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Introduction
Osteoarthritis (OA) is a very common clinical disease 
in middle-aged and elderly individuals, and with the 
advent of ageing, the incidence of this disease is gradu-
ally increasing. OA has been reported to affect more than 
500  million people worldwide (approximately 7% of the 
global population), especially the elderly (> 65 years of 
age). Due to the increase in the number of obese indi-
viduals, post-traumatic OA cases and early diagnosis, 
the incidence of OA in people under 65 years of age has 
been increasing [1]. The gradual loss of articular cartilage 
is the main feature in OA. The formation of osteophytes 
at joint margins and bone remodeling associated with 
subchondral bone sclerosis and bone marrow lesions are 
other symptoms of OA [2]. As the relevant mechanism 
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Abstract
Background Osteoarthritis is a very common clinical disease in middle-aged and elderly individuals, and with the 
advent of ageing, the incidence of this disease is gradually increasing. There are few studies on the role of basement 
membrane (BM)-related genes in OA.

Method We used bioinformatics and machine learning methods to identify important genes related to BMs in OA 
patients and performed immune infiltration analysis, lncRNA‒miRNA-mRNA network prediction, ROC analysis, and 
qRT‒PCR.

Result Based on the results of machine learning, we determined that LAMA2 and NID2 were the key diagnostic 
genes of OA, which were confirmed by ROC and qRT‒PCR analyses. Immune analysis showed that LAMA2 and NID2 
were closely related to resting memory CD4 T cells, mast cells and plasma cells. Two lncRNAs, XIST and TTTY15, were 
simultaneously identified, and lncRNA‒miRNA‒mRNA network prediction was performed.

Conclusion LAMA2 and NID2 are important potential targets for the diagnosis and treatment of OA.
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of OA is not known at present, there is no effective way 
to stop or reverse the progression of OA to date [3, 4]. 
Therefore, it is important to explore diagnostic biomark-
ers related to OA for the diagnosis and treatment of OA.

Recently, with the development of high-flux genetic 
microarray analysis technology, we have been able to 
study the development of related diseases at the genetic 
level [5, 6]. At present, many markers related to OA have 
been found. For example, mitochondrial double-stranded 
RNA has been reported to regulate the stress response 
of chondrocytes to promote the development of osteo-
arthritis [7]. Recent studies by Shang et al. found that 
circHIPK3 is downregulated in osteoarthritic chondro-
cytes and cartilage. A potential treatment strategy for 
OA might target the circHIPK3/miR-30a-3p/PON2 axis, 
which regulates chondrocyte apoptosis via mitochon-
drial pathways [8]. Moreover, a study by Xinyue Hu et 
al. found that patients with osteoarthritis expressed sig-
nificantly lower levels of TLR7, TCA1, MMP9, CXCL13, 
CXCL10, HLA-DRA and ADIPOQSPP1 [9]. However, 
the role of many genes in the diagnosis and treatment of 
OA remains unknown.

BMs are the oldest animal extracellular matrix, forming 
sheet-like structures, which are associated with a vari-
ety of diseases, such as cancer. A variety of functions are 
performed by these structures, including blood filtration, 
muscle homeostasis, storing growth factors and cyto-
kines, controlling angiogenesis and tumor growth, main-
taining skin integrity and neuromuscular structure, and 
maintaining skin integrity and neuromuscular structure 
[10]. Jayadev et al. [11] showed that more than 100 BM 
genes found in the Human Phenotype Ontology (HPO), 
Online Mendelian Inheritance in Man (OMIM) and 
Genomics England PanelApp databases were associated 
with disease phenotypes in the skeletal system (bone and 
joint), and several BM genes found in the OMIM data-
base were associated with osteoarthritis. However, there 
are still few reports on the correlation of BMs-related 
genes in the development of OA. Therefore, we aimed to 
investigate the relationship between BM genes and OA to 
deepen our understanding and guide our diagnosis and 
treatment of OA. Therefore, in this paper, we first con-
ducted the correlation analysis by bioinformatics meth-
ods. Then, machine learning was used to analyse their 
diagnostic value in OA. Finally, quantitative real-time 
PCR (qRT‒PCR) was used to verify the correlation. We 
provide new targets related to the development of OA.

