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Abstract 

Background Although immunotherapy has been considered as a potent strategy for lung adenocarcinoma (LUAD), 
only a small part of patients was served as potentially clinical benefiters. Immunogenic cell death (ICD), a type of regu-
lated cell death (RCD), which enable to reshape the tumor immune microenvironment and contribute to the immu-
notherapy efficiency. Developing a novel ICD-based signature may be a potential strategy to differentiate prognosis 
of patients with LUAD and predict efficacy of immunotherapy.

Methods In this study, 34 ICD-related genes (ICDRGs) were identified and analyzed in LUAD samples from the Cancer 
Genome Atlas (TCGA). 572 patients with LUAD were divided into two distinct clusters according to ICDRGs expression 
levels. Patients were subsequently classified into two distinct gene subtypes based on differentially expressed genes 
(DEGs) analyzed between two ICD-related clusters. We further developed and validated a novel ICD-related score 
(ICDRS) followed by comprehensive investigation about the landscape of the prognosis, immune-based features, 
immunotherapautic responses and sensitivity of target drugs in patients with LUAD.

Results After confirming transcriptomic aberrations and appraising prognostic value of ICDRGs, two ICD-associated 
subtypes were initially determined by consensus clustering in accordance with differentially expressional levels 
of ICDRGs. It was shown that patients in the ICD high-subtype possessed the superior clinical prognosis, abundant 
immune cell infiltration and higher involvement in immune-related signaling compared with the ICD low-subtype. 
A signature of ICD-related score (ICDRS) was further established and validated, which was served as an independent 
prognostic indicator for LUAD patients. These comprehensive results revealed that the high-score patients repre-
sented better clinical prognosis, higher immune infiltration-related characteristics, stronger expression of immune 
checkpoints, and better response to immune checkpoint inhibitor therapy and multiple targeted drugs. To further 
verify our analysis, we selected TLR4 as the representative of ICDRGs and evaluated its expression on the lung normal 
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cells and cancer cells in vitro. Then, relative animal experiments were performed in vivo, with results of that the stimu-
lation of TLR4 suppressed the growth of lung cancer.

Conclusions In conclusion, our comprehensive analysis of ICDRGs in LUAD demonstrated their function in serving 
as a biomarker of predicting prognosis and clinical effects of immunotherapy and targeted drugs, which is meaning-
ful to improve our understanding of ICDRGs and brought inspirations about evaluating prognosis and developing 
effective therapeutic strategies to patients with LUAD.

Keywords Lung adenocarcinoma, Immunogenic cell death, Tumor microenvironment, Immunotherapy efficacy, 
Prognosis

Introduction
Lung adenocarcinoma (LUAD) is the most common 
lung cancer subtype, whose overall survival is fewer than 
5  years [1]. Despite the innovation of surgery, chemo-
therapy and targeted therapies brings inspirational thera-
peutic progress to LUAD patients, the clinical prognosis 
still remains a gap from our expectation and remark-
ably varies between different LUAD patients [2, 3]. In 
the past decades, PD-1/PD-L1-oriented immune check-
point inhibitors (ICIs) or other immune regulators have 
provided a potential hope for LUAD patients [4]. How-
ever, the overall response rate of ICI is unsatisfying, 
only few LUAD patients could obtain significantly clini-
cal effects under ICI treatments [5]. Currently, a range 
of biomarkers have been tried to predict the efficacy of 
ICI treatment, including TMB, PD-L1, CTLA-4 and the 
status of immune cells, which still remain to be further 
confirmed through clinical trials [6]. Moreover, solely 
indicator cannot precisely and comprehensively predict 
the efficacy of immunotherapy and stratify appropri-
ate population [5]. Gene signatures, drawing increasing 
attraction, are served as various biological function pat-
terns with involvement of the expression data of multiple 
related genes, and can be utilized to predict the prognosis 
and progression in various types of malignancies [7, 8]. 
Therefore, a signature which can both predict the prog-
nosis and the response of immune checkpoint inhibitors 
or chemotherapies in LUAD patients is worthy exploring.

Immunogenic cell death, a type of regulated cell death 
(RCD), is capable of activating an adaptive immune 
response and reshape the tumor immune microenviron-
ment. Specifically, some dying tumor cells release mul-
tiple danger signals or damage-associated molecular 
patterns (DAMPs), including high mobility group protein 
B1 (HMGB1), calreticulin and ATP, which dominantly 
represent immunogenic features and may contribute to 
the immunotherapy [6, 9]. Actually, commonly applied 
therapies, involving personalized chemotherapeutics, 
radiation therapy and targeted anticancer agents, initiate 
ICD and subsequently participate in immune responses 
of killing tumor cells to enhance treatment efficacy [10–
12]. Therefore, it is convincing that the confirmation of 

ICD-based biomarkers is beneficial to stratify patients 
with different responses to immunotherapy.

In this study, we initially evaluated the expression pro-
files of ICD-related genes (ICDRGs) and obtained their 
prognostic value for the LUAD patients. 572 patients with 
LUAD were divided into two distinct clusters accord-
ing to ICDRGs expression levels. Patients were subse-
quently classified into two distinct gene subtypes based 
on differentially expressed genes (DEGs) analyzed by the 
comparisons of the two ICD-related clusters. We fur-
ther developed and validated a novel ICD-related score 
(ICDRS) followed by comprehensive investigation about 
the landscape of the prognosis, immune-based features, 
immunotherapautic responses and sensitivity of target 
drugs in patients with LUAD. Based on them, our results 
revealed that the ICDRS is potentially considered as an 
efficient and valuable biomarker of clinical prognosis and 
immunotherapeutic efficacy among patients with LUAD.

Methods
All methods were carried out in accordance with relevant 
guidelines and regulations.

Data collection
Figure 1 displays our study’s design. The training dataset 
with RNA-seq transcriptome information and matching 
clinical data of 513 LUAD and 59 normal samples were 
downloaded from TCGA-LUAD (https:// portal. gdc. can-
cer. gov/ proje cts/ TCGA- LUAD) [13]. The clinical features 
of the patients are shown in Table S1 in detail. For the 
following validation, two datasets were retrieved from 
the Gene Expression Omnibus (GEO; accession num-
ber: GSE72094 and GSE26939; https:// www. ncbi. nlm. 
nih. gov/ gds) [14]. Besides, a series of ICD-related genes 
were retrieved from the previous literature and are listed 
in Supplementary Table S1 [15].The human Gene Anno-
tation Format (Homo_sapiens.GRCh38.99.gtf.gz) were 
received from Ensembl (http:// www. ensem bl. org/ info/ 
data/ ftp/ index. html). The correlation of gene expression 
with immune infiltration level in diverse cancer types 
was downloaded from IMmune Estimation Resource 

https://portal.gdc.cancer.gov/projects/TCGA-LUAD
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Fig. 1 The workflow of identification of the immunogenic cell death-based signature for patients with lung adenocarcinoma
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(TIMER; https:// cistr ome. shiny apps. io/ timer/). Data 
cleaning was conducted by R software [16]. The immu-
nology cells related genes was retrieved from the previ-
ous literature [17]

Further comparative analysis on ICD related genes 
(ICDRGs) between LUAD and normal samples
Firstly, the expression of ICD related genes (ICDRGs) 
was compared between tumor and normal samples from 
TCGA by Wilcoxon rank-sum test. Subsequently, a uni-
variate Cox analysis was performed about the relation 
between ICDRGs and overall survival (OS), visualizing 
as a forest plot. Among them, genes with a significant 
relativity to prognosis were selected for further analysis. 
Based on the median expressional value of the genes, 
LUAD patients in TCGA dataset were divided into high- 
and low- subgroups. Kaplan–Meier analysis was fur-
ther used to verify the prognostic value of key ICDRGs 
with the R package “survival” (v3.2–7) and “survminer” 
(v0.4.8). The overlapping ICDRGs selected by both differ-
ential expression and univariate Cox analysis of survival 
were further identified. The expression and localization 
of proteins translated by these selected ICDRGs were 
represented through immunohistochemical staining 
images originated from The Human Protein Atlas (HPA) 
database (https:// www. prote inatl as.org/] [18].

Gene Mutation and Chromosome Distribution Analysis
Somatic mutation information of TCGA-LUAD was 
summarized from the TCGA data portal (http:// tcga- 
data. nci. nih. gov/ tcga/) as the mutation annotation format 
(MAF) analyzed by the R package “maftools” (v1.0–2) to 
represent the corresponding gene mutation patterns and 
frequencies in different groups [19]. The “ggplot2” pack-
age was used in R software to describe copy number 
variation (CNV) downloaded from LUAD. Circos plot 
was performed with the “RCircos” (v1.2.1) package in R 
software to obtain visualization about the location of ICD 
genes in chromosomes [20].

