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Background
Breast cancer (BC) is the most common cancer among 
women and a leading cause of cancer-related deaths 
worldwide, accounting for approximately 11.6% of all 
cancer deaths [1, 2]. Neoadjuvant chemotherapy (NAC) 
has emerged as the standard treatment for stage II – III 
BC in women, as the postoperative pathological complete 
response (pCR) status have been used for individual-
ized systemic adjuvant treatment [3]. NAC can provide 
systemic chemotherapy for naive BC patients without 
metastasis before planned surgical treatment or local 
surgery plus radiotherapy, and additionally, and it is also 

BMC Medical Genomics

†Xiaojun Zhang, Ran Feng and Junbin Guo authors contributed 
equally to this work and should be considered co-first authors.

*Correspondence:
Xiaojun Zhang
kyzy_1106@163.com
1General Surgery Department, Third Hospital of Shanxi Medical University, 
Taiyuan, Shanxi 030032, China
2Yangquan Coal Industry (Group) General Hospital, Yangquan,  
Shanxi 045008, China

Abstract
Neoadjuvant chemotherapy (NAC) is a well-established treatment modality for locally advanced breast cancer (BC). 
However, it can also result in severe toxicities while controlling tumors. Therefore, reliable predictive biomarkers are 
urgently needed to objectively and accurately predict NAC response. In this study, we integrated single-cell and bulk 
RNA-seq data to identify nine genes associated with the prognostic response to NAC: NDRG1, CXCL14, HOXB2, NAT1, EVL, 
FBP1, MAGED2, AR and CIRBP. Furthermore, we constructed a prognostic risk model specifically linked to NAC. The clinical 
independence and generalizability of this model were effectively demonstrated. Additionally, we explore the underlying 
cancer hallmarks and microenvironment features of this NAC response-related risk score, and further assess the 
potential impact of risk score on drug response. In summary, our study constructed and validated a nine-gene signature 
associated with NAC prognosis, which was accomplished through the integration of single-cell and bulk RNA data. The 
results of our study are of crucial significance in the prediction of the efficacy of NAC in BC, and may have implications 
for the clinical management of this disease.
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the standard approach for locally advanced BC patients, 
enabling downstaging of inoperable tumors and facilitat-
ing breast-conserving surgery [4]. Moreover, NAC can 
obtain information related to drug sensitivity in vivo, 
guiding follow-up treatment and improve the progno-
sis of patients. Nonetheless, some patients may face sig-
nificant challenges to their survival in cases where NAC 
proves ineffective. This is due to the fact that their prog-
nosis may worsen, and they may experience severe toxic 
side effects [5]. Those patients who will not benefit from 
NAC will experience side effects of chemotherapy with-
out any benefit, so we need biomarkers of NAC response 
to identify subgroups of patients who may benefit from 
NAC. Therefore, the identification of biomarkers predict-
ing NAC is of great importance in treatment guidance 
based on NAC as well as other alternatives combination 
therapy [6].

Studies by Li J et al. revealed that the higher the level 
of aldehyde dehydrogenase 1 (ALDH1) in BC patients are 
associated with poorer response to NAC [7]. Wang et al. 
demonstrated that measuring the expression of matrix 
metalloproteinase-9 (MMP-9) in tumor tissues helps to 
identify TNBC patients who respond well to NAC [8]. In 
addition, targeting key molecules in signaling pathways, 
such as AKT/pERK and Fas/FasL, has shown potential 
in BC sensitivity to chemotherapy [8, 9]. However, most 
previous studies have mainly focused on individual bio-
marker, while integrating high-throughput multi-omics 
data can provide a more comprehensive understanding of 
the mechanisms underlying BC [10], reveal cellular het-
erogeneity and diversity, and identify biomarkers reflect-
ing the complexity of these processes.

