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Abstract 

Background N6-methyladenosine (m6A) has been confirmed to function critically in acute myeloid leukemia 
(AML) progression. Hitherto, the subtyping and prognostic predictive significance of m6A-correlated genes in AML 
is unclear.

Method From The Cancer Genome Atlas (TCGA-LAML), Therapeutically Applicable Research to Generate Effective 
Treatments (TARGET-AML) and Gene Expression Omnibus (GEO, GSE71014) databases, we collected the sequenc-
ing data of AML patients. The batch effect was removed via limma package for TCGA-LAML and TARGET-AML, 
and the aggregated samples were AML cohorts. Samples in the AML cohort identified m6A models in AML by con-
sensus clustering based on 23-m6A-related modulators. M6A-related differentially expressed genes (m6ARDEGs) influ-
encing the overall survival (OS) of AML were determined by performing differential expression analysis and univariate 
COX analysis, and consensus-based clustering was utilized to access AML molecular subtypes. LASSO and multivari-
ate COX analyses were performed to obtain the optimized m6ARDEGs to construct the m6A Prognostic Risk Score 
(m6APR_Score). Whether the model was robust was evaluated according to Kaplan–Meier (K-M) and receiver operator 
characteristic (ROC) curves. Further, the abundance of immune cell infiltration was explored in different m6A modifi-
cation patterns and molecular subtypes and m6APR_Score groupings. Finally, nomogram was constructed to predict 
OS in AML. Quantitative real-time polymerase chain reaction (RT-qPCR) and cell counting kit-8 (CCK-8) assay were 
used to validate the genes in m6APR_Score in AML cells.

Results The m6A models (m6AM1, m6AM2, m6AM3) and molecular subtypes (C1, C2, C3) were identified in the AML 
cohort, exhibiting different prognosis and immunoreactivity. We recognized novel prognostic biomarkers of AML such 
as CD83, NRIP1, ACSL1, METTL7B, OGT, and C4orf48. AML patients were grouped into high-m6APR_Score and low-
m6APR_Score groups, with the later group showing a better prognosis than former one. Both the AML cohort 
and the validation cohort GSE71014 demonstrated excellent prediction. Finally, the nomogram accurately predicted 
the survival of patients suffering from AML. Further, the decision curves showed that both nomogram and m6APR_
Score showed excellent prediction. It was confirmed in vitro experiments that mRNA expressions of NRIP1, ACSL1, 
METTL7B and OGT were elevated, while CD83 and C4orf48 mRNA expressions downregulated in AML cells. A sig-
nificant increase in the viability of U937 and THP-1 cell lines after inhibition of CD83, while siMETTL7B had contrast 
results.
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Conclusion Our study demonstrated that m6APR_Score and CD83, NRIP1, ACSL1, METTL7B, OGT, and C4orf48 
potentially provided novel and promising prognostic support for AML patients.

Keywords TCGA , Acute myeloid leukemia, N6-methyladenosine, Prognostic, Immune

Introduction
Acute myeloid leukemia (AML) refers to a type of scarce 
blood disorder of adult origin in the bone marrow, and 
the incidence of AML known with age predisposition, 
with a progressive increase in incidence with age [1]. 
Although numerous researchers had reached consen-
sus through extensive studies, risk stratification guide-
lines for predicting the prognosis of AML patients were 
published [2]. However, as a highly aggressive malignant 
tumor, AML recurred in the majority of patients even 
after taking hematopoietic stem cell transplantation 
treatment (HSCT), and according to statistical data, the 
5-year survival rate of AML was only 28.3% [1, 3]. Bene-
fiting from the rapid development of sequencing technol-
ogies, several studies carried out recently reported novel 
recognized prognostic markers in AML at the molecular 
scale [4, 5]. These studies revealed the molecular land-
scape of AML at the proteomic and genomic scales and 
made advances in the direction of improving AML prog-
nosis. However, AML, a lethal nonsolid tumor, demon-
strated extreme tumor heterogeneity across patients, 
which also resulted in the inability to accurately assess 
prognosis in clinical operations [6]. Therefore, exploring 
to uncover effective novel prognostic diagnostic markers 
in AML is crucial to improve patient prognosis as well as 
quality of life.

