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Abstract 

N7 methylguanosine (m7G) has a crucial role the development of hepatocellular carcinoma (HCC). This study aimed 
to investigate the impact of the m7G methylation core genes (METTL1 and WDR4) and associated RNA risk signa-
tures on HCC. we found m7G methylation core genes (METTL1 and WDR4) were upregulated in four HCC cell lines, 
and downregulation of METTL1 and WDR4 attenuated HCC cell proliferation, migration, and invasion. Moreover, 
METTL1 and WDR4 are upregulated in HCC tissues, and that there is a significant positive correlation between them. 
METTL1 and WDR4 were identified as independent prognostic markers for HCC by employing overall survival (OS), 
disease-specific survival (DSS), Progression Free Interval survival (PFI), and univariate/multivariate Cox analyses. 
We identified 1479 coding RNAs (mRNAs) and 232 long non-coding RNAs (lncRNAs) associated with METTL1 / 
WDR4 by using weighted coexpression network analysis (WGCNA) and co-clustering analysis. The least absolute 
shrinkage and selection operator (lasso) were used to constructing mRNA and lncRNA risk signatures associated 
with the METTL1 / WDR4. These risk were independent poor prognostic factors in HCC. Furthermore, we found 
that METTL1 / WDR4 expression and mRNA / lncRNA risk scores were closely associated with TP53 mutations. Clin-
icopathological features correlation results showed that METTL1 / WDR4 expression and mRNA / lncRNA risk score 
were associated with the stage and invasion depth (T) of HCC. To predict the overall survival of HCC individuals, we 
constructed a nomogram with METTL1/WDR4 expression, mRNA/lncRNA risk score, and clinicopathological features. 
In addition, we combined single-cell sequencing datasets and immune escape-related checkpoints to construct 
an immune escape-related protein–protein interaction(PPI) network. In conclusion, M7G methylated core genes 
(METTL1 and WDR4) and associated RNA risk signatures are associated with prognosis and immune escape in HCC.
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Introduction
Hepatocellular carcinoma(HCC) is a common neoplasm, 
accounting for 80% – 90% of all primary liver cancers [1]. 
HCC has an poor prognosis and ranks second in terms 
of tumor lethality [2]. While significant progress has been 
made in treating HCC, prognostic markers and therapeu-
tic targets for HCC have not improved much in the clinic 
[3]. Although many research reports have explored the 
relationship between abnormal gene expression and the 
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development of HCC, the specific mechanism of hepato-
carcinogenesis remains unclear [2, 4]. Therefore, finding 
and screening therapeutic targets and prognostic mark-
ers for HCC is crucial.

RNA modifications can affect all RNAs’ localization, 
splicing, and stability [5]. N7 methylguanosine (m7G) 
is one of the prevalent post-transcriptional modifica-
tions of RNA, which is present in various species [6]. 
M7G methylation is dominated by one modification 
of the methyl group added to the seventh N position of 
messenger RNA guanine (G) by the action of methyl-
transferases. The m7G methylation is widely distributed 
in tRNAs, rRNAs, and the 5 ’cap region of eukaryotic 
mRNAs and is vital for maintaining RNA processing 
metabolism, stability, export, and protein translation 
[7]. The methyltransferase-like 1 (METTL1) and WD 
repeat domain 4 (WDR4) complexes are m7G methyla-
tion coregulators [8]. Recent studies have shown that the 
METTL1 / WDR4 complex can promote tumor progres-
sion. Jie Chen et al. showed that tRNA m7G methylation 
modification mediated by METTL1 / WDR4 resulted in 
abnormal associated protein translation, which promoted 
head and neck squamous cell carcinoma progression [9]. 
In two other studies, the METTL1 / WDR4 mediated 
modification of tRNA m7G methylation promotes lung 
and liver cancer progression [10, 11]. However, METTL1 
or WDR4 interacting mRNAs and lncRNAs have rarely 
been studied in liver cancer. Therefore, insight into how 
the METTL1 / WDR4 mediated m7G methylation modi-
fication interacts with lncRNAs and mRNAs in HCC 
progression could help identify practical markers and 
therapeutic targets.

In this study, we demonstrated through in vitro experi-
ments that METTL1 and WDR4 can promote HCC pro-
gression as oncogenes. We then identified METTL1/
WDR4-associated RNAs (mRNAs and lncRNAs) using 
multiple algorithms and constructed an optimized 
mRNA/lncRNA risk signature. The prognostic and clini-
cal significance of the METTL1 / WDR4 and mRNA / 
lncRNA risk signatures in HCC were comprehensively 
evaluated, and a Nomogram prediction model was con-
structed to predict overall survival in HCC patients. In 
addition, We constructed a METTL1 / WDR4 immune 
escape-associated protein interaction network (PPI) 
based on single-cell sequencing data and immune escape 
checkpoints. This study provides a theoretical basis for 
prognostic and therapeutic targets for patients with 
HCC.

Materials and methods
Cell culture and cell transient transfection
A total of five cell lines were employed in this study, 
including one normal liver cell line (WRL68) and four 

liver cancer cell lines (Huh-7, MHCC97-H, SMMC-7721, 
and SNU449). The cells were cultured in DMEM com-
plete medium (PONOSAY, China) at 37 °C and 5.0% CO2 
incubator environment. The transfection reagent used 
in this study was EndoFectinTM-MAX (GeneCoeiaTM, 
China). When the density of hepatoma cells (SNU449) 
reached about 70% during cell transfection, transfection 
experiments were performed according to the reagent 
manufacturer’s instructions. Si-METTL1 and si-WDR4 
were constructed by china GeneCoeiaTM. Si-METTL1: 
GAT​GAC​CCA​AAG​GAT​AAG​AAA. Si-WDR4:CAG​AAA​
AGA​AGT​CAC​AAG​AAAAT.

