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Abstract
Objective  This study aimed to investigate the causal associations between several liver traits (liver iron content, 
percent liver fat, alanine transaminase levels, and liver volume) and colorectal cancer (CRC) risk using a Mendelian 
randomization (MR) approach to improve our understanding of the disease and its management.

Methods  Genetic variants were used as instrumental variables, extracted from genome-wide association studies 
(GWAS) datasets of liver traits and CRC. The Two-Sample MR package in R was used to conduct inverse variance 
weighted (IVW), MR Egger, Maximum likelihood, Weighted median, and Inverse variance weighted (multiplicative 
random effects) MR approaches to generate overall estimates of the effect. MR analysis was conducted with 
Benjamini-Hochberg method-corrected P values to account for multiple testing (P < 0.013). MR-PRESSO was used to 
identify and remove outlier genetic variants in Mendelian randomization (MR) analysis. The MR Steiger test was used 
to assess the validity of the assumption that exposure causes outcomes. Leave-one-out validation, pleiotropy, and 
heterogeneity testing were also conducted to ensure the reliability of the results. Multivariable MR was utilized for 
validation of our findings using the IVW method while also adjusting for potential confounding or pleiotropy bias.

Results  The MR analysis suggested a causal effect between liver volume and a reduced risk of CRC (OR 0.60; 95% CI, 
0.44–0.82; P = 0.0010) but did not provide evidence for causal effects of liver iron content, percent liver fat, or liver 
alanine transaminase levels. The MR-PRESSO method did not identify any outliers, and the MR Steiger test confirmed 
that the causal direction of the analysis results was correct in the Mendelian randomization analysis. MR results were 
consistent with heterogeneity and pleiotropy analyses, and leave-one-out analysis demonstrated the overall values 
obtained were consistent with estimates obtained when all available SNPs were included in the analysis. Multivariable 
MR was utilized for validation of our findings using the IVW method while also adjusting for potential confounding or 
pleiotropy bias.

Conclusion  The study provides tentative evidence for a causal role of liver volume in CRC, while genetically 
predicted levels of liver iron content, percent liver fat, and liver alanine transaminase levels were not associated 
with CRC risk. The findings may inform the development of targeted therapeutic interventions for colorectal liver 
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      Introduction
Colorectal cancer(CRC) is the third most common type 
of cancer in the world and more than 50% of patients with 
CRC will develop colorectal liver metastases (CRLMs) [1, 
2]. The liver is the most common site of colorectal metas-
tasis, with 15–20% of patients being candidates for hepa-
tectomy [3, 4]. Approximately one-third of patients will 
develop liver metastases within three years of diagnosis, 
which contributes to the overall poor prognosis and sur-
vival rates [5]. Surgical resection is currently the treat-
ment of choice for colorectal liver metastasis (CRLM) 
and has been shown to be the only potentially curative 
therapy [6, 7]. The combination of advances in medical 
therapy, such as systemic chemotherapy (CTX), and the 
role of surgery in the treatment of metastatic disease has 
had a positive impact on the prognosis, with an increase 
in median survival and cure rates [8]. However, the biol-
ogy of liver metastases is extremely complex and involves 
many interactions between tumor cells and the liver 
microenvironment, leading to significant challenges in 
the management of CRLM [9]. Consequently, there is an 
urgent need to explore novel therapeutic strategies and 
elucidate the underlying mechanisms linking liver traits 
to CRC development and progression.

The liver plays a crucial role in the natural course of 
CRC due to its anatomical and physiological importance. 
Metastatic cells in CRC acquire properties in addition 
to those required to become neoplastic because they are 
able to successfully dissociate, disseminate and colonize 
secondary sites: motility and invasion, the ability to mod-
ulate the secondary site or the local micro-environment, 
plasticity and the ability to colonize secondary tissues 
[10, 11]. In addition to the mucus and intestinal epithelial 

barrier, the intestine also has an intestinal vascular bar-
rier (GVB), which acts as a gatekeeper to control the 
entry of molecules and microorganisms into the systemic 
circulation [12, 13]. Under hazardous conditions, harm-
ful intestinal pathogens can cross the epithelial barrier, 
damaging the GVB and ultimately allowing the bacte-
ria or their components to spread into the bloodstream, 
eventually reaching the liver [12, 13].