Genomic tests, such as Mammaprint and Oncotype 
DX, are used in the management of BC [11, 12]. Mam-
maprint examines the activity of 70 genes to categorize 
breast cancer as low or high risk of recurrence, provid-
ing a recurrence score indicating the likelihood of cancer 
returning. However, its validation primarily pertains to 
early-stage, ER+, LN-, and untreated patients. Mammap-
rint’s limitations include its limited applicability to other 
breast cancer subtypes, relatively high cost, and absence 
of direct treatment benefit information. Oncotype DX 
analyzes the expression of 21 genes and provides a recur-
rence score to predict distant recurrence and potential 
chemotherapy benefits in ER+, LN-, and HER2-negative 
breast cancers. However, it may not be suitable for HER2-
positive or triple-negative breast cancer patients. Onco-
type DX’s limitations include its limited application to 
certain breast cancer subtypes, challenges in interpreting 
intermediate recurrence scores, and concerns about cost 
and insurance coverage.

Currently, reliable biomarkers for predicting NAC in 
BC remain limited [13, 14]. Single-cell RNA sequenc-
ing (scRNA-seq) can contribute to identifying distinct 

cell populations involves in carcinogenesis and profiling 
marker genes at single-cell level [15, 16]. Understanding 
the heterogeneity of tumor microenvironment (TME) in 
drug resistance mechanisms and identify more effective 
targets for individualized management [17]. In this study, 
we aimed to identify potential NAC related prognostic 
signatures for predicting response to NAC in BC patients 
through integrated bioinformatics transcriptome analy-
ses at both the single-cell and bulk levels.

Methods
Data collection and preprocessing
The bulk transcriptome data and corresponding clini-
cal data of BC patients receiving NAC were obtained 
from the Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/) via GSE25055, 
GSE25065 and GSE22226. We chose GSE25055 with the 
most BC samples (N = 306) as the discovery cohort, then 
198 BC samples from GSE25065 and 150 BC samples 
from GSE22226 were chosen as independent validation 
cohorts. Samples with incomplete survival information 
were excluded from the analysis.

The scRNA-seq data from 14 BC samples was obtained 
from the study of Qian et al [18], and downloaded from 
lambrechtslab - Laboratory of Translational Genetics 
(vib.be). The R package Seurat (version 4.0.0) was used 
to preprocess the scRNA-seq.  Cell samples with more 
than 200 genes expressed and the mitochondrial gene 
expression rate less than 5% were retained. We used the 
“NormalizedData” function to standardize the scRNA-
seq dataset and the “FindVariableFeatures” function to 
identify 2000 highly variable genes. We used R package 
Harmony to correct the batch effects. After data nor-
malization, the principal component analysis (PCA),was 
performed and cells were grouped and visualized using 
uniform manifold approximation and projection (UMAP) 
[19]. The “DotPlot” function was then used to visualize 
the expression level of marker genes in a single cluster 
[20]. These clusters are assigned to known cell lineages 
by marker genes. Clusters of cells are identified using the 
K-nearest neighbor (KNN) algorithm and the “FindClus-
ters” function with a resolution of 0.2.

Identification of candidate NAC marker genes and their cell 
expression activity
In the discovery cohort (GSE25055) with bulk transcrip-
tome data, the differentially expressed genes (DEGs) 
between NAC resistant and sensitive groups were iden-
tified using the R package limma, with |log2FC |>0.585 
and FDR < 0.05. For single-cell data, cell-specific genes 
were first identified using “FindAllMarkers” function in R 
package Seurat [18]. Then we obtained the intersection of 
NAC associated DEGs and cell-specific genes as the can-
didate NAC marker genes.

https://www.ncbi.nlm.nih.gov/geo/
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We used the R package AUCell (Version 1.12.0) to cal-
culate the expression score of candidate NAC marker 
genes in each cell. The AUC value estimates the propor-
tion of highly expressed genes in the gene set within each 
cell, and establishes a gene expression ranking for each 
cell. To calculate the threshold, we used the “AUCell_
explore Thresholds” method.

Construction of NAC prognosis model
Univariate Cox regression analysis was utilised to screen 
the prognostic value of candidate NAC marker genes. 
Then the least absolute shrink-age and selection operator 
(LASSO) Cox regression model were used to construct 
a prognostic model to minimize the risk of over-fitting 
and reduce the redudant factors [21]. LASSO algorithm 
selects and contracts variables through R packet glmnet.