N6-methyladenosine (m6A) is the commonest form of 
RNA methylation modification in cells in the molecular 
level, and aberrant m6A modification directly affected 
the central law process [7, 8]. Accumulated m6A was 
carcinogenic and triggered the development of several 
cancers [9, 10]. For example, m6A was shown to be inti-
mately associated with the pathogenesis of breast can-
cer [11], colorectal cancer [12], and glioma [13]. Not 
coincidentally, m6A modifications also regulated AML 
production. sheng and colleagues reported that the m6A-
related gene YTHDC1 influenced the proliferative effects 
of AML cells, and furthermore, that abnormally high 
expression of YTHDC1 promoted AML cell appreciation 
and inhibited the spontaneous renewal process of leuke-
mic stem cells through the MCM complex [14]. Yankova 
and colleagues also confirmed that the m6A methyl-
transferase METTL3 represented a critical gene in AML 
disease development [15]. Thus, systematic insight into 
the potential mechanisms of m6A in AML holds prom-
ise for identifying effective therapeutic and prognostic 
biomarkers.

Considering the potential worth of m6A in AML, 
we identified different m6A models in AML as well 
as molecular subtypes. Differentially expressed genes 
affected by m6A were further established, and then 
prognostic prediction models and nomogram were 
constructed as m6A signatures. In addition, this study 
also explored the different m6A models as well as 
immune cell infiltration differences in molecular sub-
types, which further extended the clinical value of 
m6A-related prognostic signatures in AML.

Materials and methods
Dataset acquisition and pre‑processing
In this study, the RNA-Seq dataset (TPM, transcripts 
per million) TCGA-LAML of AML was uploaded 
through TCGA (https:// www. cancer. gov/ about- nci/ 
organ izati on/ ccg/ resea rch/ struc tural- genom ics/ tcga) 
database, and 132 primary tumor samples were main-
tained after screening. The expression files TARGET-
AML 156 of AML samples (TPM, transcripts per 
million) were acquired through TARGET (https:// ocg. 
cancer. gov/ progr ams/ target) database. To minimize the 
experimental error, the TCGA-LAML and TARGET 
data were processed to remove the batch effect using 
the removeBatchEffect function of the limma pack-
age ([16]), and the processed samples were named as 
AML cohort. The sequencing file GSE71014 was down-
loaded from the GEO (https:// www. ncbi. nlm. nih. gov/ 
geo/) database for 104 AML patients. we used the AML 
cohort as the training set and GSE71014 as the valida-
tion set.

Consensus clustering for identification of m6A models
Formula clustering analysis using the “ConsensusClus-
terPlus” R package (Version3.17) with km algorithm 
and 1-Spearman correlation was performed to identify 
m6A models of samples in the AML cohort based on 
the 23-m6A modulators included 8 writers (ZC3H13, 
RBM15B, RBM15, VIRMA, WTAP, METTL16, 
METTL14, METTL3), 11 readers (HNRNPC, FMR1, 
YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, 
LRPPRC, IGF2BP3, IGF2BP2, IGF2BP1, RBMX, 
HNRNPA2B1), and 2 erasers (FTO, ALKBH5) [17] in 
an earlier study with reference to the method of Wilk-
erson et al. [18].

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


Page 3 of 16Fu et al. BMC Medical Genomics          (2023) 16:191  

Identification of Differentially Expressed Genes (DEGs) 
and m6A subtypes
DEGs in different m6A models (|log2FC|> 1 & 
FDR < 0.05) were identified using the limma package, 
which we defined as m6A-related DEGs (m6ARDEGs). 
Univariate COX analysis was performed on 
m6ARDEGs to obtain m6ARDEGs that could influence 
AML prognosis (p < 0.01). Based on the expression data 
of these m6ARDEGs, consensus clustering analysis was 
performed on samples from the AML cohort to identify 
m6A-associated molecular subtypes in AML.