Consensus clustering analysis of ICDRGs
To determine distinct ICD-related patterns mediated by 
ICDRGs, a total of 34 ICDRGs was analyzed. An unsu-
pervised clustering was used for sample clustering using 
the R package “ConsensusClusterPlus” (v1.50.0) [21]. 
Patients were divided into two ICD related subtypes, 
high- and low- subtypes, according to the clustering of 
ICDRGs signature for further analysis. Principal com-
ponent analysis (PCA) using R packages “factoextra” 
(v1.0.7) and “FactoMineR” (v2.4) was then performed to 
determine different subtypes using principal components 
1 and 2. Stability evidence was subsequently performed 
in unsupervised analysis to confirm cluster count and 

membership. This process was repeated 1,000 times to 
ensure the stability of clustering. Kaplan‐Meier survival 
curves were performed in each cluster, and log-rank 
tests were utilized to compare the overall survival (OS) 
between subgroups, respectively [22].

Estimating of functional analysis and tumor immune 
microenvironment
To investigate the relative functional enrichment between 
ICD high- and low- subtypes of LUAD, single-sample 
Gene Set Enrichment Analysis (ssGSEA) algorithm could 
estimate the degree of substantial variations in the series 
of genes expressed between the ICD high- and low- sub-
types and analyzed biological functions of ICD with 
an enrichment of 50 cancer hallmark pathways in the 
MSigDB Collection (MSigDB v7.5.1), the results of which 
were presented in the form of heatmap. Wilcoxon rank-
sum test was utilized to compare the content of pathways 
in LUAD between the ICD high- and low- subtypes.

In order to analyze the distribution of immune cells 
in distinct ICD-related subtypes, several currently rec-
ognized methodologies were utilized to identify the 
immune infiltration status among samples from TCGA 
database. Firstly, the Estimation of Stromal and Immune 
cells in Malignant Tumor tissues using Expression data 
(ESTIMATE) (v1.0.13) algorithm was applied to compute 
StromalScore, ImmuneScore and ESTIMATEScore of 
each sample in LUAD with regard to corresponding gene 
expression contents of stromal and immune cells via the 
R package “estimate” [23]. Then, for further calculating 
the specific proportions of immune cells in each subtype, 
a set of metagenes, covering nonoverlapping sets of genes 
representative of 28 specific immune cell subpopula-
tions, was achieved and performed non-parametric and 
unsupervised Gene Set Variation Analysis (GSVA) analy-
sis with “GSVA” R package [17]. The results were stand-
ardized with Function “scale()” in the form of boxplots. 
Besides, R package “CIBERSORT” (v1.03) that estimates 
the relative abundance of 22 immune-related cell types, 
and TIMER algorithms (https:// cistr ome. shiny apps. io/ 
timer/), a method to quantifying gene expression associa-
tions were also conducted, which were shown in supple-
ment figures [24, 25]. Moreover, the expression levels of 
45 immune checkpoints retrieved from a research were 
screened to evaluate the differences between two ICD 
high- and low- subtypes [26].

Identification of Differentially Expressed Genes Between 
ICD‑related Subtypes in LUAD
The R package “limma” (v3.42.2) was performed to enrich 
DEGs between distinct subtypes. Genes with adjusted 
P value < 0.05 and |logFC|> 0.585 were considered sta-
tistically significant. Kyoto Encyclopedia of Genes and 

https://cistrome.shinyapps.io/timer/
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Genomes (KEGG) pathway (https:// www. genome. jp/ 
kegg/) and Gene Ontology (GO) analyses (http:// geneo 
ntolo gy. org/) were performed to evaluate the biological 
pathways associated with the DEGs using the R package 
“clusterProfiler” [27]. Further function analysis of biologi-
cal processes (BP), molecular functions (MF) and cellular 
components (CC)) were represented based on GO analy-
ses using R software, ggplot2 package. Pathways with 
adjusted P value < 0.05 and false-discovery rate (FDR) q 
value < 0.2 were defined as statistically significant.

In terms of genetical aspect, unsupervised clustering 
and PCA were performed to cluster samples in accord-
ance with the mentioned DEGs. Briefly, DEGs with posi-
tive relation was named as ICD gene cluster A, while 
those with negative relation were defined as ICD gene 
cluster B, respectively. Corresponding Kaplan–Meier 
survival analyses were also conducted to evaluate the 
prognostic values of two gene clusters.

Construction of ICD‑Related Score
To quantify the characteristics of ICD in TCGA-LUAD 
patients, an algorithm containing ICDRG profiles was 
constructed and defined as ICD-Related Score (ICDRS). 
The TCGA-LUAD cohort (n = 572) served as the training 
set. Firstly, univariate Cox proportional hazards regres-
sion analysis was performed using the R package “limma” 
(v3.42.2) on the DEGs between LUAD and normal sam-
ples. The significant standard was set as FDR < 0.01. 
Subsequently, genes with a significant difference in OS 
were selected for an unsupervised clustering to divided 
patients into different groups for further analysis, as 
well as PCA analysis for filtering the main constituents 
of these genes. With the basement of these analysis, a 
signature was ultimately constructed. A method with 
the same core of the gene expression rank index was 
applied in each patient: ICDRS = ∑PCA1i + ∑PCA2i (i is 
the expression of prognostic DEGs after screening). The 
median value of scores was set as the cut-off value of dif-
ferentiating the high- and low- ICDRS groups. The KM 
curve was used for estimating this comparison according 
to prognosis, and log-rank test calculation results with 
a P value < 0.05 were considered statistically significant. 
Besides, the time-dependent receiver operating char-
acteristic (ROC) curve analysis (containing one-, two-, 
and three-year survival) was performed to identify the 
specificity and sensitivity of ICDRS signature utilizing 
R package “survivalROC”, the effect of which was calcu-
lated by the area under the curve (AUC). The datasets of 
GSE72094 and GSE26939 from GEO were also analyzed 
to identify the prognostic value of this score. In addi-
tion, associations between ICDRS and basically clinical 
features, including age, gender, TNM stage, clinical stage 

and smoking history were further analyzed, and Sankey 
diagrams were performed to visualized the correlation 
among ICDRS, ICD subtypes and gene clusters.

Clinical correlation and stratification analyses 
of the prognostic ICDRS
To evaluate the independence of ICDRS asides from 
other available clinicopathological features, the samples 
in TCGA and GEO cohorts (GSE72094 and GSE26939) 
were conducted to univariate and multivariate analyses. 
Thereafter, stratified analyses were performed to verify 
the credibility of ICDRS prediction in distinct subgroups 
stratified according to age, gender, T stage, N stage, and 
smoking history. KM analysis was shown utilizing the 
“survminer” and “survival” packages in R.

Pathways enrichment and functional analysis of ICDRS
The relationship between the ICDRS and cancer hall-
marks was explored and generated a correlation heat-
map. The R package “Limma” was used to identify DEGs 
between two distinct ICDRS groups, with a standard of 
|log2foldchange|> 0.5 and adjusted p-value < 0.05. Then 
the corresponding expression of DEGs in all samples was 
selected for GO and KEGG functional annotations analy-
ses with R package “clusterProfiler”. Gene Set Enrichment 
Analysis (GSEA) was performed to identify hallmark 
pathways strongly related to the gene signature.

Characterization of Immune Landscape Between high 
and low ICDRS groups
To explore the differences of tumor immune micro-
environment between high and low ICDRS groups, 
immune-discriminated analyses were conducted on the 
basis of gene sets of 28 reported immune cell types of 
tumor microenvironment with the help of the R pack-
age “GSVA”[17]. Differential infiltration analysis was 
performed and represented by a violin plot. Thereafter, 
stromal score representative of the stroma sufficiency, 
immune score symbol of the infiltration of immune cells 
and estimate score proving tumor purity) derived from 
ESTIMATE algorithm [23]. Additionally, the correlation 
of the ICDRS and the expression of two immune check-
point molecules (CD8A and PD-L1) was also checked.

Mutation and Prediction of Immunotherapeutic 
and Chemotherapeutic response
The MAF retrieved from the TCGA database was dis-
posed with the “maftools” R package to identify the 
somatic mutations of LUAD patients between two score 
groups. The Tumor Immune Dysfunction and Exclu-
sion (TIDE) algorithm (http:// tide. dfci. harva rd. edu/), 
was conducted to predict the clinical efficiency of 
immunotherapy referring to the gene expression data of 

https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
http://geneontology.org/
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TCGA-LUAD. Spearman correlation analysis was carried 
out between ICDRS and the TIDE scores [26, 28, 29]. 
GSE126044 and GSE136961 datasets were also used to 
test the ICDRS for immunotherapy response’s prediction 
abilities.