The liver and lung are the most common sites for CRC 
metastasis, with the liver’s predominant blood supply 
arising from the confluence of the gastrointestinal (GI) 
tract, which supplies blood vessels via the hepatic portal 
vein. For metastases arising from the colon and proximal 
parts of the rectum, the portal system directs blood flow 
directly to the liver [14]. In hematogenous dissemination, 
platelets and neutrophils protect circulating tumour cells 
(CTCs) from being eliminated by NK cells. Subsequent 
entry of CTCs into the liver microvasculature may trigger 
a proinflammatory cascade that induces the secretion of 
chemokines by Kupffer and stellate cells and upregulation 
of vascular adhesion receptors, resulting in the adhesion 
of CTCs to the liver microvasculature [15]. Furthermore, 
tumour cell interaction with the tumour microenviron-
ment (TME) plays an important role in CRLM [16]. By 
remodeling the TME, cancer cells can induce the for-
mation of pre-metastatic niches [17, 18]. For example, 
activation of hepatic stellate cells (α-HSC) is the most 
common biological process in secondary or primary liver 
cancer [19]. By remodeling and depositing extracellular 
matrix (ECM), α-HSCs can influence CRC cell growth 
and invasion [20].

Mendelian randomization (MR) is a powerful epide-
miological approach that leverages genetic variants as 
instrumental variables to investigate causal associations 
between exposures and outcomes [21]. By capitaliz-
ing on the random allocation of genetic variants during 
meiosis, MR studies can provide robust evidence for cau-
sality, while minimizing the influence of potential con-
founding factors and reverse causation [22, 23]. Based on 
this, in the context of CRC and liver traits, MR presents 
a unique opportunity to untangle the intricate relation-
ship between liver characteristics and colorectal cancer 
risk, which could, in turn, shed light on the biological 
mechanisms underpinning CRLM and inform the devel-
opment of targeted therapeutic interventions, as depicted 
in Fig. 1.

This MR study aims to investigate the causal asso-
ciations between several liver traits (liver iron content, 
percent liver fat, alanine transaminase levels and liver 

metastasis (CRLM) patients, and the study highlights the importance of MR as a powerful epidemiological tool for 
investigating causal associations between exposures and outcomes.
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Fig. 1  Study design of Mendelian randomization between liver traits and 
CRC. The solid lines represent the association between the instrumental 
variables and exposure as well as the association between exposure and 
outcome. Dash lines with a cross means that the association meets two 
basic assumptions of Mendelian randomization: (i) the genetic variants are 
independent of confounders between exposure and outcomes, (ii) the ge-
netic variants only influence the outcome via exposure
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volume) and CRC risk, with the ultimate goal of improv-
ing our understanding of the disease and its management. 
For this aim, we established an effective and reliable data 
processing framework, which made it possible to gen-
erate instrumental variables (IVs) for MR analysis. By 
selecting exposure-related genetic variations as IVs, MR 
eliminates confounding factors [24]. And then, using 
an inverse variance weighted MR approach, we calcu-
lated the pool result based on IVs. To further guarantee 
the reliability of our method, MR-Egger and Weighted 
median analysis and leave-one-out validation were con-
ducted in this step too. MR-Egger is able to detect some 
violations of the standard assumptions of the instrumen-
tal variables and provide an estimate of the effect that 
is not subject to these violations. The weighted median 
analysis is used to combine data from multiple genetic 
variants into a single causal estimate [25]. Moreover, 
pleiotropy and heterogeneity testing were used to mini-
mize false-positive conclusions and the risk of producing 
unreliable results [26]. What’s more, multivariable MR 
was utilized for validation of our findings using the IVW 
method, while also adjusting for potential confounding 
or pleiotropy bias. Finally, a full report was generated to 
provide an overview of the results of our study.

Materials and methods
Genetic instruments
Summary-level data from the GWAS dataset was funda-
mental for MR analysis. IVs were extracted from several 
liver traits (liver iron content, percent liver fat, alanine 
transaminase levels and liver volume) related GWAS 
datasets, and CRC related GWAS datasets were then 
used in the further analysis. To meet the MR assump-
tions and reduce the bias, the summarized GWAS data 
was processed. Subsequently, MR analysis involving an 
inverse variance weighted MR approach, leave-one-out 
validation, and MR-Egger analysis was used to compre-
hensively assess the causal effect of several liver traits on 
the risk of the development of CRC.