Total RNA extraction and quantitative real‑time 
polymerase chain reaction (qRT‑PCR)
Total RNA was extracted in this study using the Trizol Kit 
(Thermo Fisher, China). Reverse transcription and quan-
titative fluorescent PCR were performed using HiScript 
III RT SuperMix for qPCR and SYBR Green PCR Mas-
ter Mix Kit (Vazyme, China). The reagent manufacturer’s 
instructions performed the operation process. GAPDH 
served as the internal reference gene for this experiment. 
The relative expression of genes was calculated using a 
2- ΔΔ Cq method.Human METTL1 forward primer: 5’- 
GGC​AAC​GTG​CTC​ACT​CCA​A-3’. Human METTL1 
reverse primer:5’-CAC​AGC​CTA​TGT​CTG​CAA​ACT-3’. 
Human WDR4 forward primer:5’- ACA​GCC​CTG​ACT​
TTC​ATA​GCC -3’. Human WDR4 reverse primer:5’- TCA​
CAG​CCA​CAT​CTA​ACA​GCATA -3’.Human GAPDH 
forward primer: 5’-ATT​GAA​AAT​TCA​GGA​TGG​GCT​
TTT​-3’. Human GAPDH reverse primer:5’- GTT​TCT​
GGG​CTT​CTC​TTT​GGA​CTC​-3’.

CCK8
In this experiment, four 96 well plates were prepared and 
examined at 24 h, 48 h, 72 h, and 96 h. 200 UL per well of 
experimental wells containing 1 × 103 cells and cell via-
bility was assessed using the CCK8 kit. Absorbance was 
measured using a microplate reader with 450 nm wave-
length. CCK8 kit was purchased from Beyotime.

Transwell assay
This study used Transwell chambers to evaluate liver 
cancer cells’ (SUN449) migration and invasion abilities. 
First, cells were treated by starvation using an incomplete 
medium (without serum) the night before. Then 100 UL 
containing 2 × 104 cells were seeded in the upper Tran-
swell chamber, 550 UL of medium containing 10% serum 
was added in the lower chamber, and finally incubated in 
an incubator containing 5% CO2 at 37°C for 24 h. At the 
end of the culture, fixed staining was performed, and six 
randomly selected fields were counted for the number of 
cells that migrated out or invaded. Invasion experiments 
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were performed in the presence of Matrigel (BD Bio-
sciences). The Transwell chamber model used for this 
experiment was 3422 and was purchased from Costar, 
USA.

The University of ALabama at Birmingham CANcer 
data analysis Portal (UALCAN).

UALCAN (https://​ualcan.​path.​uab.​edu/​index.​html) 
was used to evaluate the expression of METTL1 and 
WDR4 in protein levels, respectively.

Expression data acquisition and analysis of HCC 
and normal liver samples
HCC expression data were obtained from The Cancer 
Genome Atlas (TCGA) database (http://​tcga.​xenah​ubs.​
net) (tumor:n = 374, normal:n = 50), Genotype Tissue 
Expression (GTEx) (https://​www.​gtexp​ortal.​org/​home/​
index.​html) (normal:n = 110) and International Can-
cer Genome Consortium (ICGC) (https://​dcc.​icgc.​org/) 
database (tumor:n = 240, normal:n = 441). This study 
combined TCGA and GTEx data into a new TCGA_
GTEX dataset (tumor:n = 374, normal:n = 160). Data-
sets containing HCC samples were obtained in the Gene 
Expression Omnibus (GEO) (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/) database using the following search terms: 
HCC or hepatocellular carcinoma, using (Entry type) 
and Homo sapiens (Organism) filters to specify search 
results. The required datasets were included according 
to the following exclusion criteria: (1) datasets contain-
ing only cell line samples; (2) less than 10 cases each in 
the normal and tumor groups; (3) datasets contain-
ing only HCC tissue and not normal tissue; (4) datasets 
without METTL1 or WDR4 expression. The expression 
levels of the continuous variables METTL1 and WDR4 
in HCC were assessed using standardized mean differ-
ence (SMD). SMD < 0.2, mildly expressed; SMD between 
0.2 and 0.8, moderately expressed; and SMD > 0.8, highly 
expressed [12]. METTL1 or WDR4 expression data from 
GEO, ICGC, and TCGA_GTEx were merged using a 
random effects model (P ≤ 0.1 and I2 > 50%). The com-
bined results were presented as forest plots, and Begg’s 
test was used to assess publication bias. Stata 14 software 
was used for the above analysis. In addition, differences 
between the two groups were analyzed and visualized 
using the R software "limma" and "ggplot2" packages. 
Characteristic Curve (ROC) curves of ICGC and TCGA_
GTEx were analyzed and visualized using the R software 
"pROC" and "ggplot2" packages. In addition, the larger 
the Area Under the Curve (AUC), the better the ability to 
distinguish tumor from non-tumor.

Clinical data acquisition and prognostic analysis
In the TCGA-HCC cohort, retention of HCC sam-
ples containing survival time (n = 370), survival status 

(n = 370), age (n = 370), sex (n = 370), Grade (n = 365), 
tumor stage (n = 346), Invasion depth (T) (n = 367), 
Lymph node metastasis (N) (n = 256), and Distant 
metastasis (M) (n = 270) of HCC samples. Prognostic 
analysis of METTL1/WDR4 in HCC patients included 
Overall Survival (OS), Disease-Specific Survival (DSS), 
Progress Free Interval (PFI), and univariate/multifacto-
rial Cox regression analysis.In the ICGC cohort, HCC 
samples containing survival time (n = 231), survival sta-
tus (n = 231), age (n = 261), gender (n = 261), and tumor 
stage (n = 261) were retained. Prognostic analysis of HCC 
patients included OS and univariate/multivariate Cox 
regression analysis. The R software "survival, "survminer, 
"regplot, "RMS "packages were used for differential analy-
sis and visualization.

Weighted gene co‑expression network analysis (WGCNA) 
to obtain mRNA and lnRNA associated with METTL1/WDR4
WGCNA [13] was used to obtain METTL1 / WDR4-
related mRNAs / lncRNAs. In this study, a co-expression 
network of METTL1 / WDR4 was constructed by Pear-
son correlation coefficient based on TCGA-HCC cohort 
(tumor: n = 370) using R software "WGCNA "package. 
Finally, the genes with significant modules were selected 
as METTL1 / WDR4 associated mRNA / lncRNA(R > 0.4, 
P < 0.05).