Materials and methods
Identification of OA-Related BM-Differentially expressed 
genes (DEGs)
We used dataset GSE55235 (platform: GPL96, Affyme-
trix Human Genome U133A Array) in the GEO database 
as the experimental set, which included 10 joint tissue 

samples from healthy humans and 10 tissue samples from 
patients with OA.

We adopted R (version 3.6.3) for statistical analysis 
and visualization, downloaded the datasets from the 
GEO database through the GEO query package (ver-
sion 2.54.1) [12], and removed the probes correspond-
ing to multiple molecules. When a probe corresponding 
to the same molecule was encountered, only the probe 
with the largest signal value was retained. The normalize 
Between Arrays function of the limma package (version 
3.42.2) was then used to normalize the data again. Sam-
ple normalization was assessed by a box plot. The PCA 
chart and the UMAP chart were used to view the cluster-
ing between the sample groups, and then, the difference 
analysis between the two groups was performed using 
the limma package.

In this study, we chose a p value less than 0.05 and a 
|log FC| value greater than 0.5 for the standard figure 
generating the volcano. The visualization package ggplot2 
(version 3.3.3) was used. The Complex Heatmap package 
(version 2.2.0) was used for heatmap visualization of the 
top 20 genes with high and low expression [13]. Base-
ment membrane-related genes were obtained from previ-
ous studies [11], and BM-related DEGs were obtained by 
Venn diagram intersection.

Gene ontology (GO) and kyoto encyclopedia of genes and 
genomes (KEGG) pathway enrichment analysis
We used the org.Hs.eg.db package (version 3.10.0) for 
ID conversion and the clusterProfiler package (version 
3.14.3) for enrichment analysis [14]. It can provide bio-
logical process (BP), cellular component (CC), molecu-
lar function (MF) and pathway enrichment information 
(from KEGG database [15]). We then used the clus-
terProfiler package (version 3.14.3) for analysis of the 
selected data and the ggplot2 package (version 3.3.3) for 
visualization.

Hub gene determination
The screened BM-related DEGs were used to construct 
a PPI network using the online analysis website STRING 
(https://string-db.org/) [16], the minimum required 
interaction score was set as 0.400, and the PPI data were 
derived. Then, the MCC algorithm of the cytoHubba plu-
gin in Cytoscape (version 3.9.1) was used to screen hub 
genes, and the top 20 genes were obtained.

Identification of candidate diagnostic markers
We used two kinds of machine learning to predict and 
intersect the prediction results with the HUB gene to 
determine the final diagnostic markers. In the LASSO 
analysis, forecast accuracy is improved by regularizing a 
regressive analytical arithmetic. With the glmnet pack-
age in R, LASSO regressive arithmetic was utilized to 

https://string-db.org/
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find the genes related to OA and healthy specimens’ dis-
criminative power. Support vector machine (SVM), used 
for categorization and regressive analysis, is a monitored 
machine learning technology extensively. And we used 
RFE arithmetic to screen the optimal genes from the 
metadata. We validated the expression of key candidate 
diagnostic markers with GSE169077.

Immune infiltration analysis
Using CIBERSORT (http://cibersort.stanford.edu/), we 
identified the immune response of 22 kinds of immune 
cells and evaluated the association between the expres-
sion of key genes and these immune cells in normal and 
osteoarthritic samples.

Receiver operating characteristic (ROC) analysis of the 
diagnostic effect
After we obtained GSE29746 from the GEO database, 
the R glm function was used to build the logistics model, 
the pROC package was used for analysis, and the ggplot2 
package was used for visualization to plot the ROC.

Animal models of OA
There were 20 C57BL/6J mice weighing 20 ± 2 g, and they 
were randomly divided into a normal group and an OA 
group. In the OA group, we successfully constructed an 
OA model by referring to Hulth’s method: the medial 
collateral ligament, anterior and posterior cruciate liga-
ment, and medial meniscus were removed. Postopera-
tive animals were routinely kept in cages. One week after 
surgery, rats were given 2 doses daily and forced to be 
active for 30  min, and OA models could be established 
after 4 weeks. Then, all animals were killed using CO2 
euthanization methods. Then, we collected knee tissues, 
fixed them in 4% paraformaldehyde for 48 h and decalci-
fied them in EDTA decalcification solution for 1 month. 
The cartilage tissues of each group were embedded and 
sliced (5  μm) in the sagittal plane. The prepared paraf-
fin sections were deparaffinized with xylene and then 
passed through 100%, 100%, 95%, 90%, 80%, and 70% 
alcohol. Then, the slices were stained with haematoxylin 
and eosin (Beijing Solarbio Science and Technology Co., 
Ltd.) in sequence, and finally, the slices were sealed with 
neutral gum.