Data sources
We used data from the UK Biobank for the study of liver 
iron content, percent liver fat, alanine transaminase lev-
els and liver volume [27]. The UK Biobank has approval 
from the North West Multicenter Research Ethics Com-
mittee (https://www.ukbiobank.ac.uk/ethics/), and these 
ethics regulations cover the work in this study. Summary 
statistics data for CRC were available from a genome-
wide association meta-analysis of 177,028 European-
descent individuals (3,022 cases and 174,006 noncases) 
from FinnGen [28]. A summary of the characterization 
and covariates adjusted for the datasets employed in this 
study can be found in the supplementary information 
(Table S1).

Our study analyzed the summarized data from 
genome-wide association studies (GWAS) to create 
instrumental variables (IVs) for MR analysis. In this con-
text, IVs are genetic variants [29]. [30] The criteria we 
followed for selecting these instrumental variables are as 
follows: (1) Each individual SNP must show a significant 
correlation with several liver traits (liver iron content, 
percent liver fat, alanine transaminase levels, and liver 
volume) across the entire genomic region, with a signifi-
cance threshold of P < 5.0 × 10− 8. (2) We assessed the 
linkage disequilibrium (LD) among SNPs through the 
OpenGWAS API, which contains LD reference panels 
for the five super-populations in the 1000 Genomes ref-
erence panel. The reference panel includes only bi-allelic 
SNPs with a minor allele frequency (MAF) > 0.010. The 
entire process utilizes the PLINK clumping method, 
where SNPs in linkage disequilibrium (LD) within a 
specific window are pruned. The SNP with the lowest 
p-value is kept. In this study, only those SNPs that pro-
duced the most significant results, among those with an 
R2 < 0.0010 within a clumping window of 10,000 kb, were 
kept. 7 SNPs were utilized as instrumental variables for 
liver iron content, 10 SNPs for percent liver fat, 228 SNPs 
for liver volume, and 10 SNPs for liver alanine transami-
nase levels. All instrumental variables in the supplemen-
tary information.

Two-sample mendelian randomization
Using genetic variants as instrumental variables, MR is a 
technique that is gaining popularity for determining the 
causal relationships between exposures and outcomes. 
In order to guarantee the accuracy of causal reasoning, 
MR is predicated on a number of essential premises. 
Assumption 1: There is a significant association between 
the genetic variation used as an instrumental variable and 
the relevant exposure. This premise is crucial because it 
guarantees that the genetic variation is a reliable substi-
tute for the exposure, enabling the estimation of a causal 
impact. Estimates of the causal impact may be skewed 
if this assumption is broken. Assumption 2: The genetic 
variation is not linked to any confounding elements that 
might skew the relationship between exposure and result. 
The second fundamental tenet of MR is that there are 
no confounding variables linked with the genetic variant 
used as an instrumental variable that might skew the rela-
tionship between exposure and outcome. Assumption 3: 
The genetic variant has no other impact on the outcome 
besides how it affects the exposure [31]. The genetic 
variant used as an instrumental variable only influences 
the result through its impact on the exposure, and not 
through any other pathway, according to the third funda-
mental tenet of MR.

In this study, the Two-Sample MR package (version 
0.5.6) in R 4.1.3 (R Foundation for Statistical Computing, 