The risk score of patients was calculated according to 
the expression level of each prognostic related gene and 
its corresponding regression coefficient:

risk score =
∑n

i=1 expi
∗βi ,

Where n is the number of prognostic genes, expi is the 
expression value of gene i, βi is the regression coefficient 
of gene i. According to the median risk score, the patients 
were divided into high-risk and low-risk group.

Assessment of the relevance with clinical variables
According to different clinicopathological characteristics, 
patients were divided into different subgroups, includ-
ing age (> 50 and < = 50), grade (1/2 and grade 3/4), stage 
(I-II and III-IV), etc. Fisher’s exact test was used to com-
pare the differences of each clinical variable between 
high- and low-risk groups, p < 0.05 was the significance 
threshold.

Estimation of immune cell infiltration in the TME
The single sample gene set enrichment analysis (ssGSEA) 
algorithm was used to quantify the relative abundance of 
each cell infiltration in the TME of BC patients [22]. We 
obtained the signature gene sets indicating a wide range 
of human immune cell subtypes from Charoentong’s 
research, including activated CD8 T cells, activated 
dendritic cells, macrophages, natural killer T cells, and 
regulatory T cells [23]. Also, the R package ESTIMATE 
was used to calculate the immune score and ESTIMATE 
score.

Chemotherapy sensitivity analysis
First, the IC50 values of drugs for each sample in the 
discovery cohort were calculated based on Genomics of 
Drug Sensitivity in Cancer (GDSC) (https://www.cancer-
rxgene.org) resource using calcPhenotype method from 
R package oncoPredict. To assess the correlation between 
small-molecule drug sensitivity and risk score, we calcu-
lated the Spearman correlation between risk score and 

drug IC50 values, and compared the differences of drug 
IC50 values between the high- and low-risk groups [24, 
25].

Statistical analysis
All statistical analyses were performed using R software 
(version 4.0.0; https://www.R-project.org). The difference 
of immune cell infiltration was assessed by Wilcoxon 
rank-sum test. For survival analysis, univariate and mul-
tivariate Cox analyses were used to explore the prognos-
tic value and independence. R package survminer was 
used. Kaplan-Meier (KM) curves were plotted to visual-
ize differences in overall survival (OS) between groups, 
and log-rank tests were used to assess the significance 
of these differences. Time-dependent Receiver Operat-
ing Characteristic (ROC) curve analysis was employed to 
evaluate the sensitivity and specificity of the risk score in 
predicting prognosis, and using the R package timeROC. 
Functional enrichment analysis was performed using the 
R package cluster Profiler.

Result
Single-cell analysis revealed microenvironment 
heterogeneity of BC
Firstly, to investigate the heterogeneity of TME in BC 
patients, we obtained scRNA-seq data from 14 BC 
patients. After preprocessing and quality control, 44,024 
cells were screened and UMAP analysis was performed 
to visualize the high-dimensional scRNA-seq data 
(Fig. 1A). Cell clustering revealed 15 subclusters (Fig. 1B), 
which were further annotated to 8 cell types based on 
marker genes expression (Fig.  1C, D). The top 5 highly 
expressed genes in each cell type were shown in Fig. 1E. 
It was worth noting that the cell composition of TME was 
highly heterogeneous, and the proportion of 8 cell types 
varied greatly among samples (Fig. 1F, G).

Neoadjuvant chemotherapy signature identification 
through integrated single-cell and bulk RNA-seq data
Due to the lack of single-cell data from BC patients 
received NAC, we first identified NAC response-related 
genes based on bulk RNA-seq.  Transcriptome data and 
clinical information from 306 BC patients underwent 
NAC were obtained from the GEO database (GSE25055), 
of which 57 patiences achieved pCR and 249 patiences 
were therapy-resistant. Then, 551 DEGs between the 
NAC sensitive group and resistant group were identi-
fied based on the R package limma (Fig. 2A, |log2FC| > 
0.585, FDR < 0.05). As shown in Fig.  2B, among the top 
50 DEGs, CA12 and TFF3 were found to be significantly 
increased in BC patiences who often showed worse NAC 
efficacy. The high and correlated expression of CA12 and 
TFF3 in estrogen receptor-positive BC may play a role in 
reducing the tumor’s sensitivity to chemotherapy drugs 