qRT‒PCR
LncRNA and mRNA primers were designed and syn-
thesized by Shanghai Shenggong Biological Co., Ltd. 
(β-actin: forward (GGCAGCGGCAGGATACAC) and 
reverse (TTCACAGGACACGAGCTG); Lama2: for-
ward (TCCCAAGCGCATCAACAGAG) and reverse 
(CAGTACATCTCGGGTCCTTTTTC); Nid2: for-
ward (ACTGCCAGTCGAGGTTTTACG) and reverse 
(GACCACTCACTTTCCCATTCAC); Xist: forward 

(CATCCGCTTGCGTTCATAGT) and reverse (ACC-
GCTTGAGATCAGTGCTG); TTTY15: forward 
(TCTATGACCTGGAAGC) and reverse (ATCTGATG-
GAACCCTA)) and β-actin was used as an internal ref-
erence control. MiRNA quantification: Bulge-loop™ 
miRNA qRT‒PCR Primer Sets (one RT primer and a 
pair of qRT‒PCR primers for each set) specific for miR-
29a-3p, miR-29b-3p and let-7a-5p were designed by 
RiboBio (Guangzhou, China). Total RNA from the NPCs 
was extracted using kit reagents (Vazyme, China, RC112-
01) according to the manufacturer’s instructions. Reverse 
transcription of 1  µg of RNA enables the amplification 
of complementary products. Quantitative PCR was per-
formed in a 20 µL reaction system containing specific 
primers and ChamQ SYBR qPCR Master Mix (Vazyme, 
China, Q321-02). Amplification was performed in the 
Roche LightCycler 480 System (Roche, Switzerland). The 
PCR extension conditions were 95 °C for 30 s, 95 °C for 
5 s, 60  °C for 34 s, and 40 cycles. There were three rep-
licates for each group. The Ct value obtained for each 
group is represented by 2-ΔΔCt.

LncRNA‒miRNA‒mRNA network prediction
Six databases, TargetScan, miRTarBase, miRDB, 
RNAInter, TargetMiner and RNA22, were used to pre-
dict the target miRNAs of LAMA2 and NID2, and we 
obtained the final miRNA of interest by taking the inter-
secting data. We used the ENCORI database (https://
starbase.sysu.edu.cn/index.php) [17] to predict the tar-
geting lncRNAs of miRNAs. Then, the DIANA database 
(https://diana.e-ce.uth.gr/home) was used to verify the 
interaction between miRNAs and lncRNAs. Finally, we 
used Cytoscape (version 3.9.1) for visualization.

Statistical analysis
Student’s t test was used to compare gene expression 
in osteoarthritic specimens with that in healthy speci-
mens. There was a statistically significant difference when 
∗∗∗∗p < 0.0001, ∗∗∗p < 0.001, ∗∗p < 0.01, or ∗p < 0.05.

Results
Identification of DEGs
The GSE55235 information was obtained from the GEO 
Database. Through R language, the corresponding data 
were downloaded from GEO, and difference analysis was 
performed. Through the box plot (Fig. 1A), we found that 
the median of each sample was basically on a horizontal 
line, indicating that the degree of normalization between 
samples is good. From the PCA graph (Fig. 1B) and the 
UMAP graph (Fig. 1C), there were significant differences 
between the two groups. Afterwards, a p value < 0.05 
and a |log FC| value > 0.5 were used as the criteria for 
identifying DEGs, and a volcano plot was generated 
(Fig.  1D). A total of 1270 upregulated DEGs and 1164 

http://cibersort.stanford.edu/
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downregulated DEGs were obtained. Finally, a heatmap 
was made (Fig. 1E) to confirm that the expression of the 
top 20 genes with high and low expression in the expres-
sion profile showed significant differences between the 
two groups.

We obtained BM-related genes from previous research 
reports [11]. By taking the intersection with the above 
DEGs, we obtained 60 BM-related DEGs (Fig. 1F).

