quality of life of patients 

Fig. 4  PPI network for robust DEGs. A larger shape and red color of the node indicated that the “Degree” weight of the gene was larger. Conversely, 
a smaller shape and blue color indicated that the node had a larger degree weight. The thickness of the line between nodes represents the value of 
“Conbined_Score” between genes, and a thicker line represents a larger value



Page 9 of 15Zheng et al. BMC Medical Genomics          (2023) 16:100 	

and impose a heavy burden on society. Despite numer-
ous efforts, the molecular mechanisms of atherosclero-
sis are still not fully understood. Therefore, there is an 
urgent need to clarify the pathogenesis of atherosclero-
sis and find potential diagnostic and therapeutic targets. 
In recent years, an increasing number of bioinformatics 
studies have been applied to search for new potential 
biomarkers of atherosclerosis to explore deeper mecha-
nisms. For example, Wang et  al. identified immune cell 
infiltration and diagnostic biomarkers in unstable athero-
sclerotic plaques through comprehensive bioinformat-
ics analysis and machine learning [17]. Additionally, Gu 
et  al. used bioinformatics analysis to identify candidate 

targets for the diagnosis and treatment of atherosclero-
sis [18], and Tan et  al. unveiled the landscape in which 
immune cell infiltration and immune-related pathways 
participated in the progression of carotid atherosclerotic 
plaques through bioinformatics analysis [7].

In this study, we used bioinformatics techniques to 
identify potential biomarkers in atherosclerosis. The GO 
enrichment results from our robust DEGs indicated that 
atherosclerosis was related to the regulation of cytokines, 
immunity and inflammation, and the enrichment analy-
sis of KEGG pathways also suggested that atherosclerosis 
was related to the regulation of the chemokine signalling 
pathway and lipolysis of adipocytes. Indeed, the present 

Fig. 5  The 12 algorithms of cytoHubbain Cytoscape software identify the hub gene in the PPI network and are visualized by the “UpSet” package in 
R. The abscissa represents the overlapping mode of different algorithms, and the ordinate represents the number of genes overlapped by different 
algorithms. The section marked red shows the overlapping results of the 12 algorithms of cytoHubba
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study suggests that the occurrence and development of 
atherosclerosis is strongly related to immunity, inflam-
mation, and lipid metabolism, which is consistent with 
our results [19, 20]. Additionally, in this study, we iden-
tified several potential small molecule compounds that 
could reverse changes in robust DEGs expression, which 
might improve atherosclerosis. Vitamin K2 has been 
reported to have a protective effect against cardiovascu-
lar disease, but the role of phylloquinone as vitamin K1 in 
atherosclerosis is controversial [21, 22]. The effect of des-
oxypeganine on atherosclerosis has not been studied, but 
donepezil, which is also an acetylcholinesterase inhibitor, 
may have a protective effect against atherosclerosis [23]. 
Similarly, MBCQ has not been reported to treat athero-
sclerosis, but cilostazol, which is also a phosphodiesterase 

inhibitor, has a protective effect on atherosclerosis [24, 
25]. Other drugs/molecules, including KU-C103428N, 
gossypol, kavain, flubendazole, VX-702, palonose-
tron and linsitinib, may be potential antiatherosclerotic 
agents. Furthermore, by constructing a robust DEGs PPI 
network and integrating the 12 algorithms of cytoHubba, 
we identified two key genes, CD52 and IL1RN, and vali-
dated their performance in the diagnosis of atheroscle-
rosis. Human CD52 is a glycosylphosphatidylinositol 
(GPI)-anchored glycoprotein that consists of a 12-amino 
acid short peptide that is attached to the GPI anchor at 
its C-terminus and a core fucosylated polylactosamine 
multiantennal sialosylated glycan at its N- glycosylation 
site [26–28]. CD52 is widely expressed in immune cells. 
In maintaining the steady state of the immune system, 

Fig. 6  Validation of biomarkers of atherosclerosis in the GSE40231 dataset. A, B ROC curve evaluation of the diagnostic effectiveness of candidate 
biomarkers using the GSE40231 dataset. C, D Expression of candidate diagnostic biomarkers in the GSE40231 dataset
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Fig. 7  Distribution and visualization of immune cell infiltration. A Comparison of 22 immune cell subtypes between atherosclerosis tissues and 
normal tissues. Blue and red colors indicate normal and atherosclerotic samples, respectively. B An associated matrix of all 22 immune cell subtypes. 
Both the horizontal and vertical axes show immunocyte subtypes. Immunocyte subtype compositions (higher, lower, and same correlation levels 
are displayed in red, blue, and white, respectively; the values in the boxes represent the correlation coefficient)
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CD52 is released from its GPI anchors and binds to 
the inhibitory receptor Siglec-10 [29]. Then, it inhibits 
the phosphorylation of the T-cell receptor-associated 

kinases Lck and Zap70, which are required for T-cell 
antigen receptor signalling, and inhibits the T-cell activa-
tion [29]. In monocytes and macrophages, soluble CD52 

Fig. 8  Correlation between hub genes and immune cells. A the correlation between CD52 and immune cells. B Correlation between IL1RN and 
immune cells. The size of the points indicates the strength of the correlation, and the color of the points indicates the p-value