https://www.cancerrxgene.org
https://www.cancerrxgene.org
https://www.R-project.org
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Fig. 1 Analysis of cell subsets of single-cell RNA sequencing (scRNA-seq) from Breast Cancer (BC) patients. A. All the cell samples showed no significant 
batch effect; B. UMAP plot represents 15 cell clusters from 14 BC patients; C. The average expression of cell type marker genes in eight different cell 
types; D. UMAP plot represents the final identified eight cell types from (different colors represent different cell types) 14 BC patients; E. The expression 
of the top five highly expressed genes in each cell type; F. The barplot shows the total number of cell samples from each BC patient; G. The proportion of 
different cell types in each BC patient
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such as adriamycin and docetaxel, which in turn can neg-
atively impact the efficacy of NAC [26].

To further obtain NAC response-related genes that 
vary among different cell types, we identified190 inter-
secting key genes that were both NAC-response DEGs 
and highly variable genes of single-cell data. GO enrich-
ment analysis revealed that these key genes are mainly 
distributed in the extracellular matrix and spindle and 
participate in the cell processes such as chromatid sep-
aration, cell cycle, mitosis, etc. By binding with chemo-
kine receptors or regulating protein kinase (Fig. 2C-E). In 
addition, the results of KEGG [27–29] enrichment analy-
sis showed that they were mainly involved in cell cycle, 
cellular senescence, and P53 signal pathways, among oth-
ers (Fig. 2F).

In addition, we observed the cell-specific expression 
pattern of the 190 key genes of NAC response. Among 
them, KRT7 was highly expressed in cancer cells, AEBP1 
was mainly expressed in fibroblasts, BCL2A1 and RGS1 
were both highly expressed in myeloid cells (Fig.  2G-J). 
Specifically, RGS1 was also specifically expressed in T cell 
clusters, and a previous study has supported that RGS1 

was associated with CD4 expression and was function-
ally associated with T cell activation [30]. The expres-
sion activity of the 190 key genes was calculated using 
the R package AUCell and showed a bimodal distribu-
tion among all cells (Fig. 2K). According to the bimodal 
distribution threshold of 0.16, all cells were divided into 
two groups of high and low activity. The results showed 
that 9297 cells (9297/44,024, 21%) had higher expression 
activity of NAC response-related genes, mainly including 
fibroblasts, cancer cells, and cycling cells (Fig.  2L). Fur-
ther enrichment analysis of cell-specific genes showed 
that their functions were mainly related to oxidative 
phosphorylation, energy metabolism and DNA replica-
tion (Fig. S1).

Construction and validation of NAC prognostic model
To assess the prognostic value of key NAC response-
related genes in patients with BC, univariate Cox analy-
sis and log-rank test was performed in 306 BC patients 
underwent NAC (GSE25055) for 190 genes. The results 
showed that 126 genes were associated with OS in BC 
(P < 0.05), and the top 10 genes with the most significant 

Fig. 2 Identification of NAC-related differentially expressed genes and enrichment analysis. A: Volcano plot compares the differentially expressed genes 
(DEGs), screened by the criteria of |log2FC|>0.585 and p < 0.05, the blue dots denotes the down-regulated DEGs and the red dots denotes the up-regu-
lated DEGs; B: Heatmap of DEGs indicating the expression of the top 50 DEGs in NAC resistant and sensitive groups, each row represents one DEG and 
each column represents one sample. The red and blue colors represent up-regulated and down-regulated DEGs respectively; C: GO-Biological process 
(BP) enrichment analysis results of NAC-related DEGs; D: GO-Cellular component (CC) enrichment analysis results of NAC-related DEGs; E: GO-Molecular 
function (MF) enrichment analysis results of NAC-related DEGs; F: Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results of NAC-
related DEGs, the dot size represents the count of DEGs, and the color depth represents the p-value based significance; G: Expression of KRT7 in different 
cell clusters; H: Expression of AEBP1 in different cell clusters; I: Expression of BCL2A1 in different cell clusters; J: Expression of RGS1 in different cell clusters; 
K: AUC histogram for cell activity score of candidate NAC marker genes. The threshold was set as 0.16, and 9297 cells exceeded the threshold; L: The UMAP 
map is based on the candidate NAC marker genes score of each unit. Cell clusters with high ISG scores are highlighted
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p values were shown in Fig.  3A and S2. Among them, 
GATA3 is a key transcription factor involved in the devel-
opment of breast tumors. Here, we found the higher 
expression of GATA3 indicated a better prognosis, 
which was supported by a previous analysis that GATA3 
was required for homologous recombination repair and 
served as a tumor suppressor [31].