To explore differences in the therapeutic effects of tar-
geted drugs in the two groups, the semi-inhibitory con-
centration (IC50) values of targeted drugs was calculated 
using R package “pRRophetic” (v 0.5) [30]. IC50 is rep-
resentative for a concentration of the compound capable 
of restraining a specifically biological or biochemical pro-
cesses, which means that the lower the IC50, the more 
sensitive to the specific compound. A total of 135 drugs 
were calculated, and the sensitivity of the drugs was ana-
lyzed by unpaired t-tests. P < 0.05 was considered as the 
threshold for significance.

Cell culture
A type of human lung carcinoma A549, human lung 
fibroblasts HLF and Lewis lung carcinoma (LLC) were 
purchased from the Type Culture Collection of the Chi-
nese Academy of Sciences. A549 and HLF were cul-
tured in DMEM medium containing 10% fetal bovine 
serum (FBS) while LLC cells were cultured in RPMI 
1640 medium, both of which were added with penicil-
lin (100 IU/ml) and streptomycin (100 μ g/ml). All cells 
were cultured in a cell incubator at 37˚C atmosphere 
with 5%  CO2.

Western blot analysis
Cells were washed with PBS and lysed in RIPA buffer 
(Solarbio, Beijing, China) about 30  min. Thereafter, the 
mixture was collected and centrifuged for 15  min at 
12,000 rpm, and the supernatant was measured by BCA 
protein assay kit (Biosharp, China) to quantitate the 
protein content of samples. The cell lysates mixed with 
protein loading buffer and loaded in SDS–polyacryla-
mide gels then transferred to nitrocellulose filter mem-
brane (ThermoFisher, USA). The membrane was first 
blocked with 5% non-fat dry milk for 1 h, then incubated 
with TLR4 primary antibody (MA5-16,216, Invitrogen) 
(1:500 dilutions) overnight and anti-β-actin (ab8266, 
Abcam) (1:2000 dilutions) 4  h as a loading control. The 
blot was then cultured with specific secondary antibod-
ies (1:10,000 dilutions). All proteins were visualized with 
a western blotting substrate.

Quantitative Real‑Time PCR (qRT‑PCR) assay
Total RNA was extracted from collected lung tumor tis-
sues using Trizol (Invitrogen) and reverse transcribed 
into cDNA by using HifairTM II 1st Strand cDNA Syn-
thesis SuperMix Kit (11123ES60, YEASEN, China) 
according to the manufacturer’s protocol. Quantitative 

PCR reactions were performed by a BIO-RAD CFX96™ 
(Bio-rad, USA) with the supplement of SYBR Green 
(11201ES08*, YEASEN, Shanghai, China) and the 
amplification of the desired products was observed and 
recorded using CFX96TM Real-Time PCR Detection 
System. Reactions were performed in triplicate. The fold 
difference in transcripts was calculated using the ΔΔCt 
method with GAPDH as a control [31]. All the above 
primers were synthesized by Biomed Company (Beijing, 
China). The gene sequences used were as follows:

TLR4-F: 5’-ATG GCA TGG CTT ACA CCA CC-3’;
TLR4-R: 5’-GAG GCC AAT TTT GTC TCC ACA-3’;
GAPDH-F: 5’-AGG TCG GTG TGA ACG GAT TTG-3’;
GAPDH-R: 5’-TGT AGA CCA TGT AGT TGA GGTCA-
3’.

Assays for CCK8 Cell Proliferation
The A549 cells were seeded onto 96-well plates (3 ×  103 
cells per well plate) and treated with DMSO or LPS 
(10 μg/mL) for 5 days. The medium was replaced every 
day during the course of the experiment. CCK8 was used 
to monitor cell proliferation following the manufacturer’s 
recommendations (Dojindo biochemical techniques).

Tumor xenografts animal experiments
Animal studies were approved by the Research Ethics 
Committee of the Chinese PLA General hospital. For 
the LLC cell subcutaneous xenograft model, healthy 
C57BL/6  J mice (male, 6–8  weeks old, and weighing 
18–22  g) were purchased from Beijing SPF Biotechnol-
ogy Co., Ltd (Beijing, China, animal license #: SCXK Bei-
jing 2019–0010), and performed in line with guidelines 
formulated by NIH Guide about laboratory animals. All 
animals were resident in an appropriate place, including 
12 light/12 dark cycle, temperature 25˚C, and humidity 
40–60%.

Briefly, under anesthesia situation, mice were implanted 
subcutaneously with LLC cells (4 ×  105) dissolved in 0.1 ml 
of phosphate-buffered saline (PBS) into the right dorsal 
of each mouse to establish tumor-bearing mouse mod-
els. When the tumor volume reached about 100  mm3, 
C57BL/6  J mice were randomly divided into 2 groups 
(n = 5 for each group): the control group and LPS group. 
LPS (5  mg/kg; Escherichia coliserotype O111:B4, Sigma, 
USA) was diluted and dissolved using saline intratumor-
ally injected into mice on that day, seven and fourteen 
days later of dividing group. Mice in control group were 
injected intratumorally with phosphate-buffered saline 
(PBS) as control. The mice’s tumor volume was measured 
every week. Not until being had mice been anesthetized 
with persistent isoflurane on day 21, mice were executed 
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with euthanasia and their tumor tissues were collected. 
Mean tumor masses in size were compared using 
unpaired t tests between LPS-treated mice and controls.

An additional 5 mice in each group were performed 
for the survival study. After finishing the 3-week experi-
mental period under LPS treatment as mentioned above, 
all mice were monitored until death during the survival 
study.

Hematoxylin and Eosin (HE) staining 
and immunohistochemistry
On day 21, mice were anesthetized to obtain tumor 
samples, part of which were isolated and fixed in 4% 
paraformaldehyde buffer for HE staining. The other 
sections of the tumor tissues were fixed by formalin 
and embedded in paraffin for immunohistochemical 
staining. During the process, primary antibodies were 
incubated overnight at 4 °C [anti-Ki-67 (1:200, Abcam, 
ab16667)], with the following of specific secondary 
antibodies. Images were obtained at 200 × magnifica-
tion using an Olympus BX43 microscope. The immu-
noreactive score (IRS) system was used to evaluate 
the expressional intensity of genes. The percentage of 
positive cells lowed than 10% was scored as 0. 10–50%, 
51–80% and 81–100% of those was scored as 2, 3 and 
4, respectively. The staining intensity was scored as fol-
lows: no color reaction: 0; mild reaction: 1; moderate 
reaction: 2; and intense reaction: 3. Final IRS scores 
of immunohistochemistry = (scores of staining inten-
sity) × (scores of percentage of positive cells) [31]. 
Slides were assessed by 2 pathologists. Values were 
expressed as mean ± SD.

Results
Landscape of ICD genes and OS between normal 
and malignant LUAD samples
The ICDRGs were proposed by massive literature, which 
has been previously summed up by Abhishek et al. (13). 
To fully understand the expression pattern of ICDRGs 
involved in tumorigenesis, 578 patients (59 normal sam-
ples and 519 malignant samples) from TCGA-LUAD 
were introduced in our study for future studies. A sum-
mary of information on the 578 LUAD patients was dis-
played in Table S1.

We first analyzed the expression patterns of ICD 
genes in normal and LUAD samples. The results sug-
gested that 29 out of 34 ICD-related genes showed 
significant differences between normal and malignant 
samples, where certain genes, for example CALR and 
PDIA3, displayed higher expression, while others (such 
as IFNGR1, P2RX7, NLRP3 and TLR4) displayed lower 
expression in tumor samples (Fig.  2A). Furthermore, 
the heterogeneous expression of the ICDRGs between 

normal and cancer tissues indicated that the ICDRG 
expression differences played a crucial part in the 
development and occurrence of LUAD.