Acquisition of differential mRNA/lnRNA based on METTL1/
WDR4 subpopulation
Unsupervised consensus clustering is a k-means machine 
learning algorithm [14]. In this study, Unsupervised con-
sensus clustering was used to analyze the TCGA cohort 
based on METTL1 and WDR4 expression. The R soft-
ware package "pConsensusClusterPlus" was used for 
clustering. Overall survival curves were used to assess 
the prognosis of HCC patients in different clusters. The 
R software "limma," "ggpubr," and "ComplexHeatmap" 
packages were used to analyze the correlation of differ-
ent clusters with clinicopathological characteristics. The 
R software "limma" and "ggplot2" packages were used to 
screen the differential mRNA and lncRNA between dif-
ferent clusters. visualization was done by volcano plot, 
and the screening conditions were set: |logFC|> 0.585, 
P < 0.05.

Acquisition of mRNA and lnRNA closely related to HCC
In this study, the mRNA/lncRNA of the WGCNA results 
(significantly different modules) intersected with the 
upregulated genes (mRNA and lncRNA) in the METTL1/
WDR4 subgroup. The common mRNA/lncRNA was then 
screened by univariate COX regression analysis. In this 
study, mRNAs/lncRNA related to HCC prognosis were 
selected and defined as mRNAs/lncRNA closely related 
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to HCC progression. Finally, the "clusterProfiler" and 
"org.Hs.eg.db" packages were used for KEGG and GO 
enrichment analysis of mRNAs closely related to HCC 
progression.

Construction of METTL1/WDR4‑associated mRNA/lncRNA 
risk signature
Based on the mRNA/lncRNA closely related to HCC, this 
study constructed METTL1/WDR4-related mRNA and 
lncRNA risk signature. LASSO Cox regression analysis 
was performed using the R software packages "glmnet" 
and "survival" to construct the risk signature. The nor-
malized expression levels of each gene and the corre-
sponding regression coefficients were used to calculate 
patients’ risk scores as follows: = ∑Coefi * Express. The R 
software "survival," "survminer," and "survminer" pack-
ages were used to plot the overall survival curves and 
time-dependent ROC curves for mRNA and lncRNA 
risk signatures. Principal Component Analysis (PCA) 
scatter plots were plotted using the R software packages 
"Rtsne" and "ggplot2" to distinguish between patients at 
risk for the risk profile. Multi-factor cox regression analy-
sis was used to assess the prognostic value of mRNA and 
lncRNA risk scores for HCC patients. The above data 
were obtained from the TCGA cohort (tumor: n = 370). 
In addition, the TCGA_GTEX dataset was used to ana-
lyze the differential expression of mRNA and lncRNA in 
the risk signature.

Comprehensive analysis of METTL1/WDR4 and mRNA/
lnRNA risk signature
A predictive Nomogram was constructed and vali-
dated in this study. Nomogram was based on multi-
variate Cox regression analysis and was used to predict 
the overall survival of HCC patients at 1, 2, and 3 
years. The calibration curve was used to predict the 
overall survival of HCC patients. TCGA HCC sam-
ples (n = 343) containing both ages, gender, grade, and 
stage were used for the above data. Subsequently, this 
study divided the median values of METTL1 / WDR4 
expression and mRNA / lncRNA risk scores into high 
and low two groups. The Sangerbox  3.0 tool was used 
(https://​doi.​org/​10.​1002/​imt2.​36). Mutations in sig-
nificant HCC genes (TP53、CTNNB1、ALB、AXIN2
、 K E A P 1、 B A P 1、 N F E 2 L 2、 L Z T R 1、 R B 1
、PIK3C A、KR AS、 IL6ST、CDKN2A、ARID2
、ARID1A、ACVR2A、NRAS、HISR1H1C、PTE
N、ERRFI1) were compared between high and low 
METTL1 / WDR4 expression groups and high and low 
mRNA / lncRNA risk groups [15], and waterfall plots 
present the results. Data for the Sangerbox  3.0 tool 
were obtained from the TCGA database. Differential 
analysis and visualization of the associations between 

METTL1 / WDR4 expression and mRNA / lncRNA risk 
scores and clinicopathological features were performed 
using the R software ’limma’ and ’pheatmap’ packages. 
In addition, the associations of METTL1 / WDR4 and 
mRNA / lncRNA risk signature with core genes of epi-
thelial-mesenchymal transition (EMT) (CDH1, CDH2, 
VIM, SNAI1, SNAI2, TWIST1, MMP2, MMP3, MMP9, 
ZEB1) were assessed using R software "reshape2 "and 
"RColorBrewer "packages.

Single cell sequencing data acquisition and analysis
The single-cell sequencing dataset GSE146115 [16] was 
obtained from the GEO database (HCC: n = 4). In this 
study, the R software "Seurat, "singler, "celldex, "and 
"monocle "packages were used to process the single-cell 
sequencing data. Principal component analysis (PCA) 
and t-SNE were employed for dimensionality reduc-
tion and clustering subgrouping. Annotation was per-
formed according to the signature genes of each cell 
cluster. Regarding cell communication, the R software 
"sqjin / cellchat "package was used to analyze the cross-
talk links among liver parenchymal cells, T cells, NK 
cells, and macrophages and to predict the receptors and 
ligands between them. This study further employed R 
software "reshape2 "and "rcolorbrewer "package to ana-
lyze the correlation of METTL1 / WDR4 and mRNA 
risk signature with the immune escape-related check-
point. Subsequently, this study was based on GeneMA-
NIA database construction (http://​genem​ania.​org/) to 
construct immune escape-associated protein–protein 
interaction(PPI) network. Nodes of this PPI include 
METTL1 / WDR4, mRNA risk signature genes, four 
cellular receptors and ligands (liver parenchymal cells, 
T cells, NK cells, and macrophages), immune escape-
related proteins, and potential proteins with interactions 
with them.