In order to construct a promising prognostic model 
based on the NAC response-related genes, we performed 
LASSO-Cox analysis to remove redundant prognostic 
factors (Fig. 3B, C), the resulting prognostic model, when 
applied to patients, can effectively predict OS outcomes. 
And nine prognostic genes related to NAC response 
were retained to construct the model, including NDRG1, 
CXCL14, HOXB2, NAT1, EVL, FBP1, MAGED2, AR and 
CIRBP (Fig. 3D). According to their expression levels, we 
measured the prognostic risk score for each patient and 
separated them into two groups based on the median 
score (Fig. 3E). K-Mcurve with the log-rank test further 
showed a significant reduction in OS in the high-risk 
score group (log-rank test p-value < 0.001, Fig.  3F). The 
nine prognostic genes related to NAC response had dis-
tinct expression patterns in different risk groups. NDRG1 
was the only gene that up-regulated in the high-risk 
group, while the other eight genes were up-regulated in 

the low-risk group (Fig.  3G). ROC curve analysis was 
used to evaluate the prediction efficiency of the NAC 
prognostic model. And the area under the ROC curve 
(AUC) reached 0.804, 0.762 and 0.704 at 1, 3 and 5 years, 
respectively, indicating that the prediction effect of the 
model is reliable (Fig. 3H).

In addition, we assessed the robustness and generaliz-
ability of the NAC prognostic model in two independent 
validation cohorts. Consistently, we calculated the risk 
score for each patient and separated them as the discov-
ery cohort did. As expected, the high-risk group showed 
significantly reduced OS compared to the low-risk group 
(log-rank p-value < 0.001 for GSE25065 and GSE22226, 
respectively). It’s worth noting that the prognostic model 
also showed good predictive performance in external 
validation sets with the predictive AUC reached 0.87 and 
0.753 respectively (Fig. S3).

Association of NAC risk scores with clinical variables
To further investigate the clinicopathologic significance 
of the NAC response-related risk score, we separated 306 
patients by clinicopathologic variables and compared the 
difference in risk scores between groups. As expected, the 
risk score was significantly associated with tumor grade 
and TNM stage, indicating that as the disease progresses, 

Fig. 3 Construction and verification of NAC prognostic risk model. A: Forest map shows the results of the univariate analysis of the top 10 NAC-related 
key genes; B: LASSO coefficient profiles of the prognostic genes. Change track of each independent variable in LASSO Cox regression analysis. The hori-
zontal axis represents the log value of the independent variable lambda, and the vertical axis represents the coefficient of the independent variable; C: 
Cross-validation for turning parameter selection in the LASSO regression model. Two vertical dashed lines indicated the optimal values using the mini-
mum criteria. Optimal genes with the best discriminative capability were selected for developing the Prognostic model; D: LASSO regression coefficients 
of the 9 optimized genes for constructing the prognostic model; E: Risk score distribution for each sample in the GSE25055 cohort; F: Kaplan-Meier curves 
comparing the OS of patients separated by risk groups, the red line represents line the high-risk score group, while the blue line represents the low-risk 
score group; G: Expression of the 9 prognostic model genes in the GSE25055 cohort between high- and low-risk group; H: Time-dependent receiver 
operating characteristic (ROC) curve of the prognostic model
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the NAC response-related risk score increases (Wilcoxon 
rank-sum test p-value < 0.001, Fig.  4A, B). However, we 
didn’t observe its association with age (Fig. 4C). As for the 
three indicators of triple-negative breast cancer (TNBC), 
the risk score was significantly higher in ER and PR-neg-
ative groups (Wilcoxon rank-sum test p-value < 2.2e-16, 
Fig. 4D, E), while it didn’t show a relationship with Her-2 
status, probably due to the limited sample size of Her-2+ 
patients (Fig.  4F). Simultaneously, among the intrinsic 
subtypes (PAM50) of BC, the basal-like (also consid-
ered as TNBC) subtype showed the highest risk score 

compared other groups (Fig.  4G). The two independent 
validation cohorts (GSE25065 and GSE22226) supported 
the clinicopathologic associations of NAC response-
related risk model (Fig. S4). These results suggested that 
the NAC response-related risk score reflected a worse 
prognosis of TNBC [32].