Based on the TCGA dataset, univariate Cox regres-
sion was performed to study the predictive value of 
key ICDRGs about survival. Hence, of note, ENTPD1, 
NLRP3, TLR4, P2RX7 and IL10 can be predicted as 
protective genes of LUAD with HR (hazard ratio) < 1 
(P < 0.05) (Fig.  2B). Then Kaplan–Meier survival curve 
analysis of the five genes was performed among two 
expression groups (high and low). We found that they 
all were significantly associated with OS in LUAD 
(Fig. 2D). Interestingly, except for IL-10, the other four 
could not only predicted an excellent prognosis, but 
also had relatively low expression in tumor tissues. 
Moreover, to verify the protein expression of the four 
genes, including ENTPD1, NLRP3, TLR4, P2RX7, the 
HPA database was applied for inspection of the expres-
sion of the proteins deprived from them in LUAD 
tumor tissues and normal tissues. Concurrent with 
what we found in TCGA, all four proteins were signifi-
cantly downregulated in LUAD tissues compared with 
normal tissues, and mainly expressed on the cell mem-
brane and cytoplasm in the tumor cells, indicating that 
the model proteins expression levels shared the simi-
lar tendency to that of the corresponding model genes 
(Fig. 2C).

Genetic and transcriptional alterations of ICDRGs in LUAD
Summary analysis of the incidence of somatic muta-
tions in these 34 ICDRGs in the LUAD cohort was 
shown (Fig.  3A). Of the 517 LUAD samples, 199 
(38.49%) had mutations in the ICDRGs. Among them, 
TLR4 had the highest mutation frequency (12%), fol-
lowed by NLRP3(11%) and PIK3CA (5%) (Fig. 3A). The 
mutation type with C to A had the highest proportion 
in LUAD samples (Fig. 3B).

Next, we calculated and demonstrated somatic copy 
number alterations in these ICDRGs, resulting dis-
covering that most ICDRGs with high CNA frequency 
trended to be co-deletion rather than co-amplification 
(Fig. 3C). It was also showed the locations of the CNV 
alterations in the ICDRGs on their respective chromo-
somes (Fig. 3D). Furthermore, we performed a compa-
ration between the mRNA expression levels of LUAD 
and normal tissues and found a similarly expressional 
tendency of most ICDRGs as the incidence of CNV 
alteration. ICDRGs with CNV loss, such as HMGB1, 
IFNGR1, TLR4 and PIK3CA, were expressed at lower 
levels in LUAD samples compared to those in nor-
mal samples, suggesting that CNV might regulate the 
mRNA expression of ICDRGs.
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The Initial Clustering: Identification of two ICD subtypes 
in LUAD Based on the Expression Pattern of ICDRGs
For further study on the expression features of ICDRGs 
in LUAD, patients with LUAD were classified based on 
different ICDRG expression patterns using consen-
sus clustering algorithm. The outcome showed that 
k = 2 seemed to be a suitable method for dividing the 
cohort into cluster 1 (n = 244) and 2 (n = 253) (Fig.  4A, 
B). Noticeable differences in the ICD transcription pro-
files between the two clusters can be concluded by PCA 
analysis. Generally, clusters 1 indicated high I expression 
levels of ICDRGs named as ICD-high subtype while clus-
ters 2 presented low expression levels defined as ICD-low 
subtype (Fig. 4D, E). Thus, we defined cluster 1 as ICD-
high subtype, and cluster 2 as ICD-low subtype. The sur-
vival analysis represented that a longer OS in patients 
with ICD-high subtype (p = 0.015; Fig. 4C). Furthermore, 
significant differences in ICDRG expression and clinico-
pathological characteristics were revealed (Fig.  4E). As 
shown in Fig.  4F, ICD-high subtype was preferentially 
related to female, older age, and lower N stage compared 
to those in ICD-low subtype. These indicate that ICDRGs 
may affect tumor development by some of the potential 
mechanisms.

In addition, we estimated the differences in somatic 
variation between two subtypes. The top 20 highest 
mutation frequency of driver genes were selected to plot 
as a waterfall diagram. Results were revealed that patients 
in ICD-low subtypes had significantly higher frequen-
cies of most genes including TNN, MUC16 and RYR2 
compared to those in patients in ICD-high subtypes. 
However, the opposite results were observed in terms of 
the mutation frequencies of TP53, LRP1B and CSMD3 
(Fig. 4F).

The immune cell infiltration characteristics and biological 
behaviors in distinct ICD subtypes
Increasing evidence demonstrates that ICD exert 
remarkable effects on specific antitumor immune 
responses. The analysis of the immune cell infiltration 
showed that the ICD-high subtype was featured with 
high activated B cells, activated CD4 T cells, activated 
CD8 T cells, natural killer T cells and follicular helper 
T cells, but several immunosuppressive cells, such as 

eosinophil, myeloid-derived suppressor cells (MDSCs), 
macrophages, mast cells and regulatory T cells (Tregs) 
were highly involvement in it (Fig.  5A). These results 
were somewhat interesting. The CIBERSORT algorithm 
and TIMER were additionally utilized to evaluate dif-
ferent percentages of immune cells. In detail, ICD-high 
subtype displayed remarkable high percentages of CD8 
T cell, activated CD4 T cell memory, activated CD4 T 
cell memory and macrophage M1 (Fig. 5B and S3A, B). 
For the TME score, as shown in Fig. 5C, samples in ICD-
high subtype also exhibited significantly higher estimate 
scores, stromal scores and immune scores, compared 
with those of ICD-low subtype.

Subsequently, we explored the potential correlation 
between distinct ICD subtypes and immunotherapy 
responses, which to some extents could refer to the 
expressional level of immune checkpoints. The expres-
sion levels of PD-1, PD-L1, CTLA4, LAG3 and TIGIT 
in ICD-high subtype were significantly higher than 
those in ICD-low subtype according to the Wilcoxon 
test (P < 0.05), suggesting that the ICD-high subtype was 
more likely to strongly response to immunotherapies 
(Fig. 5D).

To investigate the differences between ICD-high and 
low subtypes in biological processes, ssGSEA algorithm 
was performed with the hallmark gene set (c2.cp.kegg. 
v7.2) derived from the MSigDB database. The results 
showed that 41 out of 50 hallmarks were significantly dif-
ferent between two subtypes, including the TGF-β sign-
aling pathway, apoptosis signaling pathway, epithelial 
mesenchymal transition signaling pathway and hypoxia 
signaling pathway. (Fig. 6A, B).

The secondary clustering: identification of two gene 
clusters based on differentially expressed genes (DEGs)
As the ICD high subtype indicated with advantageous 
clinical outcomes while ICD low subtype presented the 
opposite results, we further identified 879 DEGs related 
to ICD phenotype and performed functional enrich-
ment analysis (Table S3) in order to explore respective 
biological characteristics of each ICD pattern. It was pre-
sented that the most significant terms enriched by GO 
enrichment analysis were the biological process (BP) of 
T cell activation and regulation of lymphocyte activation, 

(See figure on next page.)
Fig. 2 Expressional and prognosis analysis of ICDRGs in normal and lung adenocarcinoma tissues. A Expression of ICDRGs in normal and lung 
adenocarcinoma tissues. The statistical difference was compared by the Wilcoxon test; (B) Forest plot presenting the results of the Univariate COX 
regression analysis between gene expression and OS for the 34 ICDRGs; (C) Protein expression level and localization of ICDRGs with significant 
prognosis value in normal bronchus tissue and lung adenocarcinoma specimens measured by IHC staining based on Human Protein Atlas 
(bars = 200 μm); (D) Kaplan–Meier curves of ICDRGs with significant prognosis value in overall survival of LUAD patients. (*P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001)
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Fig. 2 (See legend on previous page.)
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cellular component (CC) of external side of plasma mem-
brane and collagen-containing extracellular matrix, and 
molecular function (MF) of receptor ligand activity and 
cytokine receptor binding (Fig. 6C). KEGG analysis sug-
gested that they participated mostly in the pathway of 
cytokine-cytokine receptor interaction and cell adhesion 
molecules, suggesting that ICD poses significant effects 
in TME via influencing many immune-related biological 
processes (Fig. 6C).

To further confirm our analysis, an unsupervised 
cluster analysis based on the 879 DEGs was performed. 
Subsequently, patients were re-stratified into two ICD 
subtype-related DEG clusters (gene clusters A and B). 
and patients in gene cluster A (p < 0.05) (Fig. 6E). In con-
sistent with previous analysis, most patients in gene clus-
ter A belonged to ICD-high subtype with higher DEG 
expression and more favorable prognosis, while those in 
gene cluster B with relatively poor prognosis belonged to 
ICD-low subtype (Fig. 6D).