KEGG/GO enrichment analysis
Under the conditions of p.adj < 0.05 and qvalue < 0.2, the 
enrichment results showed that there were a total of 310 
BPs, which were mainly involved in extracellular struc-
ture and matrix organization. The CC category mainly 
showed enrichment in the extracellular matrix, basement 
membrane, lysosomal lumen, and endoplasmic reticulum 
lumen. MF mainly showed enrichment in extracellular 
matrix structural constituent, integrin binding, cell adhe-
sion molecule binding, extracellular matrix binding, and 
glycosaminoglycan binding. KEGG pathway enrichment 
showed a total of 23 pathways, mainly ECM-receptor 
interaction, focal adhesion, and the PI3K-Akt signalling 
pathway (Fig. 2).

Identification of diagnostic marker candidates for OA
We used the MCC algorithm of the cytoHubba plugin in 
Cytoscape software to obtain the top 20 scoring genes 
(Table 1). Then, 7 diagnostic genes were obtained by the 
LASSO regression algorithm (Fig. 3A), and 6 diagnostic 
genes were obtained by SVM-RFE (Fig. 3B). We obtained 
two crossover genes: LAMA2 and NID2. LAMA2 was 
downregulated in osteoarthritic tissue, and NID2 was 
upregulated in osteoarthritic tissue (Fig. 3C).

Immune cell infiltration analysis
An increasing number of studies have shown the role of 
immune infiltration in OA. Our team used the CIBER-
SORT algorithm to study the difference in immune cells 
between the OA group and the normal group and the 
relationship between LAMA2 and NID2 and immune 
cells. The relationship between the immune cells of the 
OA group and the normal group is shown in Fig. 4A and 
B. In addition, plasma cells, CD8 T cells, resting memory 
CD4 T cells, activated memory CD4 T cells, resting mast 
cells, and activated mast cells were significantly different 
in expression between the OA and normal sample groups 
(Fig.  4C). Furthermore, we investigated the relationship 

Fig. 1 Identification of DEGs. A: Box plot after normalization of GSE55235; B: PCA graph; C: UMAP graph; D: Volcano plot; E: Heatmap of expression of the 
top 20 genes with high and low expression; F: Venn diagram
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between LAMA2 and NID2 and the levels of immune 
infiltration. LAMA2 was associated with resting memory 
CD4 T cells, resting mast cells, plasma cells, activated 
memory CD4 T cells, activated mast cells, and regula-
tory T cells (Fig. 4D). NID2 was closely related to resting 
memory CD4 T cells, resting mast cells, activated mast 
cells, M0 macrophages, and plasma cells (Fig.  4E). Our 
study suggested that LAMA2 and NID2 may be involved 

in OA initiation and progression by regulating some 
immune cells.

Gene expression validation
GSE169077 was used to examine the expression of 
LAMA2 and NID2, and the results showed that LAMA2 
was expressed at lower levels and NID2 was expressed 
at higher levels in OA, which was consistent with the 

Table 1 The top 20 genes scored by MCC algorithm
Gene Expression Gene Expression Gene Expression Gene Expression
LAMA5 DOWN LAMB1 DOWN COL5A1 UP THBS1 DOWN

COL6A1 UP LAMA4 UP NID1 DOWN NID2 UP

ITGA5 DOWN LAMA3 DOWN ITGA4 UP LAMB4 DOWN

ITGAV UP HSPG2 UP ITGB5 UP SPARC UP

LAMA2 DOWN ITGA8 DOWN FBN1 UP BGN UP

Fig. 2 Top 5 results of GO/KEGG analysis of DEGs
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results of the above analysis (Fig.  5A). GSE29746 data 
included 11 healthy tissue samples and 11 OA tissue sam-
ples. Our studies show that NID2 (Fig. 5B, AUC = 0.760) 
and LAMA2 (Fig.  5B, AUC = 0.727) have good diagnos-
tic effects as separate diagnostic indicators. In addi-
tion, we constructed a joint index model, and the results 
showed that LAMA2 and NID2 as joint indicators had 
better diagnostic effects than a single gene (Fig.  5C, 
AUC = 0.802). Additionally, in our OA model, by H&E 
staining, we observed that the cartilage surface was 
rough and thinned and that the lamellar structure dis-
appeared. The number of chondrocytes decreased, the 
size was different, and the arrangement was disordered 
(Fig.  5D), which showed that mould building was suc-
cessful. Furthermore, lower expression of LAMA2 and 
higher expression of NID2, verified by qRT‒PCR, were 
detected compared to healthy tissue samples (Fig. 5E).