In addition, we investigated the independence and pre-
dictive efficiency of the NAC response-related risk score 
in the 306 BC patients underwent NAC (GSE25055). 
Univariate Cox regression analysis revealed the prog-
nosis associations (with OS) of the risk score, ER and 

Fig. 4 Clinicopathological significance of NAC response-related risk score in clinical variables.A: Differences in NAC response-related risk scores between 
age group; B: Differences in NAC response-related risk scores across different tumor grade; C: Differences in NAC response-related risk scores within differ-
ent TNM stage; D: Differences in NAC response-related risk scores in different intrinsic subtypes; E: Differences in NAC response-related risk scores across 
ER status; F: Differences in NAC response-related risk scores across PR status; G: Differences in NAC response-related risk scores across HER2 status; H: 
Univariate cox analysis of risk score in the GSE25055 cohort; I: Multivariate cox analysis of risk score in the GSE25055 cohort; J: K-M curve of NAC prognosis 
model in different groups of age
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PR status, AJCC stage, and tumor grade (HR = 4.98, 95% 
CI = 2.74–9.03, P < 0.001, Fig.  4H). Then, the multivari-
ate Cox regression analysis showed that the risk score 
remained an independent predictor of OS after adjusting 
for other confounding factors(HR = 3.40, 95% CI = 1.34–
8.65, P = 0.01, Fig.  4I). These results were also found in 
the two independent validation cohorts (Fig. S5A, B). To 
explore the applicability of the NAC prognostic model, 
we compared its prognosis associations in different clini-
cal features groups. In particular, there was a strong prog-
nostic effect of the NAC prognostic model regardless of 
whether the risk score was associated with this clinical 
variable (log-rank P < 0.05, Fig. 4J, S5C-F).

NAC risk score characterized differential tumor hallmarks 
and microenvironment features
In order to explore the underlying molecular mecha-
nisms of this NAC response -related risk score, we first 
investigated the cancer hallmarks associated with the 
risk score. We calculated the activity score of 50 can-
cer hallmark pathways for 306 BC patients underwent 
NAC. The results indicated that 41 of the 50 pathways 
had significant differences between the high- and low- 
risk groups (Fig.  5A). For instance, the interferon-α/γ 
response, inflammatory response, Wnt-β catenin signal-
ing, glycolysis, apoptosis, KRAS signaling, and hypoxia 
hallmarks were significantly activated in the high-risk 
group, whereas DNA repair, oxidative phosphorylation, 
and fatty acid metabolism hallmarks were significantly 
activated in the low-risk group.

As the risk score showed a relationship with inflam-
matory response, we further explored the association 
between the risk score with immune response. Using the 
ESTIMATE algorithm, we found that the NAC response-
related risk score was slightly positively correlated with 
immune and ESTIMATE score of the TME (Spearman 
correlation analysis, Fig. 5B, C). Additionally, we analyzed 
the difference in immune cell infiltration between the 
high- and the low- risk groups. To our surprise, activated 
B cell, CD4 T cell, CD8 T cell, dendritic cell and effec-
tor memory CD8 T cell was significantly accumulated in 
the high-risk group (Fig. 5D). Furthermore, the immune-
suppressive cell types including MDSC and Regulatory T 
cell were increased in the high-risk group. Previous stud-
ies have shown that tumors with immune-excluded phe-
notypes which associated with immune cells embedded 
in the surrounding tumor stroma away from tumor cells, 
also have higher immune infiltration, but whether the 
effector cells were surrounding the tumor or suppressed 
by the microenvironment is unclear [33].