Statistical analysis
Graphpad 6.02, Stata 12.0 software, and R version 4.2.0 
software were used for statistical analysis. In vitro experi-
ments were all performed in triplicate, and statistical 
analysis was performed using an independent samples 
t-test. In other analyses, differences between the two 
groups were analyzed using the Wilcoxon rank sum test 
or paired t-test. Correlation analysis was based on the 
Pearson correlation test. The chi-square and Kruskal tests 
assessed associations between METTL1 / WDR4 expres-
sion or risk score and clinicopathological characteris-
tics. In vitro experiments for this study were performed 
in three independent replicates. P < 0.05 was considered 
statistically significant. (*P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001).

https://doi.org/10.1002/imt2.36
http://genemania.org/
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Results
Downregulation of METTL1 and WDR4 could inhibit 
hepatocyte proliferation, migration and invasion
In order to evaluate the effects of METTL1 /WDR4 on 
HCC cells, the present study was evaluated by in  vitro 
experiments. We first employed the UALCAN database 
to evaluate the expression of METTL1 and WDR4 in 
protein levels, respectively. We found that the expres-
sion of METTL1 and WDR4 protein levels were signifi-
cantly elevated in HCC samples relative to normal liver 
tissue samples (Additional file  1: Figure S1). The qRT-
PCR results showed that METTL1 and WDR4 were sig-
nificantly upregulated in HCC cells (Fig.  1a), with the 
most significant upregulation in SNU449. Therefore, the 
present study transfected siRNAs (si-METTL1 and si-
WDR4) into the snu449 cell line. Transfection efficiency 
was shown in Fig. 1b. CCK8 and Transwell experiments 
were subsequently performed. CCK8 results indicated 
that the downregulation of METTL1 and WDR4 sup-
presses snu449 cell proliferation (Fig. 1c). Transwell assay 
results indicated that downregulation of METTL1 and 
WDR4 also decreased SNU449 cell migration and inva-
sion (Fig. 1d). Thus, METTL1 and WDR4 are able to pro-
mote HCC progression as oncogenes.

METTL1 and WDR4 expression are upregulated in HCC 
tissues and positively correlated
Based on the exclusion criteria, 21 datasets were included 
in this study from the GEO database (GSE112790, 
GSE121248, GSE14520, GSE25097, GSE29721, 
GSE41804, GSE45436, GSE54236, GSE57957, GSE60502, 
GSE62232 GSE64041, GSE76427, GSE84402, GSE115018 
GSE12941, GSE136247, GSE65484, GSE77314, 
GSE45114, GSE17856). Detailed information was shown 
in table S1 (Additional file 2). In this study, using a ran-
dom effects model to combine SMD. We found that 
METTL1 and WDR4 were highly upregulated in HCC 
tissues (METTL1:SMD = 0.92, WDR4:SMD = 1.11) 
(Fig. 2a). In addition, Begg’s test indicated no publication 
bias in SMD analysis (P > 0.05). Subsequently, differential 
analysis of TCGA_GTEx and ICGC cohorts in this study 
showed that METTL1 and WDR4 were significantly 
upregulated in HCC tissues (Fig. 2b). With TCGA_GTEx, 
ICGC, and 21 GEO datasets, we found that METTL1 sig-
nificantly correlated with WDR4 in each dataset (Fig. 2c). 
In addition, METTL1/WDR4 had a better ability to dis-
tinguish tumor from non-tumor (AUC > 0.6) based on 
ROC curves (Fig. 2d).

Prognostic value of METTL1/WDR4 for HCC
This study evaluates the prognostic value of METTL1 
and WDR4 for HCC based on TCGA and ICGC sur-
vival data. The survival results indicated that the 

survival of patients with high METTL1/WDR4 
expression in the Overall Survival(OS), Disease Spe-
cific Survival(DSS), Progression Free Interval(PFI) 
curves was significantly shorter than those with low 
METTL1/WDR4 expression (P < 0.05) (Fig.  3a). In 
this study, METTL1 and WDR4 were combined to 
evaluate the prognostic effect on HCC, and we found 
that the high expression group of both METTL1 and 
WDR4 remained poor prognostic factors for HCC 
(Additional file 1: Figure S2). METTL1 or WDR4, age, 
gender, grade, and stage were included in the multi-
variate regression analysis in this study. Multivariate 
regression analysis results indicated that METTL1, 
WDR4, and stage were independent prognostic fac-
tors for HCC patients (Fig.  3b).The same was true 
for the outcome in the ICGC cohort (Fig.  3c). Since 
METTL1 expression, WDR4 expression, and stage are 
all independent prognostic factors for HCC patients. 
Subsequently, this study compared the expression of 
METTL1 or WDR4 in stages I-II, stage II-III, and stage 
III-IV to their effects on the survival status of HCC 
patients. The METTL1 survival results showed that 
except for the DSS survival curve in stage I—II and 
the PFI survival curve in stage II—III, the rest of the 
results showed that the survival of the METTL1 high 
expression group was significantly shorter than that of 
the METTL1 low expression group (Additional file  1: 
Figure S3a). The WDR4 survival results showed that, 
except for the DSS and PFI survival curves in stage III-
IV, the rest of the results showed that the WDR4 high 
expression group had a significantly worse survival 
than the WDR4 low expression group did (Additional 
file 1: Figure S3b).

Acquisition of mRNAs and lncRNA closely related to HCC
In this study, WGCNA was employed to construct a 
co-expression network of mRNA / lncRNA related 
to METTL1 / WDR4. The optimal soft thresholds for 
generating the co-expression networks of METTL1 / 
WDR4 associated mRNA / lncRNA were all 12 (Fig. 4a). 
Weighted cluster analysis was performed according to 
the optimal soft threshold. Finally, WGCNA of mRNA 
and lncRNA each generated five modules with significant 
positive correlations with METTL1 / WDR4 (P < 0.05) 
(Fig. 4b-c). Through the inclusion criteria (r > 0.4), RNAs 
in 2 MRAN modules (blue and yellow) and two lncRNA 
modules (brown and Turquoise) were selected for sub-
sequent research in this study.This study constructed an 
unsupervised consensus clustering of TCGA HCC sam-
ples based on the METTL1 / WDR4 expression pattern 
for HCC classification. Based on CDF (Fig. 5a) and delta 
area (Fig.  5b), it could be well classified into two clus-
ters (C1 and C2) when k = 2 (Fig.  5c). Overall survival 
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Fig. 1  Downregulation of METTL1 and WDR4 can inhibit hepatocyte proliferation, migration and invasion. a The relative expression levels 
of METTL1 / WDR4 in a normal cell line (WRL68) and four hepatoma cell lines (Huh-7, MHCC97-H, SMMC-7721, and SNU449) were determined by RT 
-qPCR. b Transfection efficiency was determined by fluorescent quantitative PCR. c CCK8 experiments. d Transwell experiments
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curve results indicated that the overall survival time of 
C2 was significantly lower than that of C1 (P < 0.001) 
(Fig.  5d). Based on C1 and C2 subclusters, differen-
tial genes between C1 and C2 (|logfc|> 0.585, P < 0.05) 
were screened in this study. A total of 2043 upregulated 
mRNAs (Fig. 5e) and 300 lncRNA (Fig. 5f ) were identi-
fied in this study. In addition, the mRNAs / lncRNAs 

with differences were significantly different from clinico-
pathological features (T, grade, and stage) between C1 
and C2 (Additional file  1: Figure S4a-b). Subsequently, 
the present study intersected the above WGCNA results 
with the upregulated RNAs of the METTL1 / WDR4 
subpopulation, and 1479 mRNAs (Fig. 5g) and 232 lncR-
NAs (Fig.  5h) were obtained. Based on the univariate 