Prognostic assessment model construction and validation
LASSO and multivariate COX regression analyses were 
conducted on m6ARDEGs capable of influencing AML 
prognosis to construct an AML prognostic model [19], 
and the AML prognostic risk score (m6APR_Score) was 
calculated by the following equation.

where coefi refered to the prognosis-related m6ARDEGs 
expression level and coefi was the COX regression 
coefficient of the corresponding prognosis-related 
m6ARDEGs. According to the median value, the samples 
were classified into high-m6APR_Score group and low-
m6APR_Score group. An AML mRNA expression, from 
Oregon Health & Science University (OHSU), was down-
loaded from cBioPortal for Cancer Genomics (https:// 
www. cbiop ortal. org/) acted as external validation dataset 
(OHSC-AML dataset).

Differences in OS of patients from different m6APR_
Score subgroups were assessed by K-M analysis. The 
prognostic predictive performance of m6APR_Score 
was evaluated using ROC curve. Finally, whether the 
model was robust was validated in the validation set 
GSE71014.

Assessment of the abundance of immune cell infiltration
The relative abundance of 22 immune cell species in 
tumor tissue was quantified using the CIBERSORT 
algorithm (https:// ciber sort. stanf ord. edu/) [20]. The 
scores of 10 immune cell species were analyzed using 
the MCP-Count function [21].

GSVA enrichment analysis
For different m6A models and m6A subtypes, h.all.
v7.5.1.symbols.gmt was downloaded from the HALL-
MARK database to obtain the biological signaling path-
ways contained therein [22], and the signaling pathway 

m6APR_Score = coef i ∗ Exp genei

differences in different m6A models and m6A subtypes 
were calculated by the GSVA package [23].

Construction of nomogram and decision curve
Univariate and multivariate COX analyses were per-
formed combining m6APR_Score, clinical traits of AML 
samples to identify significant independent factors for 
AML prognosis. Subsequently, nomogram predicting 
AML 1-year, 3-year and 5-year survival risk were gener-
ated using the rms package by combining m6APR_Score 
and prognostically significant independent factors, and 
the prediction accuracy of the nomogram was analyzed 
using calibration curves (https:// rdrr. io/ cran/ rms/). 
Finally, the robustness of m6APR_Score and nomogram 
in predicting AML prognosis was evaluated by drawing 
decision curves.

Cell culture and transient transfection
GM12878 (BNCC360167), THP-1 (BNCC358410) and 
U937 (BNCC359322) cells were purchased from Beijing 
Bena Biotechnology Co. (Beijing, China). Cells were cul-
tured in DEME F-12 medium. Transfection of the nega-
tive control (NC), CD83 siRNA and METTL7B siRNA 
(Sagon, China) was conducted by applying Lipofectamine 
2000 (Invitrogen, USA). GGG GCA AAA TGG TTC TTT 
CGACG (CD83-si) and ACC CAA ATC CCC ACT TTG 
AGAAG (METTL7B-si) were the target sequences for 
CD83 siRNA and METTL7B siRNA.

RT‑qPCR
The total RNA from GM12878, THP-1 and U937 cell 
lines (Thermo Fisher, USA) was extracted using TRIzol 
reagent. cDNA was created from 500  ng of RNA using 
the HiScript II SuperMix (Vazyme, China). By applying 
the SYBR Green Master Mix, RT-qPCR was carried out 
in ABI 7500 System (Thermo Fisher, USA). 45 cycles of 
94 °C for 10 min, 94 °C for 10 s, and 60 °C for 45 s each 
comprised the PCR amplification conditions. Table 1 dis-
played the list of the sequences of primer pairs for tar-
geted genes.

Cell viability
The CCK-8 (Beyotime, China) was conducted to measure 
cell viability. In 96-well plates, cells from various treat-
ments were grown at a density of 1 × 103 cells per well. 
Solution CCK-8 was used. Using a microplate reader, the 
OD 450 values of each well were determined during a 2-h 
incubation at 37 °C (BioTeK, USA).

Statistical analysis
The software packages utilized in this study were 
obtained from R software (https:// www.r- proje ct. org/, 
R version 4.2.2). Data pre-processing via Sangerbox 

https://www.cbioportal.org/
https://www.cbioportal.org/
https://cibersort.stanford.edu/
https://rdrr.io/cran/rms/
https://www.r-project.org/
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platform (http:// www. sange rbox. com/, [24]. T-test and 
kruskal.test were tested to assess statistical differences 
between groups and p < 0.05 was considered statistically 
significant in this study.