https://www.ukbiobank.ac.uk/ethics/


Page 4 of 9Ni et al. BMC Medical Genomics          (2023) 16:316 

Vienna, Austria) was used to conduct MR analysis, eval-
uating the causal effect of various liver traits (including 
liver iron content, percent liver fat, alanine transaminase 
levels, and liver volume) on CRC risk mediated by each 
individual instrumental SNP. Five methods, including 
inverse variance-weighted (IVW), MR-Egger, Maximum 
likelihood, Weighted median, and Inverse variance-
weighted (multiplicative random effects), were employed 
to generate overall estimates of the effect. In order to 
test whether the associations were likely to be causal, we 
used inverse variance weighted (IVW) two-sample MR as 
our primary analysis to estimate the effect of the expo-
sure factors on CRC [23]. The IVW approach utilized a 
meta-analysis framework to combine Wald estimates 
for each SNP to derive an overall estimate of the effect, 
assuming the absence of horizontal pleiotropy, with the 
IVW results being unbiased. However, if heterogeneity 
exists, random-effects IVW models are employed. The 
Maximum likelihood method, similar to IVW, assumes 
the absence of heterogeneity and horizontal pleiotropy. 
In the presence of these assumptions, the results will 
be unbiased, with smaller standard errors compared to 
IVW. To assess the presence of pleiotropy, the MR-Egger 
regression approach is utilized, based on the assump-
tion of instrument strength independent of direct effect 
(InSIDE), allowing for the assessment of the intercept 
term. A zero-intercept term indicates the absence of 
horizontal pleiotropy, making the result of the MR-Egger 
regression consistent with IVW. The weighted median 
method permits accurate estimation of causal associa-
tion even when up to 50% of instrumental variables are 
invalid. When the InSIDE hypothesis is violated, the 
weighted model estimate has greater power to detect a 
causal effect, less bias, and lower type I error rates than 
MR-Egger regression.

The strength of instrumental variables (IVs) is evalu-
ated by computing the F-statistic using the formula F = 
R2×(N-1-K)/[(1 - R2)×K], where R2 represents the pro-
portion of variance in the exposure explained by the 
genetic variants, N represents the sample size, and K 
represents the number of instruments. A correspond-
ing F-statistic greater than 10 is considered indicative of 
the absence of significant weak instrumental bias [32]. 
Furthermore, MR-PRESSO corrects for pleiotropy and 
outlier effects, while the MR Steiger test evaluates the 
directionality of the causal effect [33]. Heterogeneity 
and pleiotropy tests assess the homogeneity and pleio-
tropic effects of instrumental variables, respectively [34]. 
Finally, leave-one-out analysis tests the robustness of the 
causal estimates obtained from the MR analysis by itera-
tively removing each instrumental variable to identify 
potential heterogeneous SNPs. Together, these methods 
help to improve the validity and reliability of causal infer-
ence in our MR analysis.

IVW multivariable mendelian randomization
IVW multivariable MR was utilized to assess the causal 
impact of different liver traits, encompassing liver iron 
content, percent liver fat, alanine transaminase (ALT) 
levels, and liver volume, on the risk of colorectal cancer. 
In this approach, instruments were chosen for each expo-
sure variable. Subsequently, all exposures correspond-
ing to those genetic variants were collectively regressed 
against the outcome variable, with weighting based on 
the inverse variance of the outcome. The threshold for 
instrument inclusion, denoted as pval_threshold, was 
set at 5.0 × 10− 8. Moreover, decisions were made about 
whether to estimate intercepts or use instrument-specific 
estimates for each exposure variable. This comprehensive 
analysis seeks to unravel the potential causal relation-
ships between liver traits and CRC risk while considering 
the complexities of confounding and bias.

Results
Causal effect of liver traits on CRC
Summary statistics of instrumental SNPs as genetic 
instrumental variables (IVs) for several kinds of liver 
traits (liver iron content, percent liver fat, alanine trans-
aminase levels and liver volume) were presented in Table 
S2. These SNPs were not associated with CRC and have 
no linkage disequilibrium (LD) associations. Each line of 
the table included 9items related to the SNP, such as the 
SNPs, effect allele, other allele, beta coefficients and stan-
dard error of the SNP on the risk of the corresponding 
liver traits and CRC.

As shown in Fig.  2, our analysis suggested a causal 
effect between liver volume and a reduced risk of 
colorectal cancer (the five MR methods demonstrated 
consistent effect directions and statistical significance 
with a a Benjamini-Hochberg method-corrected P value 
< 0.013 and did not provide evidence for causal effects 
of liver iron content, percent liver fat, or liver alanine 
transaminase levels. Large liver volumes may represent 
a decreased risk of CRC (Beta − 0.51; OR 0.60; 95% CI, 
0.44–0.82; P = 0.0010). The risk of CRC lacked evidence 
of association with liver iron content, percent liver fat, 
and liver alanine transaminase levels. Liver iron content 
(Beta 0.16; OR 1.2; 95% CI, 0.97–1.4; P = 0.10), percent 
liver fat (Beta 0.020; OR 1.0; 95% CI, 0.82–1.2; P = 0.79), 
liver alanine transalanine transase levels (Beta − 0.060; 
OR 0.94; 95% CI, 0.32–2.8; P = 0.91) are provided in Sup-
plemental Fig. 1.