Construction and validation of the prognostic ICD‑Related 
Score (ICDRS)
Given the heterogeneity and complexity of individual 
ICD patterns, we used PCA to quantify the ICD patterns 
by analyzing DEGs between LUAD and normal samples, 
and defined the results as ICDRS. DEGs in detail were 
shown in Table S4. Patients with a ICDRS lower than the 
median score were stratified into the low score group 
(n = 256), whiles those with a ICDRS higher than the 
median score were classified into the high score group 
(n = 257). The distribution diagram of ICDRS revealed 
different survival time in two groups, that is to say, the 
better patients scored in the ICDRS, the longer they sur-
vived (Fig. 7A, C and D). With the basement of the ROC 
analysis, AUC of one-year, two-year and three-year OS 
is 0.67, 0.6 and 0.61, respectively, calculated with ICDRS 
(Fig. 7B). These results could strongly present the prom-
ising prognostic value of ICDRS.

To explore the prognostic presentation of the ICDRS, 
ICDRS was validated across two external cohorts 
(GSE72094 and GSE26939) (Figures S1A-H). Likewise, 
patients were also classified into low- or high-score 
groups. The ICDRS, prognosis and PCA analysis all 
indicated distinct directions of the low- and high-score 
groups, respectively (Figures S1B, F). Overall survival 
analysis also provided similar evidence that patients in 

high ICDRS group were more likely to possess better 
prognosis (log-rank; p < 0.001; Figure S1A, E). Analysis 
of the 1-, 2-, and 3-year prognostic prediction revealed 
that the ICDRS was capable of prognosis prediction for 
LUAD patients due to relatively high AUC values (Figure 
S1C, G).

The correlation of ICDRS, ICD subtypes and gene clus-
ters was displayed by the Sankey plot. The high ICDRS 
group accounts for a higher proportion of the patients in 
ICD-high subtype or gene cluster A, indicating patients 
in high ICDRS group with a good outcome and demon-
strating the consistency of the predictive effectiveness 
(Fig. 7E). Moreover, patients in ICD-high subtype or gene 
cluster A showed a higher ICDRS. Besides, the value of 
ICDRS was computed in different groups based on twice 
clustering. The median value of ICDRS in gene cluster 
A was significantly higher than that in gene clusters B 
(p < 0.0001) (Fig.  7F, G). Therefore, this quantified ICD-
related signature could be served as an indicator to pre-
dict prognosis of patients with LUAD.

Clinical correlation analysis and a clinical nomogram 
establishment of ICDRS
To explore the effects of the ICDRS on clinical charac-
teristics, we analyzed the correlation between ICDRS 
and various clinical characteristics (age at diagnosis, 
sex, Tumor size, lymph node status, TNM stage, smok-
ing habits). We observed that ICDRS was significantly 
lower in male patients with larger tumor size, lymph 
node metastasis, advanced TNM stage, smoking habit, 
and age below 65(p < 0.0001; Fig.  8A). Since low ICDRS 
was significantly associated with advanced lung cancers 
and in LUAD, we attempted to verify the independence 
of ICDRS for prognostic prediction in LUAD patients. 
In addition to ICDRS, several clinical features includ-
ing age, gender, TNM stage and smoking history were 
also enlisted as covariates for univariate and multivari-
ate Cox regression analyses. The results ultimately repre-
sented that TNM stage and ICDRS were indeed served 
as independent factors predicting the prognosis of LUAD 
patients in the TCGA cohort (Fig.  8B), GSE26939 (Fig. 
S2L) and GSE72094 (Figure S2M).

Thereafter, analysis for further stratification were con-
ducted to estimate whether the ICDRS blocked its pre-
dictive capacity in different subgroups, particularly age 
(≤ 65 and > 65 years), sex (female and male), T stage (T1 

Fig. 3 Genetic and transcriptional alterations of ICDRGs in LUAD. A The waterfall plot of somatic mutation features in 517 patients with LUAD 
from TCGA-LUAD cohort. The column represents the patients; (B) The boxplot showed variant types of LUAD samples from TCGA-LUAD cohort. The 
different colors below the figure represent the proportion of variant types. The right stacked barplot demonstrated the proportion of each variant 
type. Only molecules having mutations, namely mutant frequency > 0%, were illustrated in the waterfall plot; (C) The CNV frequency of ICDRGs 
in TCGA cohort. The height of the column represents the alteration frequency. The blue dot represents deletion frequency. The red dot represents 
amplification frequency; (D) The location of CNV alteration of ICDRGs on 23 chromosomes

(See figure on next page.)
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and T2-T4), and smoking history (yes and no). As shown 
in Figure S2A-J, significantly higher OS in patients with 
high-ICDRS group than those in patients with low-
ICDRS group for age (p < 0.05), sex (p = 0.028 in women 
and p < 0.01 in men), T stage (p < 0.05) and smoking his-
tory (p = 0.0036 for yes and p < 0.01 for no).

Furthermore, the distribution variations of the somatic 
mutations were analyzed between two ICDRS groups 
in the TCGA-LUAD cohort. Somatic mutation analy-
sis revealed that patients with lower ICDRS had higher 
mutation frequency of TTN (43% vs. 54%), MUC16 
(38% vs. 45%), CSMD3 (37% vs. 44%) and RYR2 (34% 
vs. 42%) compared with those with higher ICDRS (Fig. 
S3F; Table  S5). Additionally, the copy number altera-
tions (CNAs) landscapes of both the high- and low-score 
groups were also shown (Fig.  8C; Table S6). Patients in 
low ICDRS group had higher amplification of LCE3C 
(1q21.3) and BAZIA (14q13.1), and those in low ICDRS 
group had higher levels of TERT (15p15.33) and SHMT2 
(12q14.1) amplification.

To increase the clinical applicability and generaliz-
ability of the ICD-related signature, a prognostic nomo-
gram which simultaneously depends on the score status 
and common clinical characteristics was established. It 
could use an algorithm and realize quantitative analysis, 
which could effectively predict the possible survival time 
of LUAD patients. Each common clinical characteris-
tic, including age, gender, clinical stage and ICDRS, was 
applied to calculate the individual sample’s score, respec-
tively, based on which can estimate one-, three- and five-
year survival probabilities (Fig.  8D). Furthermore, ROC 
analysis was also used to verify the nomogram’s predic-
tive accuracy. As shown in Figure S2K, the predicted 
AUC values of the OS nomogram were better than those 
of other predictors, suggesting that the nomogram had 
outstanding performance in predicting survival of LUAD 
patients. Therefore, there is reason to believe that the 
nomogram with accuracy and reliability could predict the 
survival of patients with LUAD.

Biological pathways and functional enrichment analysis 
of two ICDRS groups
To investigate the underlying mechanisms that con-
tribute to the different results stratified by ICDRS, we 

performed KEGG pathway, GSEA, and GO analysis. 
The relationship between ICDRS and enriched hall-
mark pathways was demonstrated that abundant pro-
oncogenic pathways, such as MYC signal pathway, as 
well as cell cycle processes pathways, such as DNA 
repairment and G2M checkpoint pathways were nega-
tively linked to ICDRS, while some tumor suppression 
pathways, including TNF-alpha signaling were posi-
tively associated with ICDRS (Fig.  9A). Meanwhile, 
the GSEA showed that the gene sets involved in acti-
vation of adaptive immune response, innate immune 
response and positive regulation of cytokine produc-
tion were gathered together in high-ICDRS patients 
(Fig. 9B). The GO analysis further revealed that many 
biological functions in low-risk patients primarily cor-
related with immune-related biological processes and 
inflammatory reactions, including cytokine–cytokine 
(Fig.  9C). The immunological and inflammatory fea-
tures of the ICDRS were clearly proven, and the 
potential mechanism of the ICDRS for evaluating the 
prognosis of patients with LUAD was strongly vali-
dated using these results.

Evaluation of TME and immune characterization of ICDRS
Due to the close correlation between ICD gene clusters 
and immune-related biological pathways, further inves-
tigation was performed to analyze the relation between 
the tumor-infiltrating immune cells and ICDRS. Firstly, 
we quantified the overall infiltrating immune cells based 
on TCGA cohort based through ESTIMATE algo-
rithm. As shown, the high ICDRS group represented 
high Stromal Score, Immune Score and ESTIMATE 
Score but low tumor purity, suggesting a considerably 
increasing immune cell infiltration in high ICDRS group 
(Fig. 10A-D).