Results
Distinct m6A model in AML
Initially, the TCGA and TARGET data sets were merged 
and named the AML cohort. To reduce experimen-
tal error, the batch effect of samples in the AML cohort 
was eliminated using the removeBatchEffect function in 
the limma package. Eventually, totally 288 samples from 
the AML cohort were included for subsequent analysis 
(Fig. 1A-D). Next, based on the 23- m6A-related modu-
lators, the 288 samples in the AML cohort could be 
grouped into three m6A models containing m6A model 
1 (m6AM1), m6A model 2 (m6AM2), and m6A model 
3 (m6AM3) (Supplementary Fig.  1A-C). K-M survival 
curves for m6AM1-3 showed that the m6AM1 had best 
prognosis, followed by the m6AM2, and the m6AM3 
had poorest prognosis (Fig.  2A). Survival status statis-
tics showed that the highest proportion of cases died in 
the m6AM3 (Fig. 2B). Eventually, the heatmap presented 
information on 23-m6A-related modulators expres-
sion levels, survival status, age, and gender for 288 AML 
samples in m6AM1-3 (Fig.  2C). Most m6ARGs expres-
sions were higher in m6AM1 and m6AM3 than those in 
m6AM2.

Tumor microenvironment (TME) difference and Gene Set 
Variation Analysis among three m6A models
For the purpose of elucidating the TME situation in 
m6AM1-3, the CIBERSORT algorithm was used to ana-
lyze the relative abundance of immune cells in TME, 
and it was clearly observed that the abundance of B 
cells naive, T.cells.CD8, T cells CD4 memory resting, 
and NK cells resting were higher in m6AM1, Mast.cells.
resting, B.cells.memory, Macrophages.M2 were higher 
in m6AM1, while Eosinophils was higher in m6AM3 
(Fig.  3A). Next, single-sample gene set enrichment 

analysis (ssGSEA) was performed to explore the bio-
logical pathway differences in m6AM1-3. We noticed 
that APOPTOSIS, P53 PATHWAY were activated in 
m6AM1; DNA REPAIR, OXIDATIVE PHOSPHORYLA-
TION, ADIPOGENESIS were activated in m6AM2; can-
cer related pathways as PI3K AKT MTOR SIGNALING, 
WNT-β CATENIN SIGNALING in m6AM3 were acti-
vated (Fig. 3B). From these discoveries it was evident that 
m6AM1 was mainly associated with apoptosis as well as 
the cell cycle, m6AM2 was mainly associated with cellu-
lar energy metabolic pathways, and cancer-related path-
ways were activated in m6AM3. This also accounted for 
the survival differences among the three m6A models.

Identification of m6A‑related DEGs (m6ARDEGs) and m6A 
subtypes
To further investigate the gene-transcription level dif-
ferences in the three m6A models, limma package was 
used to mine the m6ARDEGs in m6AM1 vs m6AM2_
m6AM3 (m6AM1 group), m6AM2 vs m6AM1_m6AM3 
(m6AM2 group) and m6AM3 vs m6AM1_m6AM2 
(m6AM3 group). Totally 131 m6ARDEGs were identi-
fied in m6AM1-3 (FDR < 0.05 & |log2FC|> 1). Univari-
ate COX screened 23 m6ARDEGs that were significantly 
and significantly associated with OS in AML (p < 0.01). 
The unsupervised clustering algorithm was performed 
to cluster the samples in the AML cohort into three 
subtypes (m6A cluster A, m6A cluster B, m6A clus-
ter C) (Supplementary Fig.  2A-C). K-M survival curves 
showed significantly different OS for m6A cluster A-C 
(p < 0.0001) (Fig.  4A). The expression of 23-m6ARDEGs 
in m6A cluster A-C were illustrated in Fig. 4B, C.