For the causal analysis of liver volume and colorectal 
cancer risk, the MR-PRESSO method did not identify 
any outliers (Beta − 0.51; P = 0.011; Global Test P = 0.47). 
The MR Steiger test confirmed that the causal direction 
of the analysis results was correct (P = 6.0 × 10− 101). 
And no horizontal pleiotropy was detected according to 
MR-Egger intercepts, and no evident heterogeneity was 
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identified; detailed information is provided in Table 1. In 
conclusion, our findings provide tentative evidence for 
a causal role of liver volume in CRC, although further 
research is needed to confirm these results.

The leave-one-out analysis was performed in order to 
assess the influence of individual SNPs on the estimates. 
The results demonstrate that the overall values obtained 
by the leave-one-out analysis were consistent with esti-
mates obtained when all available SNPs were included 
in the analysis. Further information on the leave-one-out 
validation results can be found in Supplemental Fig. 2.

The findings derived from the application of IVW mul-
tivariable MR exhibited coherence with the outcomes 
obtained through the Two-sample MR. SNPs employed 
in IVW multivariable MR and their beta, standard error, 
and P value for exposure and outcome can be found in 
Additional File 1. Notably, the analysis revealed a sig-
nificant and consistent trend for liver volume’s asso-
ciation with colorectal cancer risk. Specifically, liver 
volume demonstrated a noteworthy protective effect 
against colorectal cancer onset, as indicated by the esti-
mated Beta coefficient of -0.45 (SE = 0.16, P = 0.0050). 
A graphical representation of the results is available in 
Supplemental Fig.  3, showcasing scatter plots generated 
from the IVW multivariable MR analysis. This alignment 
between the IVW multivariable MR and the Two-sample 
MR reinforces the observed connection between liver 
volume and colorectal cancer risk, further validating the 
significance of this relationship.

Table 1  Heterogeneity and pleiotropy of individual single 
nucleotide polymorphisms for Mendelian randomization
Exposure Heterogeneity Pleiotropy

Cochran’s Q 
statistic (IVW)

P 
value

MR-Egger 
intercept

P 
value

Liver iron content 3.0 0.70 0.0021 0.93

Percent liver fat 11 0.30 0.0060 0.75

Liver alanine trans-
aminase levels

2.7 × 102 0.0050 -0.0014 0.88

Liver volume 9.5 0.40 0.032 0.21

Fig. 2  Associations between genetically predicted liver and CRC. CI indicates confidence interval; OR, odds ratio. MR-Egger is able to detect some viola-
tions of the standard assumptions of the instrumental variables and provide an estimate of the effect that is not subject to these violations. The weighted 
median analysis is used to combine data from multiple genetic variants into a single causal estimate.( Liver iron content in mg/g, percent liver fat in %, 
liver volume in L, Liver enzyme levels (alanine transaminase) in IU/L)
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Discussion
This study provided genetic evidence for a causal rela-
tionship between liver volume and CRC risk and found 
a possible causal role for liver volume in reducing CRC 
risk. However, there was no evidence for a causal role of 
liver iron content, percent liver fat, or liver alanine trans-
aminase levels in CRC risk.

The characteristics of the liver are closely related to 
the onset and progression of many diseases. In diabetic 
ketoacidosis (DKA) disease, it has been shown that ala-
nine aminotransferase (ALT) has a greater correlation 
with the disease in patients aged 65 years and older and 
in obese patients [35]. Other studies have shown a strong 
causal relationship between higher levels of liver fat and 
the risk of type 2 diabetes, which is consistent with recent 
MR studies showing a causal relationship between non-
alcoholic fatty liver disease or its markers (ALT and AST) 
and a higher risk of type 2 diabetes [30].