Fig. 2  METTL1 and WDR4 expression are upregulated in HCC tissues and positively correlated. a Forest plot of combined SMD using random 
effects model. b Differential expression of METTL1 and WDR4. c Correlation analysis between METTL1 and WDR4. d ROC curve
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Fig. 3  Prognostic value of METTL1/WDR4 for HCC. a Overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) curves 
for METTL1 and WDR4. b Multifactorial regression analysis. c OS curves and multivariate regression analysis
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Cox regression analysis, 701 mRNAs out of 1479 mRNAs 
showed poor prognosis for HCC patients (Additional 
file 3). While 54 lncRNAs out of 232 lncRNAs exhibited 
poor prognosis for HCC patients (Fig.  5i). This study 

identified 701 mRNAs and 54 lncRNAs as closely related 
mRNAs and lncRNA in HCC. Furthermore, these RNAs’ 
GO and KEGG results correlated with tumors’ develop-
ment (Additional file 1: Figure S4c).

Fig. 4  Acquisition of mRNAs / lnrnas positively correlated with METTL1 / WDR4. a Soft thresholding in WGCNA. b-c WGCNA identifies modules 
significantly associated with METTL1 / WDR4
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Construction of a METTL1 / WDR4 associated mRNA 
and lncRNA risk signature
This study employed lasso regression analysis to iden-
tify the most suitable prognostic mRNAs/ lncRNA 
for HCC patients based on HCC closely related 

mRNAs/ lncRNA (Additional file  1: Figure S5 a-b). 
A total of 19 mRNAs and 10 lncRNAs were deter-
mined in this study for constructing the optimal risk 
signature. In addition, these 19 mRNAs and 10 lncR-
NAs were upregulated and significantly positively 

Fig. 5  Acquisition of mRNAs and lncRNA closely related to HCC. a Cumulative distribution map of clustering consistency. b Clustering Delta 
Area map. C Clustering results of METTL1 / WDR4 on TCGA HCC samples. ( Overall survival curves showing differences in overall survival for C1 
versus C2. e–f Volcano plots showing the differential mRNAs and lncRNAs between C1 and C2. g-h vnn plots of genes showing group differences 
co-intersection with genes in the WGCNA results. i Forest plot showing lncRNAs with poor prognosis for HCC patients
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correlated with METTL1 / WDR4 in HCC (Addi-
tional file  1: Figure S6a-b). The risk score was calcu-
lated as follows: Risk score(mRNA) = (0.00006* SMOX 
exp.) + (0.00218* ANXA2 exp.) + (0.00814 * FAM217B 
exp.) + (0.02334 * YARS exp.) + (0.05994 * TRNP1 
exp.) + (0.00003 * GNAZ exp.) + (0.02987* EFNA4 
exp.) + (0.00061 * NDRG1 exp.) + (0.12008 * KIAA1841 
exp.) + (0.0299 * UCK2 exp.) + (0.00011 * KPNA2 
exp.) + (0.00153* CAD exp.) + (0.009 * CDCA8 
exp.) + (0.0026 * G6PD exp.) + (0.00716 * KIF20A 
exp.) + (0.00392 * PSRC1 exp.) + (0.02786 * MEX3A 
exp.) + (0.00548 * BCORL1 exp.) + (0.00107 * YBX1 
exp.); Risk score(lncRNA) = (0.00897* ZNF529-
AS1 exp.) + (0.02945* PRRT3-AS1 exp.) + (0.02796 
* AL031985.3 exp.) + (0.01593 * MYLK-AS1 
exp.) + (0.010709 * DANCR exp.) + (0.00608 * MIR210HG 
exp.) + (0.06631 * LINC01138 exp.) + (0.14516 
* AC131009.1 exp.) + (0.05086 * AC099850.3 
exp.) + (0.10909 * ZBTB11-AS1 exp). The HCC samples 
were divided into high-risk and low-risk groups accord-
ing to the median value of the risk score. Based on the 
mRNA and lncRNA risk signature, the high-risk group 
had a significantly worse overall survival than the low-
risk group (P < 0.05) (Fig.  6A), and there were more 
deaths in the high-risk group (Fig. 6b). The area under the 
curve (AUC) at 1, 3, and 5 years in the time-dependent 
ROC curve for the mRNA risk signature was 0.77, 0.718, 
and 0.702, respectively (Fig. 6c). The AUCs at 1, 3, and 5 
years in the time-dependent ROC curves of the lncRNA 
risk signature were 0.778, 0.714, and 0.682, respectively 
(Fig. 6c). Principal component analysis (PCA) and t-SNE 
results indicated that HCC patients with different risks 
were able to be well classified into two clusters (Addi-
tional file  1: Figure S7). Moreover, multivariate Cox 
analysis indicated that the mRNA and lncRNA risk signa-
tures were independent poor prognostic factors for HCC 
(Fig. 6d).

Construction of a Nomogram prediction model
We first constructed a risk network diagram of METTL1 
/ WDR4 with mRNA / lncRNA risk signature genes in 
this study. In this study, we found that METTL1 / WDR4 
were significantly positively correlated with mRNA / 
lncRNA risk signature genes, and all of them were poor 
prognostic factors for HCC (Fig.  7a). Subsequently, in 
this study, the mRNA / lncRNA risk signature, METTL1 
/ WDR4 expression, age, gender, grade, and stage were 
included in the multivariate regression analysis. A Nom-
ogram prediction model was constructed to further 
evaluate the OS prediction of HCC patients (Fig.  7b). 
The calibration curves indicated that the Nomogram 
prediction model was able to predict the 1, 3, and 5-year 
OS of HCC patients with better accuracy (Fig.  7c). The 

ROC results indicated that the mRNA risk signature 
(1-year AUC = 0.796) was optimal in predicting 1-year 
OS; However, the nomogram prediction model (3-year 
AUC = 0.757 and 5-year AUC = 0.761) was optimal in 
predicting OS at 3 and 5 years (Fig. 7d).