A clustering analysis was also performed on the specific 
difference in 28 types of tumor-infiltrating immune cells 
between the two groups. The column diagram remarka-
bly revealed a higher infiltrating proportion of antitumor 
immune cells including activated CD8 T cell and CD4 T 
cell (P < 0.05) in high ICDRS group (Fig. 10E), suggesting 
a more positive immune response in high ICDRS group. 
CIBERSORT and TIMER algorithms for the evalua-
tion of the infiltration sufficiency of immune cells also 

(See figure on next page.)
Fig. 4 Identification of ICD-associated subtypes by consensus clustering and comparison of somatic mutations between different ICD subtypes. A 
The consensus matrixes for all LUAD samples displayed the clustering stability with 1,000 iterations. All samples were clustered into an appropriate 
number of subtypes (k = 2); (B) Delta area curve of consensus clustering indicates the relative change in area under the cumulative distribution 
function (CDF) curve for k = 2 to 10; (C) Kaplan–Meier curves showed the overall survival difference between ICD-high and low subtypes (p = 0.015); 
(D) PCA analysis showing a remarkable difference in transcriptomes between the two subtypes; (E) Differences in clinicopathologic features 
and expression levels of ICDRGs between the two distinct subtypes. Red represents high expression and blue represents low expression; (F) 
Oncoprint visualization of the top 20 most frequently mutated genes in ICD high- (up part) and low- (down part) subtypes. (*P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001)
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demonstrated the similar results (Fig. S3A, B). Taken 
together, these results proved that the ICDRS had a tight 
correlation with tumor immune microenvironment.

To determine the predictive value of the ICDRS in 
the response of immune checkpoint inhibitor treat-
ment in LUAD, the expression of immune checkpoint 

Fig. 4 (See legend on previous page.)
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was compared in two groups. A significantly high level 
of them was observed in the high ICDRS group includ-
ing LAG3, CD274 (PD-L1), CTLA4, PDCD1, TIGIT, 
PDCD1LG2, demonstrating that the high ICDRS group 
might benefit from immunotherapy (P < 0.05) (Fig. 10F). 
Spearman correlation analysis indicated that the ICDRS 
was positively associated with the CD8A and PD-L1 
(p < 0.001; Fig.  10E, F), suggesting that patients in high 
ICDRS group might exert a better response to ICI 

administration. Our findings revealed substantial varia-
tions in intrinsic tumor immunogenicity and anticipated 
immunotherapy response between the low- and high-
ICDRS groups.

Drug susceptibility and mutation analysis
To further estimate the value of ICDRS to predict effects 
of drugs commonly applied in clinical, the sensitivity of 
targeted inhibitors was computed between the groups 

Fig. 5 Immune landscape of ICD-high and ICD-low subtypes. A The distribution of 28 immune cell subsets infiltration between two subtypes 
using the ESTIMATE algorithm; (B) Relative proportion of immune infiltration in ICD-high and ICD-low subtypes using the CIBERSORT algorithm.; 
(C) Violin plots show the median, and quartile estimations for each immune score; (D) Box plots present differential expression of multiple immune 
checkpoints between ICD-high and ICD-low subtypes. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001)
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Fig. 6 Biological analysis of two ICD-related subtypes and identification of two gene clusters based on DEGs derived from two ICD-related 
subtypes. A The heatmap demonstrates the enrichment of biological pathways. Red and blue represent activated and inhibited pathways, 
respectively; B GSEA analysis determines the underlying signal pathways between ICD-high and ICD-low subtypes; (C) Dots plot presents the GO 
and KEGG signaling pathway enrichment analysis based on DEGs between ICD-high and ICD-low subtypes. The size of the dot represents 
gene count, and the color of the dot represents – log 10 (p. adjust-value); (D) Differences in clinicopathologic features and DEG expression 
between the two distinct gene clusters. Red represents high expression and blue represents low expression; (E) Kaplan–Meier curves estimate 
the survival differences between two ICD subtype-related DEG clusters. (*p < 0.05, **p < 0.01 and ***p < 0.001)
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using “pRRophetic” package. Results showed significant 
differences in the estimated IC50 value of 138 kinds of 
drug molecules between the low- and high-score groups. 
It was of 27 out of top significant 30 drugs that patients 
with higher ICDRS had significantly lower IC50 value 
compared with those with lower ICDRS, including 
those of LFM-A13 (BTK inhibitor), PF-02341066 (Cri-
zotinib) (c-Met inhibitor), DMOG (Dimethyloxallyl Gly-
cine) (HIF-PH inhibitor), AZD6482 (PI3Kβ inhibitor), 
CI-1040 (PD 184352) (MEK Inhibitor), XMD8-85 (ERK 
inhibitor) and so on, indicating that patients with high 
ICDRS could be more sensitive to these targeted drugs, 
which explained the better prognosis of patients in the 
high ICDRS group (Fig.  11B). The sensitivity of low 
ICDRS group to the remaining three drugs was higher 
than that of high ICDRS group (Fig.  11A). In view of 
these data, the high-ICDRS group might be more sen-
sitive to common chemotherapeutic agents and molec-
ular-targeted drugs. These results suggested that the 
ICDRS can, to a certain extent, predict drug sensitivity 
in patients with LUAD. The specific IC50 of every drug 
was shown in Table S7.

TIDE score, the more accurate predictor for immune 
checkpoint blockade (ICB) therapies, was introduced 
into our analysis [28]. Interestingly, patients with LUAD 
from the high-ICDRS group had a lower TIDE score 
compared with low-ICDRS patients (Fig. 11E). A greater 
TIDE score suggests a higher probability of tumor 
immune escape and lower likelihood of benefitting from 
anti-PD-1/CTLA4 therapy, illustrating that high-ICDRS 
patients are candidates for ICB therapy [28]. Currently, 
the most vital bottlenecks retaining clinical applica-
tion of immunotherapy is the lack of effectively predic-
tive biomarkers. Because of the marked correlation 
between ICD subtypes and immune microenvironment 
as the above studies were shown, we further investigated 
the predictive ability of ICDRS for immunotherapeutic 
responses. As shown, the value of ICDRS had a positive 
correlation with the PD-1 inhibitor therapy responses in 
the GSE126044 and GSE136961 cohorts. In GSE126044 
cohort, the high ICDRS patients possess a lower propor-
tion of SD (stable disease)/PD (progressive disease), and 
a high proportion of complete response (CR)/partial 

response (PR) patients in high ICDRS group (87.5%) was 
significantly higher than that in low ICDRS group (57.1%) 
(Fig. 11C). In GSE136961 cohort, ICDRS in durable clini-
cal benefit (DCB) group was significantly higher than 
that in non-durable benefit (NDB) group (p < 0.001) 
(Fig. 11D), and the proportion of DCB was higher in the 
high ICDRS group (78.6%) than in the low ICDRS group 
(61.5%; Fig. 11D).

Accumulative evidence shows that patients with a high 
CD8A or CD274 may benefit from immunotherapy due 
to their higher numbers of neoantigens. Our analysis of 
the mutation data from the TCGA LUAD cohort showed 
a higher CD8A or CD274 in the high score group than 
that in the low score group (Fig.  11E), suggesting the 
potential benefits from immunotherapy in the high 
score group. Spearman correlation analysis demon-
strated that the ICDRS was positively associated with 
the CD8A or CD274 but negatively associated with the 
TIDE (Fig. 11F). These results suggested that the ICDRS 
was able to identify high score patients who may benefit 
from ICB.

LPS as a known stimulator for TLR4 suppressed tumor 
growth in vivo.
In the previous study, 5 of the 34 ICD-related genes 
were considerably linked to the prognosis of LUAD 
patients, including ENTPD1, NLRP3, TLR4, P2RX7 
and IL10, which was shown as Fig. 2. Actually, we have 
investigated published articles on them, but disap-
pointingly, except for TLR4, other four genes are either 
tumor promoters rather than tumor suppressors both 
in  vivo and in  vitro contradicting our present analysis 
results, or exert different functions in different tumor 
types [32–34]. Therefore, it is indicated that single 
gene evaluation on tumor occurrence has limitations 
and incompleteness, necessary to biological validation. 
Because of no clear conclusion confirming the specific 
role in lung adenocarcinoma, TLR4 attracts our atten-
tion, which enables to stimulate NLRP3 inflammas-
omes via enhancing the activation of nuclear factor-κB 
(NF-κB), releasing more pro-inflammatory cytokines 
like IL-1β and IL-18 [35, 36]. Furthermore, TLR4 acti-
vation has been identified to trigger caspase-1/GSDMD 

Fig. 7 Identification of the ICD-related Score (ICDRS) and investigation of its prognostic value in lung adenocarcinoma (LUAD). A, B Kaplan–
Meier curves and time-dependent receiver operating characteristic (ROC) curves of the prognostic ICDRS model in TCGA. The association 
between the ICDRS and the survival of patients was investigated using Cox regression and log-rank methods; (C) ICDRS scores distribution 
and survival status of LUAD patients in high-and low- ICDRS groups; (D) The heat map depicted the expression of DEGs in high and low ICDRS 
groups. Heat map colors indicate relative DEGs expression. Levels; (E) The Sankey diagram showed the distribution of patients with ICD-related 
subtypes, gene clusters and ICDRS; (F) Differences in ICDRS between 2 ICD-related subtypes with the Wilcoxon test; (G) Differences in ICDRS 
between 2 gene clusters with the Wilcoxon test. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001)

(See figure on next page.)