TME and enrichment difference
To explore TME differences among cluster A-C, CIB-
ERSORT and MCP-count were utilized to assess the 
level of immune cell infiltration. From the results of 
CIBERSORT analysis, it was observed that Mono-
cytes, Mast cells activated were richer in cluster A 
(p < 0.0001). CD4 memory resting, Plasma cells, B 

Table 1 The primers of genes

Genes Forward primer sequence (5’‑3’) Reverse primer sequence (5’‑3’)

CD83 AAG GGG CAA AAT GGT TCT TTCG GCA CCT GTA TGT CCC CGA G

NRIP1 GGA TCA GGT ACT GCC GTT GAC CTG GAC CAT TAC TTT GAC AGGTG 

ACSL1 CCA TGA GCT GTT CCG GTA TTT CCG AAG CCC ATA AGC GTG TT

METTL7B GCA ACC GCA AGA TGG AGA G GAT TTG GGT CTA GGC AGG TGA 

OGT TCC TGA TTT GTA CTG TGT TCGC AAG CTA CTG CAA AGT TCG GTT 

C4orf48 CGT CCG AAT GGG CGT TTT C TGC ATG AAC TCG AAG GCG T

GAPDH AAT GGG CAG CCG TTA GGA AA GCC CAA TAC GAC CAA ATC AGAG 

http://www.sangerbox.com/
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cells naive, T cells, T.cells.CD8 were richer in clus-
ter B (p < 0.0001) (Fig.  5A). MCP-count the command 
output was as follows, there were significantly differ-
ences in immune cell scores of Fibroblasts, Endothelial 
cells, Cytotoxic lymphocytes, Neutrophils, CD8 T cells, 
Monocytic lineage, T cells among cluster A-C, most of 
which in cluster C were lower than cluster A and clus-
ter B (Fig. 5B). In inclusion, it was clearly evident that 
TNFA SIGNALING VIA NFKB, KRAS SIGNALING 
UP, P53 PATHWAY were significantly activated in clus-
ter A; WNT BETA CATENIN SIGNALING pathway, 
MITOTIC SPINDLE, PI3K AKT MTOR SIGNALING 
showed significant activation in cluster B; GLYCOLY-
SIS, ADIPOGENESIS, OXIDATIVE PHOSPHORYLA-
TION, FATTY ACID METABOLISM pathway were 
significantly activated in cluster C (Fig. 5C).

Establishment and validation of the m6A Prognostic Risk 
Score (m6APR_Score)
The prognostic model assessed via m6APR_Score was 
established in the AML cohort based on 23-m6ARDEGs. 
LASSO and multivariate Cox regression were determined 
to dig out optimal prognostic m6ARDEGs, overall, CD83, 
NRIP1, ACSL1, METTL7B, OGT and C4orf48 were dug 
out as optimal prognostic m6ARDEGs (Fig. 6A). Mean-
while, m6APR_Score was defined: m 6AP R_S core =   -0. 
184 *CD83 + 0.152*NRIP1 + 0.105*ACSL1 + 0.304*MET-
TL7B + 0.182*OGT-0.179*C4orf48. 288 samples were 
contributed to high-m6APR_Score group and low-
m6APR_Score group. Moreover, Kaplan–Meier analy-
sis in two m6APR_Score of AML cohorts revealed that 
low-m6APR_Score AML patients demonstrated positive 
prognosis (Fig. 6B). the area under ROC curve (AUC) of 
1-, 3-, and 5-years were all over than 0.7, which were 0.78, 

Fig. 1 TCGA-LAML and TARGET-AML data pre-processing. A-B TCGA-LAML and TARGET-AML gene expression boxplots and PCA results (C-D) 
Boxplots of TCGA-LAML and TARGET-AML gene expression after removal of batch effects and PCA results
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Fig. 2 Identification of m6A models in the AML cohort. A K-M curves for the three m6A models of the AML cohort (B) Statistical bar graph 
of the difference in survival status between the three m6A modification patterns (C) Heat map of differences in 23-m6A-related modulators, survival 
status and clinical information among the three m6A models
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0.75 and 0.78 respectively (Fig.  6C). Then, the similar 
analysis was conducted to verified the predictive robust-
ness of m6APR_Score in GSE71014 cohort. There was a 
clear observation of a significant difference in prognosis 

between high- and low-m6APR_Score patients, with high 
m6APR_Score having better OS and showing better AUC 
values at 1-, 3- and 5-years (Fig. 6D, E). In OHSC-AML 
dataset, an obviously prognosis differences between 

Fig. 3 TME differences between different m6A models. A 22-Relative abundance of immune cells (B) Differences in biological pathway activity. ns 
p > 0.05; * p < 0.05; ** p < 0.01; ***p < 0.001; **** p < 0.0001
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high- and low- group was observed, and a well AUC also 
presented (Fig. 6F, G).