LncRNA‒miRNA‒mRNA network prediction
The miRNAs that interacted with mRNA were predicted 
from six databases, and they were hsa-miR-29a-3p, hsa-
miR-29b-3p and hsa-let-7a-5p (Fig.  6A-B). Moreover, 
the relevant lncRNAs XIST and TTTY15 were predicted 
by the ENCORI database and the DIANA database. The 
expression of these two genes in the GSE55235 data-
set was significantly different between OA samples and 
healthy samples (Fig.  6C). We also obtained their inter-
action relationship (Fig. 6D). We also verified the expres-
sion of these genes by qRT‒PCR. The expression of XIST 
and TTTY15 was consistent with the results of dataset 
analysis; XIST was highly expressed in the OA group, and 
TTTY15 was expressed at low levels in the OA group. 
The results also showed that all three miRNAs were 
highly expressed in the OA group (Fig. 6E).

Fig. 3 Selection of diagnostic marker candidates for OA. A: Tuning feature screening in the LASSO model; B: A plot of biological marker screening via the 
SVM-RFE arithmetic; C: Venn graph displaying 2 diagnosis biomarkers shared by LASSO and SVM-RFE
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Fig. 4 Immune cell infiltration analysis of OA and hub genes. A-B: The percentage of the immunocytes identified via the CIBERSORT algorithm. C: The 
immunocytes between healthy and OA specimens. D-E: Correlation between LAMA2, NID2 and immune cells in OA and normal samples
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Discussion
Osteoarthritis is considered the most prevalent chronic 
joint disease and is a major source of disability, pain, and 
socioeconomic costs worldwide. However, the diagnosis 
of osteoarthritis is often made late in the disease process, 
and it is too late for effective treatment [18, 19]. In this 
paper, bioinformatics was used to study the differential 
expression of genes in OA samples and healthy samples, 
and we conducted GO/KEGG enrichment analysis of 
differentially expressed genes. These genes were indeed 
mainly concentrated in the extracellular matrix and base-
ment membrane, and the signalling pathway was also 
mainly concentrated in extracellular matrix receptor 
interactions. We also used PPI network analysis, LASSO 
regressive arithmetic and the SVM-RFE algorithm to 
obtain two high-value BM-related genes as candidate 
diagnostic markers: LAMA2 and NID2, which are impor-
tant biomarkers highly correlated with the occurrence 
and development of OA. Then, we used the GSE169077 
dataset to verify the expression of these two genes, and 
the conclusions obtained showed that was consistent 
with the results of the above analysis. GSE29746 dataset 

was used to verify the diagnostic value of them, and the 
conclusions obtained showed that the diagnostic effect 
of the two genes as a combined indicator was better 
than that of the single gene. Moreover, the expression 
of LAMA2 and NID2 has been verified in animal mod-
els. Furthermore, the CIBERSORT algorithm was used 
to calculate the immune infiltration between the two 
groups of samples and the relationship between two BM-
related hub genes and immune cells. Finally, we predicted 
the lncRNA‒miRNA‒mRNA network associated with 
these potentially important genes, and we validated their 
expression in OA.

BMs are an extracellular matrix with a reticular struc-
ture located beneath epithelial cells and are formed by 
two main macromolecule proteins, laminin and collagen 
type IV [20]. BMs play an important role in many devel-
opmental processes, such as polarity, signalling, differen-
tiation, tissue maintenance and shaping and connecting 
tissues [21]. Moreover, defects in the composition or 
assembly of BMs can lead to various diseases, such as 
cancer and fibrosis [22, 23].