Page 17 of 28Cui et al. BMC Medical Genomics          (2023) 16:184  

Fig. 7 (See legend on previous page.)



Page 18 of 28Cui et al. BMC Medical Genomics          (2023) 16:184 

dependent proptosis in tubular cells [37]. And new evi-
dence suggests that TLR4 can be expressed not only on 
immune cells such as macrophages and dendritic cells, 
but also on cancer cells. Activating TLR4 on the surface 
of tumor cells can promote the proliferation and sur-
vival of cancer cells, while activating it on immune cells 
in the tumor microenvironment plays an opposite role. 
Therefore, in order to verify the function of TLR4, we 
first chose to compare the TLR4 expression in human 
lung adenocarcinoma A549 cells and normal human 
lung fibroblasts HLF cells under in  vitro. It was found 
that the mRNA and protein level of TLR4 in A549 cells 
was significantly lower than that in HLF normal lung 
fibrosis cells, which to some extent mean that TLR4 
could inhibit tumors (Fig. 12A and B).

Next, LPS, a known TLR4 receptor agonist, was 
added to treat A549 cells in vitro. Surprisingly, it was 
found that A549 cells grew faster after LPS treatment, 
as shown in the Fig.  12C, contrary to our analysis. 
Regarding different functions of TLR4 receptors on the 
surface of immune or cancer cells, to further examine 
the effect of TLR4 activation in vivo, we selected LPS, 
a known stimulator for TLR4, to treat mice inoculated 
with LLC cells (Fig. 12D). As shown in Fig. 12E and F, 
there was a significant decrease in the growth rate of 
the flank tumors in mice treated with LPS, especially 
seven, fourteen and twenty-one days later since the 
first treatment. Treated with LPS led to some elonga-
tion of the overall survival with a statistical signifi-
cance (Log-rank test; P = 0.011) (Fig. 12F). In addition, 
HE and IHC analysis of xenograft tumors demon-
strated that LPS treatment made no significant differ-
ence in Ki67 staining (a marker of cell proliferation), 
which might be the reason of that LPS might play two 
opposite roles when expressed on cancer cells versus 
immune cells, eventually representing relative moder-
ate effects in tumor suppression (Fig. 12G and H). The 
mRNA level of TLR4 in tumor tissue treated with LPS 
was significantly improved compared with that treated 
with saline, which could be used as a positive indicate 
of LPS efficiency used for treatment (Fig.  12I). Taken 
together, the activation of TLR4 could suppress lung 
adenocarcinoma in  vivo to some extent, identical to 
our previous analysis.

Discussion
The prognostic evaluation of LUAD has always been a hot 
topic for concerned scholars. Novel and effective strate-
gies to ameliorate the outcome of lung cancers including 
immune checkpoint inhibitors, are extensively applied 
in routine clinical preformation [38]. However, how to 
specify patients with potentially favorable responses to it 
remains a challenge.

The emission and interactions with innate immune 
receptors of active cytokines after inducing ICD exert 
the crucial function in the initiation of anticancer immu-
nity [39]. It is becoming increasingly clear that ICDRGs 
have potential ability to predict the response to ICIs 
treatments in LUAD [40–42]. Therefore, it is deserved to 
identify ICD-related subtypes or signatures to investigate 
the promising role of a combined prognosis and immune 
status classifier for LUAD. Studies have proved the ICD-
based gene signature capable of independently predict-
ing prognostic of HNSCC patients [43]. Similarly, three 
molecular subtypes were identified by the expression of 
ICD-associated damage-associated molecular pattern 
(DAMP) in triple-negative breast cancer (TNBC), sug-
gesting that higher gene expression of ICD-associated 
DAMPs may decide tumor immunogenicity, thereby 
associating with the good prognosis of TNBC patients 
[44], inspiring potential benefits from ICD for patients 
bearing tumor under the interventions of immunother-
apy. However, there is still vacancy in ICD-related signa-
ture suitable for LUAD patients.

In the current study, the expression of 34 ICDRGs 
in LUAD tumor tissues and their associations with OS 
were systematically investigated. Subsequently, two 
ICD subgroups by consensus clustering were identi-
fied based on 34 ICDRGs. After analyzing some related 
characteristics, we identified two ICD-related gene 
clusters based on DEGs between the two ICD-related 
subtypes and showed similar results with the present 
clustering, demonstrating stability and validity. Sub-
sequently, a robust and effective prognostic scoring 
system was constructed and validated to quantify the 
ICD pattern of each LUAD patient and demonstrate its 
predictive ability, defined as ICDRS, which stratified 
the LUAD patients into high- and low-ICDRS groups 
to perform personalized prognostic analysis and proper 

(See figure on next page.)
Fig. 8 Clinical correlation of ICDRS and genomic alteration. A The pie chart showed variations of clinicopathologic characteristics of lung 
adenocarcinoma between the high-and low-ICDRS groups by Fisher’s exact test; (B) A univariate (left part) and multivariate (right part) Cox 
model showed the independent prognostic values of age, gender, pathologic stage, smoking history and the ICDRS shown by a forest plot. The 
length of the horizontal line represents the 95% CI for each group. The vertical dotted line represents HR = 1. HR < 1.0 indicates that an elevated 
ICDRS is a favorable prognostic biomarker; (C) CNV overview in high- and low-ICDRS groups, including the logistic score and mutation frequency 
corresponding to different CNVs; (D) Nomogram for both clinic-pathological factors and ICDRS to predict the 1-, 3- and 5-year RFS of LUAD patients. 
(*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001)
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Fig. 9 The correlation between the ICDRS and Hallmark pathway activity. A The correlation heat map visualized the universal landscape 
of hallmarks related to ICDRS. The correlation coefficient decreased in size from red to blue. (B,C) GO- (B) and KEGG- (C) related GSEA showed 
immune-associated pathways were significantly enriched in the high ICDRS groups. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001)
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Fig. 10 Immunogenic features of different ICDRS groups. A-D Stromal score(A), Immune score (B), ESTIMATE score (C) and Tumor purity (D) in high 
and low ICDRS groups. The line in the box represents the median value, and the black dots represented outliers; (E) Comparisons of the abundances 
of 28 immune cells in two ICDRS groups by GSVA; (F) The heatmap representing the differential distribution of immune checkpoints 
in high- and low-ICDRS groups. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001)
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therapy of LUAD. Moreover, the hybrid nomogram 
incorporating clinicopathological characteristics and 
the novel ICD-related prognostic signature was stable 
and accurate, thus may be applied in clinical manage-
ment of LUAD patients. Taken together, ICDRS is neg-
atively associated with tumor progression, potentially 
serving as a biomarker for prognosis classifications of 
patients with LUAD.

We discovered that the specific features of the TME 
were noticeably different between the two ICD subtypes 
or disparate ICDRS groups. Effector T cells, memory T 
cells and T cell differentiation were previously shown to 
exert crucial effects on immune-originated defense of 
LUAD, especially gamma delta T cells, which effectively 
recognize and attack LUAD cells, ultimately restrain 
tumor progression via multiple mechanisms [45, 46]. 
In line with previous study, ICD-high subtype and high 
ICDRS, both possessed higher infiltration of activated 
memory CD4 + , CD8 + T cells and gamma delta T cells, 
which might result from better clinical outcomes. There 
are several latest researches suggesting B cells-origi-
nated involvement in the immune response and that B 
cell enrichment was considered as the most convinc-
ing prognostic indicator and positively associated with 
the response to PD-1 blockade in soft-tissue sarcomas 
[47–51]. In our study, we observed the sufficiency of 
activated B cell, memory B cell and naive B cells in ICD-
high subtype and high ICDRS group, which assuredly 
had better overall survival, in line with the findings of 
previous studies [50].