Construction of nomogram and decision curve
To examine m6APR_Score differences in AML sub-
groups, we counted m6APR_Score in age, Gender, 
m6A model and m6A cluster subgroups. We observed 
that older AML patients had higher m6APR_Score 
(Fig.  7A). Conversely, there was no significant corre-
lation between m6APR_Score and gender (Fig.  7B). 
Simultaneously, we also found higher m6APR_Score 
in m6AM3 and C3 patients, which explained the 
worse prognosis of m6AM3 and C3 (Fig.  7C, D). Uni-
variate and multivariate Cox analysis of m6APR_Score 
and clinical features showed m6APR_Score, age as 

independent prognostic factors (Fig.  7E, F). To quan-
tify the prognostic risk of AML patients, we combined 
the m6APR_Score and age to construct nomogram as 
in Fig.  7G. We further assessed the model’s predic-
tive power using the calibration curve, and we found 
that the projected calibration curves for the 1-, 3-, and 
5-year calibration points almost exactly matched the 
standard curve, demonstrating the nomogram’s out-
standing predictive power (Supplementary Fig.  3A). 
Meanwhile, ROC curves showed that nomogram and 
m6APR_Score provided highest sensitivity and speci-
ficity in predicting AML patient’s OS compared to 
clinical features (Fig. 7H). Additionally, decision curve 
revealed that both m6APR_Score and Nomogram ben-
efits were significantly greater than the extreme curves 
(Supplementary Fig. 1C).

Fig. 4 Identification of molecular subtypes of AML. A K-M survival curves for the three molecular subtypes in the AML cohort (B) Heatmap 
of 23-m6ADEGs, survival status, and clinical information in the three molecular subtypes (C) Box plot of 23-m6ADEGs expression
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Evaluation of immune signature in different m6APR_Score 
groups
Twenty two immune cell abundance were evaluated by 
CIBERSORT method between two groups, we found the 
abundance of T.cells.CD8, T cells CD4 memory resting, 
Mast cells resting, Mast cells activated were Significant 
higher in low-m6APR_Score group (Fig. 8A). The results 
of the MCP-count analysis were aligned highly with the 
CIBERSORT. Higher immune infiltration of T cells CD8, 
T cells and Endothelial cells were in the m6APR_Score 
group (Fig. 8B). Then, the potential correlation between 
m6APR_Score and the HALLMARK pathway illus-
trated by heatmap (Fig.  8C), intuitively, m6APR_Score 
showed significant positive relation to HYPOXIA, P53 

PATHWAY, MYOGENESIS, ESTROGEN RESPONSE 
LATE, TNFA SIGNALING VIA NFKB, KRAS SIGNAL-
ING DN, UV RESPONSE UP pathways.

Experimental verification of the expression and function 
of m6APR_Score model genes
To test the expression and function of the bioinformat-
ics model, we detected the mRNA expression of CD83, 
NRIP1, ACSL1, METTL7B, OGT, C4orf48 by RT-qPCR 
in GM12878, THP1 and U937 cell lines. The expres-
sions of NRIP1, ACSL1, METTL7B and OGT could be 
observed to be elevated in THP-1 and U937 compared to 
normal hematopoietic cell GM12878 (Fig. 9A-D). While 
the expression of CD83 and C4orf48 were significantly 