Differences between METTL1 / WDR4 and mRNA / lncRNA 
risk signatures and clinicopathological features
This study revealed the differences between the METTL1 
/ WDR4 and mRNA / lncRNA risk signatures and clin-
icopathological features. Grade, stage, and invasion 
depth (T) were significantly different between high and 
low METTL1 / WDR4 expression groups and high and 
low mRNA / lncRNA risk groups (P < 0.05) (Fig.  8a-b). 
In addition, the changes in METTL1 / WDR4 expression 
and mRNA / lncRNA risk scores were significantly differ-
ent at different stages and invasion depth (T) (P < 0.05). 
(Fig.  8c). Since the progression of the HCC stage and 
invasion depth (T) has a close relationship with epithe-
lial-mesenchymal transition (EMT). In this study, we 
found that the METTL1 / WDR4 and mRNA / lncRNA 
risk signatures were significantly associated with multiple 
EMT core genes, including EMT Suppressors (CDH1) 
and EMT promoters (MMP9, MMP3, and TWIST1) 
(Fig. 8d) (P < 0.05).

Differences of HCC major gene mutations between high 
and low METTL1 / WDR4 expression groups and high 
and low mRNA / lncRNA risk groups
This study compares the mutational differences between 
high and low in 20 genes with significant mutations in 
HCC. Among the METTL1/WDR4 high and low expres-
sion groups, TP53 was significantly (P < 0.05) mutated in 
the METTL1/WDR4 high expression group, and RB1 was 
significantly (P < 0.05) mutated in the WDR4 high expres-
sion group (Fig.  9a). In the mRNA/lncRNA risk signa-
ture, TP53 and RB1 were significantly more mutated in 
the high-risk group, while PIK3CA was significantly less 
mutated in the high-risk group (P < 0.05) (Fig. 9b).

METTL1/WDR4 and mRNA risk signature genes were 
expressed to varying degrees in various cells
In this study, after quality control and data filtering on 
the HCC single-cell sequencing dataset GSE146115 
(n = 4), we obtained gene expression profiles for 3199 
high-quality cells (Additional file  1: Figure S8a). In 
this study, the detection depth was not correlated 
with mitochondrial genes but was proportional to the 
number of qualifying genes tested (r = 0.8) (Additional 
file  1: Figure S8b). In addition, 1500 variable genes 
were used for subsequent cell fractionation and cell 
annotation (Additional file  1: Figure S8c). After PCA 
dimensionality reduction (Additional file 1: Figure S8d) 
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Fig. 6  Construction of a METTL1 / WDR4 associated mRNA and lncRNA risk signature. a Overall survival curves showing survival differences 
between high and low risk groups of the training set. b High and low risk score median values and survival status distribution. c Time-dependent 
ROC curve. d Multivariate Cox analysis
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Fig. 7  Construction of a Nomogram prediction model. a Risk network plot of METTL1 / WDR4 with mRNA / lncRNA risk signature. b Nomogram 
prediction model. c Calibration curve. (d) ROC curves show AUC values for individual parameters
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Fig. 8  Differences between METTL1 / WDR4 and mRNA / lncRNA risk signatures and clinicopathological features. a-b Associations between high 
and low METTL1 / WDR4 and mRNA / lncRNA risk signatures and multiple clinicopathological features. c The expression of METTL1 / WDR4 
and the mRNA / lncRNA risk scores varied among stages and invasion depth (T). d Correlation of METTL1 / WDR4 and mRNA / lncRNA risk 
signatures with EMT core genes
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Fig. 9  Differences of HCC major gene mutations between high and low METTL1 / WDR4 expression groups and high and low mRNA / lncRNA 
risk groups. a-b Waterfall plots showed the mutation differences of the major mutated genes in 20 HCCs between high and low METTL1 / WDR4 
expression groups and high and low mRNA / lncRNA risk groups
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and t-SNE treatment, 12 cell populations were identi-
fied in this study (Additional file 1: Figure S8e). Subse-
quently, this study annotated the cell populations. We 

obtained four cell populations (liver parenchymal cells, 
macrophages, NK cells, and T cells) (Fig. 10a). In this 
study, we found that METTL1 / WDR4 and 19 mRNA 

Fig. 10  METTL1/WDR4 and mRNA risk signature genes were expressed to varying degrees in various cells. a T-SNE plot of 3199 cell subpopulations 
from 4 HCC samples. b Distribution of METTL1 / WDR4 and 19 mRNA risk signature genes in four cell types (liver parenchymal cells, macrophages, 
NK cells, and T cells)
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risk signature genes were expressed in these four types 
of cells to different degrees (Fig. 10b).

Construction of an immune escape‑associated PPI network 
composed of METTL1 / WDR4 and mRNA risk signature 
genes
The present study found crosstalk among liver paren-
chymal cells, macrophages, NK cells, and T cells through 
communication between cells (Fig.  11a). Subsequently, 
we predicted the receptors and ligands between the four 
types of cells (Fig.  11b). Since liver parenchymal cells, 
macrophages, NK cells, and T cells are closely related to 
immune escape. In addition, we found a significant posi-
tive correlation between the METTL1 / WDR4 / mRNA 
risk signature and 26 immune escape-related check-
points, including the classical immune escape check-
points PDCD1 and CTLA4 (Fig. 11c). Therefore, in this 
study, an immune escape-related PPI network was con-
structed, including METTL1 / WDR4 (Circle), 19 mRNA 
risk signature proteins (Circle), four cellulars (liver paren-
chymal cells, T cells, NK cells, and macrophages) ligands 
(rectangle) and receptors (Hexagon), 26 immune escape 
related proteins (Diamond) and potential proteins with 
interactions with them (Triangle) (Fig. 11d).