However, the iron content of the liver does influence 
the course of the disease. High iron levels are an inde-
pendent inducer or cofactor of hepatocellular carcinoma 
(HCC). And there is a correlation between hepatic iron 
level and hepatocellular carcinoma among patients with 
end-stage liver disease, while the strongest correlation 
between hepatic iron level and hepatocellular carcinoma 
is found among patients with biliary cirrhosis and hepa-
titis C [36]. Patients with cancer have a history of chemo-
therapy, which puts them at increased risk of liver toxicity 
and pancytopenia, leading to elevated liver fat and iron. 
Moreover,liver volume is another factor that influences 
disease progression. Despite limitations in younger 
patients, liver volume remains a traditional imaging bio-
marker for polycystic liver [37]. In patients with diagnosis 
of hilar or distal bile duct cancer, liver volume is a use-
ful tool to assess the efficacy of biliary stenting [38]. After 
gastrectomy in patients with gastric adenocarcinoma, the 
second and third segments of the liver show significant 
atrophy compared with the rest of the liver and the whole 
liver, and the volume reduction is poorly correlated with 
time [39].

The liver, the most common site of metastasis in CRC, 
has seen an increase in the number of patients with 
resectable colorectal liver metastases (CRLM) over the 
past two decades. However, the reasons for the increase 
in numbers are due to advances in intensive systemic 
chemotherapy regimens associated with targeted thera-
pies or immunotherapy, on the one hand, and technical 
improvements that increase the size of future liver rem-
nant (FLR) and facilitate parenchyma-sparing surgery, on 
the other [40].

Our results showed that liver volume has a protective 
effect against CRC. Liver volume, which reflects the num-
ber of liver parenchymal cells and is a quantitative mea-
sure of liver reserve function from a morphological point 

of view, is an indicator for assessing disease severity and 
predicting outcome [41]. The liver consists of approxi-
mately 80% hepatocytes and 20% non-hepatocytes [42], 
and there is a direct relationship between liver volume 
and cell content. As the most regenerative organ in the 
body, the liver’s powerful regenerative capacity comes at 
the expense of the liver’s reserve function [43]. When the 
liver is injured, there is massive necrosis, shrinkage, and 
structural collapse of the liver tissue, leading to a reduc-
tion in volume and dysfunction of the hepatic reserve 
[41].

Hepatocytes are the major parenchymal cells respon-
sible for metabolic functions and most circulating plasma 
proteins such as albumin, transporters, protease inhibi-
tors, coagulation factors and modulators of immune 
complexes and inflammation are expressed by hepa-
tocytes [44]. They metabolise amino acids, metals and 
endogenous compounds such as haem and bilirubin, and 
control the homeostasis of molecules such as glucose/
glycogen, triglycerides, cholesterol, bile acids and vita-
mins A and D [45]. Amino acids are not only building 
blocks of proteins, they are also intermediate metabolites 
that power a variety of biosynthetic pathways [46]. Glu-
tamine is an essential amino acid that is used by cancer 
cells for biosynthetic, bioenergetic and antioxidant pur-
poses [47]. For the bioenergetic and biosynthetic needs 
of cells, glutamate serves as an important carbon source. 
When proliferating cells use glutamine-derived carbon 
to enter the TCA cycle, most of the citrate produced is 
exported to the cytosol where it is converted to acetyl-
CoA, a precursor for the biosynthesis of fatty acids and 
cholesterol. Oxaloacetate from the TCA cycle is also used 
to synthesise aspartate and asparagine [48].