Fig. 5 Immunological/pathway activity among molecular subtypes. A Relative abundance of 22 immune cells (B) Infiltration score of 10 immune 
cells (C) Differences in biological pathway activity
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Fig. 6 Prognostic risk stratification model construction for AML. A Forest plot of 6-m6ARDEGs (B-C) K-M survival curves and ROC curves of patients 
in different m6APR_Score groups of the AML cohort (D-E) K-M survival curves and ROC curves of patients in different m6APR_Score groups 
of GSE7101
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downregulated in U937 cell and THP-1 cell lines (Fig. 9E, 
F). Subsequently, based on risk score assignment, we 
verified the viability of THP-1 and U937 cell lines after 
interference with CD83 and METTL7B. The results 
showed a significant increase in the viability of U937 cell 

and THP-1 cell lines after inhibition of CD83 (Fig.  9G, 
H). In contrast, the viability of U937 cell and THP-1 lines 
decreased significantly after inhibition of METTL7B 
(Fig.  9I, J). These data also validated the validity of the 
risk score model.

Fig. 7 m6APR_Score independence analysis and Nomogram construction. A-D Differences in m6APR_Score in age, gender, m6A models and m6A 
clusters (E–F) Univariate and multivariate COX regression analysis of m6APR_Score combined with age, gender (G) Nomogram of m6APR_Score 
combined with age (H) The ROC curves of a variety of clinical features for overall survival (OS) at 1, 3 and 5 years
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Discussion
In recent years, the contribution of m6A methylation 
modification of mRNAs in the development of malignant 
tumors became an emerging research topic in the medi-
cal field [25]. Studies revealed that m6A influenced and 
altered gene expression mainly by interfering with and 
regulating mRNA splicing, translation and stability [26]. 
A report suggested that long-term cumulative m6A mod-
ifications disrupted the balance between value addition 
and differentiation of normal cellular haematopoietic 
stem cells (HSG), and that pivotal regulators in m6A had 
potential therapeutic value for disease [27, 28].

Benefiting from the development and down-stream-
ing of high-throughput sequencing technologies, a 

variety of molecular subtypes were defined at the 
molecular level based on the expression levels of criti-
cal disease genes that differ from traditional clinico-
pathological histology. These new molecular subtypes 
complemented traditional pathological histological 
subtypes and provided an active role in the study of dis-
ease mechanisms and innovative therapeutic tools, as 
well as clarification of the molecular biology of cancer 
[29, 30]. Review of current published studies revealed 
that there were relatively few studies related to differ-
ent m6A models in AML. In this study, based on the 
expression data of m6ARGs, there were three different 
m6A models existed in AML patients. Among them, 
the m6AM2 was distinctly associated with the cell cycle 

Fig. 8 Differences in the immunological/biological pathway activity of different m6APR_Score groups. A Relative abundance of 22 immune cells 
(B) Immune infiltration score of 10 immune cells (C) Heat map of m6APR_Score correlation with cancer-related pathways. ns p > 0.05; * p < 0.05; ** 
p < 0.01; *** p < 0.001; **** p < 0.0001



Page 13 of 16Fu et al. BMC Medical Genomics          (2023) 16:191  

Fig. 9 Experimental verification of the expression and function of m6APR_Score model genes. A-F Results of RT-qPCR assays for NRIP1, ACSL1, 
METTL7B, OGT, CD83 and C4ORF48 in GM12878, THP-1 and U937 cell lines (n = 3). G-H CCK8 assay results of THP-1 and U937 cell lines after CD83 
inhibition (n = 3). I-J CCK8 assay results of THP-1 and U937 cell lines after METTL7B inhibition (n = 3). * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001. The 
results are presented as mean ± SD
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and the m6AM3 was distinctly associated with can-
cer progression. Notably, m6AM2 and m6AM3 clearly 
showed poor prognosis. In addition, m6AM2 and 
m6AM3 evidently demonstrated higher levels of FTO 
and IGF2BP2 expression. Our study demonstrated high 
consistency with the results of Xu et al. [18]. Therefore, 
the findings of this study further confirmed the differ-
ent m6A models and prognostic differences in AML. 
In-depth studies on the molecular basis of the occur-
rence and development of these molecular subtypes 
and the search for new targets for intervention would 
have positive consequences in the direction of devel-
oping effective new anti-cancer drugs and improving 
patients’ clinical prognosis.