NAC risk score and chemotherapy drug sensitivity
To further assess the potential impact of the risk score 
on drug response, we investigated drug response and 

potential therapeutic compounds based on the NAC 
response-related risk score. The spearman correlation 
between IC50 values and the risk score revealed the top 
6 positive and top 6 negative correlated drugs (Fig.  5E, 
G). For the positively correlated drugs, the IC50 of Dora-
mapimod, Elephantin, AZD2014, SB505124 and PRIMA-
1MET differed significantly between the high and low 
groups (Fig. 5F). For negatively related drugs, there also 
was a substantial difference between the high- and low-
risk groups (Fig. 5H). These results demonstrated that the 
risk score can be applied to drug resistance analysis.

Discussion
BC has the highest incidence rate among female malig-
nant tumors, accounting for 25% of the total incidence 
rate [34]. NAC is a treatment strategy that involves 
administering chemotherapy before surgery. Its goal 
is to reduce tumor volume and aggressiveness, lead-
ing to improved surgical resection rates and therapeutic 
effects. In the case of BC, NAC offers multiple benefits 
[35, 36]. However, the lack of effective prognostic bio-
markers for NAC presents a significant challenge to its 
clinical application in BC [37]. To address this challenge, 
we conducted a characterization of 190 key prognostic 
genes related to NAC. This characterization was achieved 
by integrating bulk RNA-seq data from 306 BC patients 
(including 57 with pathologic complete response and 249 
resistant cases) and single-cell RNA-seq data from 14 
BC patients. Through LASSO-Cox analysis, we identi-
fied nine NAC-related prognostic signatures. Our study 
then encompassed a comprehensive analysis of both the 
training cohort, GSE205055, and the validation cohorts, 
GSE25065 and GSE22226. This analysis enabled us to 
establish and validate, for the first time, a prognostic risk 
model specific to NAC response. Univariate and multi-
variate Cox regression analyses further confirmed that 
this prognostic risk model represents an independent risk 
factor associated with OS. Additionally, we evaluated the 
prognostic model’s association with various clinical vari-
ables. The establishment of this NAC response-related 
prognostic risk score will empower clinicians to make 
more informed decisions regarding personalized treat-
ment strategies and follow-up care. Ultimately, this 
model has the potential to significantly improve survival 
rates and treatment outcomes for patients with BC.

The pathogenesis of BC is a complex process influ-
enced by various genetic and environmental factors [38]. 
When integrating bulk-RNA seq and scRNA-Seq screen-
ing signatures, the key difference from other methods 
like whole-genome sequencing (WGS) or whole-exome 
sequencing (WES) is that it focuses solely on gene 
expression rather than genomic variations or mutations. 
While WGS and WES provide valuable insights into 
DNA sequence variations, they do not directly capture 
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Fig. 5 The correlation between NAC risk score of patients and characterization of the immune microenvironment. A: Heat plot of the activity of cancer 
hallmarks in the GSE25055 cohort between high- and low-risk group; B: Spearman correlation between the NAC response-related risk score and the 
immune score (R = 0.27; p < 0.01); C: Spearman correlation between the NAC response-related risk score and the ESTIMATE score; D: The proportions of 
differentially infiltrated TME immune cells between the high- and low-risk score groups;
E: Top 6 drugs with the highest positive correlation with risk score; F: Comparison of log2 (IC50) values of the top 6 positively correlated drugs between 
the high- and low-risk score groups; G: Top 6 drugs with the highest negative correlation with risk score; H: Comparison of log2 (IC50) values of the top 6 
negatively correlated drugs between the high- and low-risk score groups
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gene expression profiles, making it difficult to infer func-
tional differences at the transcriptional level. By combin-
ing bulk-RNA seq and scRNA-Seq screening signatures, 
we can unravel the underlying regulatory mechanisms 
and gain a deeper understanding of how specific genes 
and pathways contribute to the observed cellular hetero-
geneity.Through our research, we have gained insights 
into the potential roles of NAC-related genes in regulat-
ing multiple cellular processes associated with BC devel-
opment and progression. Our KEGG enrichment analysis 
further indicates that the differentially expressed genes 
identified in our study may be involved in regulating bio-
logical processes, such as cellular aging and the P53 sig-
naling pathway. These pathways have been implicated in 
various types of cancer, suggesting that the differentially 
expressed genes identified in our study could play crucial 
roles in BC pathogenesis [39–41]. Notably, the observa-
tion of high expression of NAC-related genes in fibro-
blast, cancer cell, and cycling cell types is particularly 
significant, as these cell types are known to have impor-
tant roles in BC pathogenesis [42–45].