In addition to glutamine metabolism, serine and gly-
cine metabolism are also important mediators in cancer 
cell development [49]. Glycine is a precursor of serine 
and is involved in a wide range of metabolic processes in 
both humans and animals as a component of glutathione 
and as a substrate in the synthesis of purines and pro-
teins [50]. The consumption of glycine and the expression 
of the mitochondrial glycine biosynthesis pathway are 
strongly correlated with the rate of proliferation of cancer 
cells in general and are a source of amino acids required 
for cancer growth [51, 52]. The primary route for the 
disposal of glycine is catalysed by the glycine cleavage 
system, which is located in the inner membrane of the 
mitochondria in the liver [53]. In contrast, the glycine 
decarboxylation system of cancer cells can break down 
glycine in the presence of the glycine decarboxylase 
complex to form ammonia, carbon dioxide, and methy-
lenetetrahydrofolate [54]. Serine catabolism is initiated 
by the interconversion of serine to glycine, producing a 
large number of one-carbon units that activate one-car-
bon metabolism, forming an intracellular double-loop 
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pathway linking the methionine and folate cycles via 
methionine synthase. The glycine cleavage system and 
choline catabolism are additional pathways to one-car-
bon metabolism, and the preferred carbon source driv-
ing one-carbon metabolism in cancer cells is the uptake 
and subsequent breakdown of glucose into various bio-
mass precursors, including the synthesis of serine and 
glycine [55].In macromolecular synthesis, serine can load 
transfer RNAs (tRNAs) for protein synthesis, serve as a 
precursor for amino acids such as cysteine and glycine, 
provide head groups for sphingolipid and phospholipid 
synthesis, or donate 1  C units for nucleotide synthesis 
[56].Thus, the volume of the liver is determined by the 
hepatocytes, which have the role of metabolizing amino 
acids. Amino acid metabolism is an important mediator 
of cancer development and may have the same effect on 
colorectal cancer.

In summary, these findings provide insights into the 
biological mechanisms underlying the complex relation-
ship between liver characteristics and CRC development, 
and may inform the development of targeted therapeutic 
interventions for patients with CRLM. Our study high-
lights the importance of MR as a powerful epidemio-
logical tool for investigating causal associations between 
exposures and outcomes. However, there are some limi-
tations to this study that should be considered. First, 
although we examined the effect of certain circulating 
liver characteristics on CRC, it was not possible to exam-
ine possible non-linear relationships with CRC. Another 
limitation is that the associations between liver traits and 
CRC were derived from a European cohort, making it 
difficult to extrapolate to other populations. An increase 
in the diversity of the populations studied is required 
for even modest differences between populations in the 
contribution of shared variation to complex traits [57]. 
Therefore, the results we present can only be extended to 
European populations. What’s more, in contrasting the 
covariate adjustments between the cohorts, it’s evident 
that the “Liver iron content” cohort incorporates spe-
cific imaging-related covariates, such as the imaging cen-
ter, scan date, and scan time, which are absent in other 
cohorts, because it is a radiological feature. Addition-
ally, while the “Liver alanine transaminase levels” cohort 
adjusts for a notable 40 genetic principal components, 
the “Colorectal cancer” cohort includes adjustments for 
just 10 genetic principal components and “Liver iron 
content” doesn’t consider PCs as a covariate. Such dif-
ferences in covariate adjustments can have implications. 
For instance, the variance in the number of genetic prin-
cipal components used between cohorts suggests that 
there might be different degrees of control for potential 
genetic confounding. These disparities underscore the 
importance of being cautious when interpreting results, 
especially in cross-cohort comparisons. Additionally, the 

demographic disparities within the dataset present a crit-
ical issue for consideration. It is evident that three of the 
datasets (Liver iron content, Percent liver fat, and Liver 
volume) predominantly encompass cohorts from the UK 
Biobank, consisting of individuals of European ancestry, 
meticulously ascertained based on self-identified “White 
British” ancestry. In contrast, the cohort for Liver ala-
nine transaminase levels consists of a discovery sample 
drawn from individuals of European descent from the 
UK Biobank, while the replication sample encompasses 
individuals of European lineage from both the Nether-
lands and the United States. Furthermore, the cohorts 
for Colorectal cancer are exclusively composed of Finnish 
individuals. Notably, while the exposure groups exhibit 
uniformity in composition and origin, predominantly 
from the UK Biobank (excluding the replication sample), 
the outcome population originates from Finland. Even 
though both populations are of European descent, the 
potential biases introduced by their distinct backgrounds 
in Mendelian randomization cannot be dismissed. For 
future endeavors, it would be prudent to employ datasets 
with more congruent demographic backgrounds to vali-
date these findings, ensuring their robustness.

Larger and more comprehensive MR studies are war-
ranted to better understand the intrinsic relationship 
between liver traits and CRC. More research is needed 
to clarify the association between hepatic characteris-
tics and the risk of CRC and to explore the underlying 
mechanisms.
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