Discussion
HCC accounts for 80% – 90% of all liver cancers [1]. 
Many factors cause HCC, including genetics, HBV / 
HCV, alcohol consumption, radiation [17]. Unfortunately, 
HCC patients have low cure rates and high mortality 
rates, highlighting the urgent need for practical prognos-
tic markers and therapeutic targets for this disease.

Aberrant expression of m7G methylation regulators 
has been linked to tumor progression. One of the best-
characterized regulators of m7G methylation is METTL1 
and WDR4, which can form a METTL1 / WDR4 com-
plex to regulate the m7G methylation modification of 
multiple RNAs [18]. The METTL1 / WDR4 complex cur-
rently promotes tumor development by mediating tRNA 
m7G methylation modification. For example, Hui Han 
et  al. showed that the METTL1 / WDR4 complex pro-
motes esophageal squamous cell carcinoma by activat-
ing the RPTOR/ULK1 autophagy pathway through tRNA 
m7G methylation modification [19]. Similarly, Xiaoling 
Ying et al. showed that the METTL1 / WDR4 complex is 
required for bladder cancer progression by regulating the 

EGFR/EFEMP1 axis via tRNA m7G methylation modi-
fication [20]. Jieyi Ma et  al. also found that METTL1 / 
WDR4 plays a role in promoting lung cancer progression 
through tRNA m7G methylation modification [10]. Addi-
tionally, the METTL1/WDR4 complex is involved in the 
m7G methylation modification of miRNAs, promoting 
their production [21]. In a study by Luca Pandolfini et al., 
downregulation of METTL1 expression in lung cancer 
cells resulted in reduced let-7 miRNA expression and 
decreased cell migration [21].

In this study, we investigated the role of METTL1 and 
WDR4 in HCC and explored the effects of METTL1 
/ WDR4 and related RNAs (mRNA and lncRNA) on 
the prognosis and immune escape of HCC patients. In 
this study, we demonstrated that down-regulation of 
METTL1 / WDR4 reduced the proliferation, migra-
tion, and invasion of HCC cells in  vitro. Furthermore, 
we observed that METTL1 and WDR4 expression were 
upregulated in HCC tissues, and their expression was 
positively correlated. High expression of METTL1 and 
WDR4 was associated with decreased survival time in 
OS, DSS, and PFI survival curves, and METTL1/WDR4 
were identified as independent poor prognostic factors 
in HCC. Previous studies have shown that knockdown of 
METTL1 reduced tRNA m7G methylation modification 
[22]. In another study, MYC promoted CCNB1 transla-
tion and, in turn, proliferation and metastasis of HCC 
cells by targeting WDR4 [22]. Recent studies have shown 
that blocking the METTL1-TGF-β2-PMN-MDSC axis 
can reduce the recurrence of HCC, further highlighting 
the importance of METTL1/WDR4 in HCC progression. 
[23]. Therefore, METTL1 / WDR4 are closely associated 
with HCC progression. Collectively, METTL1 / WDR4 
promotes HCC initiation and progression, leading to 
poor prognosis in HCC patients.

Currently, mRNAs interacting with METTL1 or WDR4 
have been rarely studied in HCC. METTL1 / WDR4 
have been shown to modify mRNA with m7G methyla-
tion. METTL1 functions as an m7G methyltransferase 
to modify mRNA with m7G methylation, and WDR4 is 
required to facilitate the binding of the METTL1 / WDR4 
complex to target mRNAs [24]. Studies have shown that 
METTL1 promotes the production of vascular endothe-
lial growth factor A (VEGFA) through m7G methyla-
tion modification, which increases angiogenesis [25]. In 
this study, we constructed the optimal METTL1 / WDR4 

(See figure on next page.)
Fig. 11  Construction of an immune escape-associated PPI network composed of METTL1 / WDR4 and mRNA risk signature genes. a Cellular 
communication between liver parenchymal cells, macrophages, NK cells, and T cells. b Receptors and ligands between liver parenchymal cells, 
macrophages, NK cells, and T cells. c Correlation analysis between METTL1 / WDR4 and mRNA risk signature with 26 immune escape-related 
checkpoints. d The immune escape-related PPI network, including METTL1 / WDR4 (Circles), 19 mRNA risk signature proteins (Circles), four cellulars 
(liver parenchymal cells, T cells, NK cells, and macrophages) ligands (rectangles), and receptors (Hexagon), 26 immune escape related proteins 
(Diamonds), and potential proteins with interactions with them (Triangles)
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Fig. 11  (See legend on previous page.)
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associated mRNA and lncRNA risk signature based on 
multiple algorithms, including 19 mRNAs and 10 lncR-
NAs. We found that 11 mRNAs in the mRNA risk signa-
ture acted as oncogenes,, including SMOX [26], ANXA2 
[27], GNAZ [28], EFNA4 [29], NDRG1 [30], UCK2 [31], 
KPNA2 [32], CAD [33], CDCA8 [34], KIF20A [35], YBX1 
[36]. The remaining seven mRNAs have not been experi-
mentally studied to date, including FAM217B, YARS1, 
TRNP1, KIAA1841, G6PD, PSRC1, MEX3A, BCORL1. 
Long non-coding RNAs RNAs (lncRNA) are RNA mol-
ecules composed of more than 200 nucleotides and can-
not encode proteins [37]. It has been demonstrated that 
lncRNA is closely associated with the occurrence of HCC 
[38]. Among numerous RNA modifications, lncRNAs 
can be extensively modified by N6 methylation (m6A) 
regulators [39]. However, the link with m7G methylation 
modification, especially with METTL1 / WDR4 acting 
lncRNA, has not been studied. In the METTL1 / WDR4 
associated lncRNA risk signature, MYLK-AS1 promotes 
HCC progression by regulating the miR-424-5p/E2F7 
axis and VEGFR-2 signaling pathway [40]; LINC01138 
can interact with PRMT5 and promote metastasis and 
proliferation of HCC by enhancing its protein stabil-
ity [41]. There are no pilot studies for the other seven 
lncRNA risk signature genes, including ZNF529-
AS1, PRRT3-AS1, AL031985.3, DANCR, MIR210HG, 
AC131009.1, and ZBTB11-AS1. In addition, this study’s 
mRNA and lncRNA risk scores could discriminate 
between patients at different risks. mRNA and lncRNA 
risk scores were independent poor prognostic factors for 
HCC patients. Therefore, the METTL1 / WDR4 associ-
ated mRNA and lncRNA risk signatures constructed in 
this study have essential effects on HCC progression.