In this study, we screened 6-m6ARDEGs as novel prog-
nostic biomarkers, containing CD83, NRIP1, ACSL1, 
METTL7B, OGT, and C4orf48. The CD83-targeted chi-
meric antigen receptor (CAR) T cell targeted therapy was 
proposed based on the report by Shrestha and colleagues 
that CD83 was a novel target against graft-versus-host 
disease in AML patients undergoing bone marrow 
hematopoietic stem cell transplantation [31]. Grasedieck 
and colleagues proposed that NRIP1 expression in AML 
bone marrow tissues was up-regulated by the regulation 
of the AML marker oncogene EVI1, which was unique 
to patients with abnormal chromosome 3 [32]. Existing 
studies shown that upregulation of ACSL1 is regulated 
by SNHG7/ miR-449a to cause proliferation and migra-
tion of thyroid cancer cells. SNHG7 adsorbed miR-449a 
and competitively reduced the interaction between miR-
449a and ACSL1 [33]. METTL7B was essential for can-
cer cell proliferation and tumorigenesis in non-small 
cell lung cancer (NSCLC), and METTL7B is a promis-
ing therapeutic target for NSCLC [34]. Asthana and col-
leagues found in a mouse subcutaneous xenograft model 
of AML that inhibition of OGT function led to the dif-
ferentiation and apoptosis of AML cells and the remis-
sion of cancer symptoms [35]. However, C4orf48 was a 
newly discovered biomarker of AML, and its function 
in other types of tumors remained unclear. In addition, 
it was found that the function of NRIP1 and METTL7B 
genes was regulated by m6A modification [36, 37]. In this 
study, we also found that mRNA expressions of NRIP1, 
ACSL1, METTL7B and OGT were elevated, while CD83 
and C4orf48 mRNA expressions downregulated in AML 
cells. a significant increase in the viability of THP-1 and 
U937 cell lines after inhibition of CD83, while siMET-
TL7B had contrast results. Above findings indicated the 
Rationality and feasibility of m6APR_Score.

Our research showed that the three m6A clusters, three 
m6A gene clusters, and m6Ascore were strongly linked 
with the relative abundance of 22 immune cell infiltra-
tion. It is now understood that the m6A alteration is 

crucial for controlling the immunological response [38]. 
B-cells, CD8 + T-cells, CD4 + T-cells, neutrophils, mac-
rophages, and neutrophil expression of METTL7B cor-
related positively with each other, but negatively with 
dendritic cells [39]. Expression levels of T Cell CD8 and 
T Cell CD4 naive were higher in the low- m6APR_Score 
group. Previous reports indicated that T Cell CD8 and 
T Cell CD4 function affected clinical outcomes in can-
cer patients [40, 41]. Patients at high- m6APR_Score 
group had significantly poor prognosis and we hypoth-
esized that T Cell CD8 and T Cell CD4 were activated in 
patients at high prognostic risk and that immune check-
points derived from T cells might trigger immune escape 
of tumor cells by blocking immune cell function.

Overall, we ascertained the different m6A models in 
AML based on the 23-m6A modulators. Finally, a 6-gene 
prognostic model was created, and the model was highly 
robust. However, there remained shortcomings in this 
study. Firstly, this study was conducted using data from 
earlier studies in public databases for sublicensing, and 
there was a lack of clinical cohorts to validate the robust-
ness of the model. Second, although we ascertained 6 
m6A-associated prognostic genes, we did not further 
explore the specific biomolecular mechanisms of these 
genes in relation to m6A modification in AML in both 
in  vivo and in  vitro assays. Further investigation of the 
relationship between these genes and AML and m6A 
modification is necessary.

Conclusion
Our study constructed a 6-gene prognostic predictive 
model for predicting prognosis in AML, which con-
structed an m6A signature that could also serve as an 
independent prognostic factor for AML compared to tra-
ditional clinicopathological prognostic factors. We also 
preliminarily identified different m6A models in AML 
and their association with the immune landscape. This 
study provided new scientific evidence for effective and 
accurate clinical prediction of AML prognosis, and m6A 
modification patterns in AML might also help medical 
research practitioners to better understand AML disease 
mechanisms.
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