Fig. 5 Diagnostic value and expression validation of diagnostic markers. A: The expression of LAMA2 and NID2 in GSE169077. B: ROC of LAMA2 and 
NID2 in GSE29746. C: ROC of LAMA2 + NID2 in GSE29746. D: H&E staining of models. E: The expression of LAMA2 and NID2 (∗∗∗p < 0.001, ∗∗p < 0.01, or 
∗p < 0.05)
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Fig. 6 LncRNA‒miRNA‒mRNA network prediction and miRNA and lncRNA expression verification. A: The miRNAs interacting with NID2. B: The miRNAs 
interacting with LAMA2. C: The expression of XIST and TTTY15 (∗p < 0.05，∗∗p <0.01). D: LncRNA-miRNA-mRNA network. E: The expression of XIST, 
TTTY15, miR-29a-3p, miR-29b-3p and let-7a-5p (∗∗p < 0.01, or ∗p < 0.05)
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We used a variety of machine learning methods to 
obtain hub genes associated with BMs: LAMA2 and 
NID2. Among them, NID2 has been confirmed by a pre-
viously published article, which shows that NID2 was 
increased in osteoarthritic cartilage, and NID2 could 
promote chondrogenesis by influencing the antagonism 
between SOX9 and RUNX2, increasing SOX9 and pro-
moting the synthesis of type II collagen [24]. The laminin 
alpha 2 chain is encoded by the LAMA2 gene, which is 
also related to hip dysplasia and cartilage development 
and is thought to contribute to congenital muscular dys-
trophy [25, 26]. Our research also showed that LAMA2 
expression was downregulated in OA. Our study also 
showed that LAMA2 and NID2, as joint indicators, can 
significantly improve the diagnostic effect of OA. These 
two hub genes can be used as important potential targets 
for the diagnosis and treatment of OA.

We conducted immune infiltration analysis and found 
that CD4 memory resting T cells, resting mast cells, acti-
vated mast cells, and plasma cells were dysregulated in 
OA and healthy samples. Interestingly, both LAMA2 and 
NID2 were also closely related to these immune cells. In 
OA samples, resting memory CD4 T cells were downreg-
ulated, and activated memory CD4 T cells were upregu-
lated. Moreover, LAMA2 was positively correlated with 
resting CD4 memory T cells and negatively correlated 
with activated CD4 memory T cells, and NID2 was the 
opposite, while LAMA2 was poorly expressed and NID2 
was highly expressed in OA samples. These results sug-
gested that LAMA2 and NID2 may promote the devel-
opment of OA by participating in the regulation of 
memory CD4 T cells. At present, studies have also shown 
that the joints of OA patients have CD4 + T-cell infiltra-
tion, which increases the secretion of immunomodu-
latory cytokines, aggravates local inflammation, and 
aggravates the OA process [27, 28]. F Ponchel et al. also 
showed that memory CD4 + T cells increased in blood 
samples of OA patients compared with healthy subjects 
[27], which was consistent with our analysis results. Mast 
cells were also shown to be associated with structural 
damage in patients with OA in B J E de Lange-Borkar’s 
research [29]. The role of these immune cells in OA 
remains to be further studied and is expected to become 
a potential mechanism and potential therapeutic target 
for the development of OA. In addition, we conducted 
lncRNA‒miRNA‒mRNA network prediction. XIST was 
significantly decreased in OA, and TTTY15 was signifi-
cantly upregulated in OA compared to healthy samples. 
Moreover, the analysis showed the existence of the XIST-
hsa-miR-29a-3p/hsa-miR-29b-3p-LAMA2 and XIST/
TTTY15-hsa-let-7a-5p-NID2 network relationships. This 
finding provides more possibilities for the diagnosis and 
treatment of OA.

Of course, our study also has some limitations, such as 
the specific regulatory mechanisms of immune cells and 
genes and the relationship between lncRNA‒miRNA‒
mRNA regulation and the occurrence and progression of 
OA, which need to be further validated in human tissues.

Conclusion
Through biological information analysis and machine 
learning, we obtained two crucial BM-related genes, 
LAMA2 and NID2, and they were tested with animal 
experiments. Moreover, immune infiltration analysis 
was performed, indicating that memory CD4 T cells, 
resting mast cells, activated mast cells, and plasma cells 
showed significant differences between the OA samples 
and the healthy samples and were highly correlated with 
BM-related genes. Finally, we identified two different 
lncRNAs in OA, XIST and TTTY15, and predicted their 
relationship with the lncRNA‒miRNA‒mRNA network 
of hub genes. The expression of these lncRNAs and miR-
NAs was also verified. These hub genes, immune cells 
and related network relationships indicated that BMs 
play an important role in the occurrence and develop-
ment of OA, and they can be used for new research on 
the pathogenesis of OA and potential therapeutic targets.
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