Previous studies indicated that patients with higher 
sensitivity to immunotherapy were at a low risk, iden-
tical with what our investigation showed [6]. Through 
GSEA, our data presented that a high ICDRS was sig-
nificantly related to immune-activation signature. Sub-
sequent immune analyses also revealed that patients 
with a higher ICDRS were in concomitant of a rela-
tively high immune status and a higher immune score. 
Further immune analyses indicated that patients with a 
better prognosis were in a relatively high immune status 
 (CD8Ahigh, PD-1high) and possessed a higher immune 
score, ESTIMATE score and ICDRS. Actually, patients 

with high ICDRS in two independent cohorts from 
GEO possessed stronger sensitivity to anti-PD-1 immu-
notherapy. ICDRS could predicted the immunotherapy 
outcome of LUAD patients. Our results may meet the 
need of precision immunotherapy designing for LUAD. 
Besides, TIDE analysis showed that the TIDE score in 
high ICDRS group was lower than that in low ICDRS 
group in TCGA datasets. Moreover, a wide range of 
chemotherapeutic agents were reported to show strik-
ing differences in sensitivity between high and low 
ICDRS groups. Briefly, high ICDRS group were more 
sensitive to these targeted drugs. In conclusion, these 
results indicated that patients in high-ICDRS group 
might be more strongly responsive to immunotherapies 
and targeted therapies, and ICDRS could be served as 
a promising biomarker for predicting the therapeutic 
efficiency in LUAD, which further represented our score 
system’s stability and independence and underlined its 
application for therapeutic prediction of patients with 
LUAD.

Recently, a wide range of studies have reported that 
gene mutations may be responsible for the response 
of immune therapy, particularly TMB, capable of pre-
dicting response to ICI treatment [52, 53]. However, 
it is still uncertain whether TMB could serve as a bio-
marker across all tumors because some studies have 
also concluded opposite results [54, 55]. According to 
McGranahan et al., NSCLC patients with high TMB still 
possessed poor response to immunotherapy, suggesting 
the limitation of TMB-guided immunotherapy [56]. In 
our results, the level of ICDRS was negatively linked to 
the expression of TMB, which also failed to prove the 
efficacy of TMB-guided immunotherapy, remaining to 
be further explored.

TLR4 is the best characterized member of transmem-
brane proteins that play a key role in innate immune 
and inflammatory responses, which recognizes path-
ogen-associated molecular patterns and produces 
various pro-inflammatory cytokines to clear invad-
ing pathogens, attracted our attention [57]. LPS is a 
kind of TLR4 stimulator, which improve the expres-
sion and activation of TLR4 and initiates a cascade of 

Fig. 11 The estimation of two ICDRS groups in immunotherapy and chemotherapy response. A, B Association between the ICDRS and drug 
sensitivity, including chemotherapeutics and small molecular drugs, including three drugs with higher IC50 in high-ICDRS group (A) and the top 30 
of drugs with lower IC50 in high ICDRS (B); (C) Boxplot and Bar graph illustrated the treatment response [complete response (CR)/partial response 
(PR) and stable disease (SD)/progressive disease (PD)] to immunotherapy in high and low ICDRS groups in GSE126044 cohorts; (D) Boxplot and Bar 
graph illustrated the treatment response [durable clinical benefit (DCB) and non-durable benefit (NDB)] to immunotherapy in high and low 
ICDRS groups in GSE136961 cohort; (E) Expression differences in CD8A and PD-1, and TIDE score between two ICDRS groups; (F) Correlation 
between the ICDRS and the corresponding immune checkpoints. The Spearman correlation coefficients (R) and corresponding P values are shown. 
(*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001)

(See figure on next page.)
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downstream events. However, many researches have 
strongly verified that LPS significantly increased tumor 
invasion in  vitro, which seems opposite to our ana-
lyzed resulted. Therefore, in the present study, a murine 
lung tumor model was performed to evaluate the 
effects of TLR4 in  vivo. Our results have clearly sug-
gested that the activation of TLR4 noticeably retained 
mice from aggressive tumor progression and improved 
the survival time of the tumor-bearing mice. Actually, 
despite the specific function of TLR4 in different can-
cers investigated by many studies, there are contradic-
tions existing among those researches [58]. Researches 
were shown that direct injection of LPS into glioblas-
toma and colorectal cancer led to tumor regression and 
knocking down TLR4 increased tumor malignancy in 
a lung metastatic model deprived from breast cancer 
[58–60]. Opposite results were obtained in these stud-
ies that intraperitoneal injection of LPS enhanced the 
proliferation of cancer cells and retarded apoptosis in 
metastatic colonic cells, and LPS-mediated chronic 
inflammation promoted tobacco carcinogen-induced 
lung cancer [61, 62]. We also conducted in vitro experi-
ments to verify the effect of LPS as a TLR4 agonist. We 
found that adding a certain dose of LPS promoted can-
cer cells growth in  vitro, as shown in Fig.  12C. These 
controversies may result, at least partially, from the 
pattern or dosage of LPS administration, but more 
importantly from deficiency in discrimination of TLR4 
expressing on the surface of immune cells or cancer 
cells. There existed an assumption that TLR4 may play 
two entirely antithetical roles when solely expressed 
on cancer cells or immune cells. Given our results, it 
was revealed that even in vivo model, the activation of 
TLR4 played a key role in preventing lung cancer pro-
gression, in consistent with our bioinformation analysis 
deprived from TCGA and GEO profiles.

This study had several limitations, which are as fol-
lows: Firstly, despite additional confirmation of animal 
experiments, all analyses were conducted solely on 
data from public databases, indicating that potential 
selection bias may inescapably influence the results. 
Extensive range of prospective and comprehensive 
experimental studies and clinical trials are needed 
to further identify our results. Furthermore, before 

applying to the immunotherapies, some important 
clinical therapies for patients such as surgery, neoadju-
vant chemotherapy and chemoradiotherapy, may make 
differences in the prognosis of the immune response. 
However, information about these treatment histories 
is usually unknown in most datasets. Therefore, more 
independent and integrated immunotherapy cohorts 
are required to validate the accuracy and rationality of 
the ICDRS.

Taken together, this study provided more evidence that 
ICD exerts noticeable effects in regulating immune infil-
tration status in the tumor microenvironment, clinico-
pathological features, and prognosis in LUAD patients. 
We also established an innovative and clinically applica-
tive ICDRS signature as an independent prognostic fac-
tor of LUAD, which could serve as a promising signature 
for further mechanism research about ICD and a poten-
tial approach for filtering sensitive responders of targeted 
therapy and immunotherapy in the future. These findings 
emphasize the crucial roles of ICD and bring new inspi-
rations of tactical and individualized immunotherapy for 
patients with LUAD.

Nomenclature
LUAD: Lung adenocarcinoma; ICD: Immunogenic Cell 
Death; ICDRS: ICD-related Score; AUC: area under 
the ROC curve; CDF: cumulative distribute ion func-
tion; CM: consensus matrix; CMap: Connectivity 
Map; CNV: copy number variation; DEG: differentially 
expressed gene; ESTIMATE: Estimation of STromal 
and Immune cells in MAlignant Tumor tissues using 
Expression data; FC: fold change; GO: Gene Ontology; 
GSVA: Gene set variation analysis; HCC: hepatocel-
lular carcinoma; ICB: immune-checkpoint blockade; 
ICGC: International Cancer Genome Consortium; 
ICI: immune checkpoint inhibitor; IC50: half-maximal 
inhibitory concentration; KEGG: Kyoto encyclopedia 
of genes and genomes; K-M: Kaplan-Meier; MDSC: 
myeloid-derived suppressor cell; TMB: tumor muta-
tion burden; OS: overall survival; ROC: receiver oper-
ating characteristic; ssGSEA: single sample Gene Set 
Enrichment Analysis; TAM: tumor-associated mac-
rophages; TCGA: The Cancer Genome Atlas; TME: 

(See figure on next page.)
Fig. 12 The expression level of TLR4 in vivo and Intratumorally injected with LPS inhibited tumor growth in mouse xenograft model. A, B The 
mRNA and protein expressional level of TLR4 in HLF and A549 cells were shown. C A549 cells were treated with DMSO (Cnt) or LPS (10 μg/mL) 
for 5 days and subjected to CCK8 assay. All data represent mean ± SD from three independent experiments; P values were calculated in comparison 
with cells treated with DMSO (Control) unless indicated. D The schedule of LPS treated mice with LLC xenograft tumors; (E–H) Effect of LPS 
on tumor volume, survival, HE and Ki67 staining of tumor tissues (Scale bar = 50 µm); (I) RT-PCR of RNA extracted from tumor tissues treated 
with or without LPS was carried out to detect the TLR4 mRNA level. GAPDH was used as the loading control. (*P < 0.05, **P < 0.01, ***P < 0.001)
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