Fig. 9  Validation of the CD52 and IL1RN. A-B Oil red O staining of cells not treated with ox-LDL and cells treated with ox-LDL; C-D The RT-qPCR 
analysis of the mRNA levels of CD52 and IL1RN in the control group and ox-LDL treatment group
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inhibits NF-κB-mediated signaling and induces apoptosis 
at higher concentrations [28]. In addition, CD52 plays 
an important role in autoimmune diseases, such as sys-
temic lupus erythematosus and systemic sclerosis [30, 
31]. Alemtuzumab, an anti-CD52 depletion antibody, is 
already FDA-approved for the treatment of multiple scle-
rosis and has potential for use in the treatment of acute 
lymphoblastic leukaemia and myeloid leukaemia [32–34]. ​
The role of CD52 in atherosclerosis has not been stud-
ied, but atherosclerosis is closely related to immunity 
and inflammation. Thus, based on the results of the bio-
informatics analysis, we speculate that changes in CD52 
expression play an important role in atherosclerosis.​.

Interleukin-1 receptor antagonist (IL-1Ra), encoded by 
the IL1RN gene, is a member of the interleukin-1 (IL-1) 
family and an endogenous inhibitor of IL-1. It can com-
petitively bind IL-1α and Il-1β to the IL-1 receptor, but 
does not induce any intracellular response [35]. IL-1Ra 
can be produced in endothelial cells, smooth muscle 
cells, and macrophages [36]. It has been shown that the 
expression level of IL-1Ra is increased in atherosclerotic 
lesions [37, 38]. Additionally, the absence of IL-1Ra pro-
motes neointimal formation after femoral artery injury 
in mice and exacerbates atherosclerotic lesion size in 
ApoE−/− mice [39, 40]. Anakinra is a recombinant human 
IL-1Ra that acts as a competitive inhibitor of IL-1 by 
binding to the IL-1 I receptor [41]. Anakinra was shown 
to reduce plaque size and serum triglycerides in the aor-
tic arch of ApoE−/− mice and to have antiatherosclerotic 
effects [42]. Current evidence suggests that IL-1Ra plays 
an important role in atherosclerosis, which is consistent 
with the results of our bioinformatics analysis. IL-1Ra is 
also associated with postinfarct cardiac remodelling and 
heart failure. IL-1Ra has been reported to be an inde-
pendent predictor of documented adverse outcomes in 
patients with CAD, particularly in the setting of ACS, 
and its prognostic value exceed the prognostic values of 
hs-CRP and troponin T [43]. Studies have shown that 
anakinra inhibits apoptosis in experimental acute myo-
cardial infarction [44]. The results from pooled analysis 
of VCUART clinical trials suggest that IL-1 blockade 
with anakinra for 14 days in STEMI patients can reduce 
the incidence of new onset HF or HF hospitalizations 
within 1 year after STEMI surgery [45]. Additionally, the 
REDHART results indicating improvement in peak oxy-
gen consumption in newly decompensated systolic HF 
patients after 12 weeks of treatment with anakinra [46]. 
In addition, Su et  al. screened out IL1RN as a possible 
common pathogenesis of psoriasis and atherosclero-
sis through bioinformatics analysis, but this finding still 
needs to be supported by external experimental data [47].

In fact, the pathogenesis of atherosclerosis is very com-
plex, involving many hypotheses and theories, of which 

“lipid infiltration” and “inflammatory response” are the 
core. On the one hand, very low-density lipoprotein, 
low-density lipoprotein and lipoprotein invade and accu-
mulate in the blood vessel wall, and some form oxidized 
low-density lipoprotein (ox-LDL) [48]. Ox-LDL induces 
and aggravates the occurrence and development of ath-
erosclerosis. On the other hand, monocytes differentiate 
into macrophages and engulf a large number of lipids to 
be converted into foam cells, which secrete a variety of 
inflammatory factors and promote the development of 
atherosclerosis [49]. Therefore, foam cells play an impor-
tant role in all stages of the development of atheroscle-
rotic lesions [50]. In addition, our use of CIBERSORT 
and Spearman rank correlation analysis suggested that 
CD52 and IL1RN were strongly associated with mono-
cytes or macrophages. PMA can induce THP-1 cells to 
transform into macrophages, and ox-LDL can induce 
macrophages to transform into foam cells, which can be 
used as a cell model of atherosclerosis to a certain extent 
[51, 52]. After THP-1 cells were induced to become foam 
cells, RT‒qPCR detected a significant increase in the 
mRNA expression levels of CD52 and IL1RN compared 
to untreated cells. These findings are in full agreement 
with the results of our bioinformatics analysis, indicating 
that CD52 and IL1RN are closely related to the occur-
rence and development of atherosclerosis.

It must be acknowledged that our study has some limi-
tations. First, our study was retrospective, with data from 
a public database, and lacked data on clinical characteris-
tics. Second, it should be acknowledged that the number 
of cases in the GSE97210 dataset is insufficient. Finally, 
the screening of two key genes involved in the occur-
rence and progression of atherosclerosis is based on bio-
informatics techniques. While this indicates that CD52 
and IL1RN are highly expressed in foam cells, they still 
need to be further validated in vitro and in vivo to further 
explore their potential mechanisms in atherosclerosis.

Conclusion
​In summary, through the analysis of comprehensive bio-
informatics and multiple algorithms, we have identified 
that CD52 and IL1RN may play a key role in the occur-
rence and development of atherosclerosis These findings 
open new lines of thought for further research into the 
pathogenesis of atherosclerosis.
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