Moreover, our scRNA-seq analysis revealed a highly 
heterogeneous cell composition within TME of BC, with 
significant variations in the proportions of eight distinct 
cell types across samples. Notably, sample sc5Rjuq064 
exhibited a decreased proportion of T cells and an 
increased proportion of tumor cells compared to other 
samples, which correlated with the tumor stage. Through 
enrichment analysis, we found that the differentially 
expressed genes in these three active cell types primarily 
relate to oxidative phosphorylation, energy metabolism, 
and DNA replication. Interestingly, contrary to previ-
ous research, cancer-related fibroblasts appear to act as 
direct positive regulators of the adaptive immune system, 
suggesting the potential use of immune-stimulating CAF 
in cancer treatment [46]. Zheng et al.‘s research implies 
that combining chemotherapy with anti-cancer-related 
fibroblast therapy may enhance the effectiveness of T 
cell-based immunotherapy, providing a potential strategy 
for colon cancer treatment [47]. The role of fibroblasts in 
BC warrants further investigation. Overall, our research 
enhances the understanding of BC pathogenesis by shed-
ding light on the specific genes and cellular processes 
involved in its development and progression. These find-
ings have the potential to contribute to the development 
of novel diagnostic and therapeutic approaches for BC.

In this study, LASSO-Cox regression analysis iden-
tified nine prognostic genes associated with NAC 
response: NDRG1, CXCL14, HOXB2, NAT1, EVL, 
FBP1, MAGED2, AR, and CIRBP. Among these genes, 
AR has been found to stimulate breast tumor growth in 
the absence of the estrogen receptor, making it a prom-
ising molecular target in the treatment of TNBC [48]. 
Dong et al. designed a novel combination therapy using 

enzalutamide and ceritinib to target both androgen-
dependent and androgen-independent AR signaling 
pathways in TNBC tumors [49]. CIRBP, known for its 
ability to bind and post-transcriptionally regulate mRNA, 
has been linked to cancer promotion and inflammation 
[50, 51]. Recent studies have identified CST3 as a down-
stream mediator for CIRBP functionality [52]. The mel-
anoma-associated antigen (MAGE) family proteins are 
recognized tumor-specific antigens. MAGED2 exhibits 
distinct effects depending on the subtype of breast can-
cer. It has been identified as a potential prognostic factor 
for wild-type TP53 patients and breast cancer patients 
with varying pathological grades [53].

Our research also investigated the potential utility 
of the NAC response-related risk score in predicting 
drug response to chemotherapy in breast cancer (BC). 
SB505124, a small molecule inhibitor of TGF-β recep-
tor I (ALK5), was examined in this context. We observed 
that BC patients in the low NAC risk group exhibited 
significantly lower IC50 values for SB505124 compared 
to those in the high NAC risk group. This suggests that 
patients in the low NAC risk group may be more respon-
sive to SB505124 treatment. Notably, in conjunction with 
SMAD3, SB505124 can attenuate the activity of CD8 + T 
cells, which may contribute to the reduced efficacy of 
immunotherapy in malignant BC [54]. These findings 
emphasize the potential of risk scoring as a valuable tool 
for predicting drug response and optimizing therapy 
in BC patients, ultimately leading to more effective and 
personalized treatment approaches. However, the clini-
cal classification of breast cancer has a great influence on 
the treatment effect of NAC. Although we validated the 
applicability of our model in different clinical classifica-
tion of breast cancer, further studies are needed.

In conclusion, our study integrated single-cell and 
bulk RNA sequencing analyses to construct and validate 
a nine-gene signature associated with NAC prognosis. 
This signature serves as an independent prognostic indi-
cator for BC patients. Additionally, our findings provide 
genomic evidence for future research directions in devel-
oping anti-BC treatment strategies, particularly for indi-
viduals who may not benefit from NAC.
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