As METTL1 / WDR4 and mRNA / lncRNA risk signa-
tures are independent poor prognostic factors for HCC, 
respectively. Therefore, 1 -, 3 -, and 5-year Nomogram 
prediction models were constructed in this study. Cali-
bration and multiparametric ROC curves demonstrated 
this nomogram prediction model’s high accuracy and 
validity. Studies have shown that the HCC stage and 
invasion depth (T) are poor prognostic factors for HCC 
patients [42]. In the present study, T and stage signifi-
cantly differed between the high and low groups. The 
changes in METTL1 / WDR4 expression and mRNA / 
lncRNA risk score significantly differed in different stages 
and T. Moreover, EMT is not only one of the culprits 
promoting HCC progression but also an essential factor 
contributing to the poor prognosis of HCC [43]. In this 
study, we found that the METTL1 / WDR4 and mRNA 
/ lncRNA risk signatures were significantly inversely 
correlated with the EMT suppressor (CDH1) but not 
with the EMT promoting factors (MMP9, MMP3, and 
TWIST1). Yang Yang et  al. showed that by inhibiting 

the transcription of CDH1 and then promoting the pro-
gression of HCC [44]. In addition, upregulated MMP9, 
MMP3, and TWIST1 can promote metastasis of HCC 
and predict poor prognosis of HCC [45]. Therefore, in 
this study, the METTL1 / WDR4 and mRNA / lncRNA 
risk signatures had significant prognostic significance 
for HCC patients. In the mutation differential analysis 
of this study, TP53 mutations were increased in samples 
from high expression or high-risk groups of METTL1 / 
WDR4 and mRNA / lncRNA risk signature. One of the 
most striking TP53 mutations [46]. TP53 functions as a 
tumor suppressor in HCC under normal circumstances. 
However, once TP53 is mutated, mutant TP53 has a role 
in promoting HCC development [47]. Moreover, muta-
tion of TP53 is one of the factors associated with poor 
prognosis in HCC patients [48]. RB1 mutations were 
increased in samples of high expression or high-risk 
groups for WDR4 and mRNA / lncRNA risk signature. 
RB1 negatively regulates cell cycle progression and func-
tions as a tumor suppressor gene in HCC [49]. How-
ever, if RB1 is mutated will increase HCC incidence [50]. 
Therefore, TP53 and RB1 mutations are HCC risk fac-
tors. The above further illustrated the prognostic value 
of METTL1 / WDR4 and mRNA / lncRNA risk signature 
for HCC.

The tumor microenvironment (TME) plays a criti-
cal role in HCC progression and prognosis [51]. In this 
study, we utilized single-cell sequencing data to identify 
four distinct cell populations, including liver parenchy-
mal cells, T cells, NK cells, and macrophages, that exhibit 
crosstalk. Further analysis revealed varying degrees of 
expression of METTL1/WDR4 and 19 mRNA risk signa-
ture genes in these cell types. Previous studies have dem-
onstrated that receptors could increase the capacity of 
HCC immune escape by inhibiting T cells [52]. NK cells 
are the first line of defense against tumorigenesis and an 
essential component of innate immunity in humans [53]. 
The imbalance of NK cells by ligands may increase the 
risk of immune escape in HCC [54]. Macrophages are the 
most infiltrated immune cells of the tumor microenviron-
ment, and tumor-associated macrophages can increase 
HCC immunosuppression and vascularization [55]. Our 
study found that METTL1 / WDR4 and mRNA risk sig-
natures were significantly associated with 26 immune 
escape checkpoints, including the classical immune 
escape checkpoints T lymphocyte antigen 4 (CTLA4) 
and programmed cell death protein 1 (PDCD1). PDCD1 
and CTLA4 can cause exhaustion of T cells and inhibit 
the release of T cell immune material [56]. Immune 
checkpoints can prevent immune over-activation, but in 
the tumor microenvironment, elevated immune check-
point expression leads to the tumor microenvironment 
being in an immunosuppressive state [57–59]. Therefore, 
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we constructed immune escape-related PPIs, including 
METTL1 / WDR4, 19 mRNA risk signature proteins, 
four cell receptor ligands (liver parenchymal cells, T cells, 
NK cells, and macrophages), 26 immune escape-related 
proteins and potential proteins with interactions with 
them. Our findings suggest that METTL1/WDR4 and 19 
mRNA risk signature genes are associated with immune 
escape, and this PPI provides a basis for subsequent HCC 
immune escape studies.

Several limitations exist in this study. While we vali-
dated the expression of WDR4/METTL1 RNA levels using 
in  vitro experiments and multiple datasets, their protein 
levels still require validation through in vitro experiments. 
Additionally, while we demonstrated the effect of WDR4/
METTL1 on HCC using two kinds of cell function experi-
ments, the mechanism underlying their actions remains 
unclear. Further experiments are therefore necessary 
to clarify the mechanism of WDR4/METTL1 on HCC. 
Moreover, the mRNA/lncRNA risk signature we con-
structed was based solely on TCGA-HCC data, and large-
scale clinical samples are necessary to validate the stability 
and reliability of these two risk features.

In summary, the core genes (METTL1 and WDR4) and 
mRNA / lncRNA risk signature of the m7G methylation 
modification were independent poor prognostic factors 
for HCC. The nomogram prediction model constructed 
in this study was able to better predict the overall sur-
vival of HCC patients at 1, 3, and 5 years. The METTL1 
/ WDR4 and mRNA / lncRNA risk signatures were asso-
ciated with clinicopathological features and major HCC 
gene mutations. Furthermore, the HCC immune escape-
related PPIs we constructed provide a theoretical basis 
for subsequent immune escape mechanisms. Overall, our 
findings provide a foundation for identifying prognostic 
markers, therapeutic targets, and immune escape mecha-
nisms in HCC.

Conclusions
We analyzed METTTL1 and WDR4 and constructed 
their associated mRNA and lncRNA risk signatures, 
which may serve as survival predictors and potential pre-
dictive biomarkers for HCC. In addition, we constructed 
an immune escape-related PPI network that provides a 
basis for studying the mechanism of immune escape and 
searching for therapeutic targets.
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