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Abstract

medicine are discussed.

Background: We propose a phenotype-driven analysis of encrypted exome data to facilitate the widespread
implementation of exome sequencing as a clinical genetic screening test.

Twenty test-patients with varied syndromes were selected from the literature. For each patient, the mutation,
phenotypic data, and genetic diagnosis were available. Next, control exome-files, each modified to include one of
these twenty mutations, were assigned to the corresponding test-patients. These data were used by a geneticist
blinded to the diagnoses to test the efficiency of our software, PhenoVar. The score assigned by PhenoVar to any
genetic diagnosis listed in OMIM (Online Mendelian Inheritance in Man) took into consideration both the patient’s
phenotype and all variations present in the corresponding exome. The physician did not have access to the individual
mutations. PhenoVar filtered the search using a cut-off phenotypic match threshold to prevent undesired discovery of
incidental findings and ranked the OMIM entries according to diagnostic score.

Results: When assigning the same weight to all variants in the exome, PhenoVar predicted the correct diagnosis in
10/20 patients, while in 15/20 the correct diagnosis was among the 4 highest ranked diagnoses. When assigning a
higher weight to variants known, or bioinformatically predicted, to cause disease, PhenoVar's yield increased to 14/20
(18/20 in top 4). No incidental findings were identified using our cut-off phenotypic threshold.

Conclusion: The phenotype-driven approach described could render widespread use of ES more practical, ethical and
clinically useful. The implications about novel disease identification, advancement of complex diseases and personalized
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Background

Exome Sequencing (ES) allows simultaneous screening
for variants in the coding portion of all genes present
in a patient’s genome. Over the last few years, ES has
aided in the elucidation of the genetic basis of multiple
genetic syndromes (for a review of some examples see
Ku et al. [1]). The relatively low cost of ES and its” high
diagnostic yield have stimulated discussion about its
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promising role in clinic [2-4]. However, despite the un-
precedented success of ES as a research tool, its
utilization as a genetic screening test in clinic remains
largely prohibitive due to challenges associated with
consent, incidental findings, and the management of
the massive amounts of data generated (see “Chal-
lenges of integrating ES in clinic” subsection). Further-
more, in many families there is a single affected
individual available, which adds further complexity to
the analysis of the results [5], unless the genetic variant
responsible for the disease is not present in the
parents.
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Challenges of integrating ES in clinic
Adapted from Trakadis [6], published with the permission
of author.

1. Meaningful patient informed-consent may not be
feasible
o Possibility of incidental findings,
o Multiple findings of uncertain clinical significance,
o Multiple issues to discuss leading to prohibitive
requirements in time & resources
2. Potential emotional distress over disease risk even
among healthy individuals
3. Genomic information is a powerful personal
identifier
e Raising concerns about privacy, confidentiality,
genetic discrimination
4. Very large amounts of genetic information
generated
o Limited number of clinical geneticists for data
interpretation and clinical care
o Substantial time and cost for data analysis and
genetic counselling
e Dynamic/evolving nature of the interpretation as
new knowledge is gained
e Duty to re-contact patients as knowledge changes
over time

To address these challenges, variant prioritization using
bioinformatic tools (e.g. Berg et al. [7]; Berg et al. [8]) and
practice guidelines/recommendations (e.g. Christenhusz
et al. [9]; ACMG Policy statement on Genomic Sequen-
cing, May 2012 [10,11]) have been suggested. These ap-
proaches, however, do not adequately address all the
challenges summarized in the “Challenges of integrating
ES in clinic” subsection (e.g. incidental findings, fin-
dings of uncertain clinical significance, risk for genetic
discrimination, requirements in time & resources). More-
over, they are limited by the efficiency of the bioinformatic
tools to accurately predict the clinical impact of different
variants [12,13]. At present, different tools often lead
to opposite predictions about the functional impact of
the same variant [14]. Nonetheless, the ability of ES to
facilitate diagnosis and inform therapy will likely lead
to its premature introduction in clinic using an ap-
proach similar to the one followed for chromosomal
microarray [15-20].

In the light of rapid developments in genomic tech-
nologies, medical genetics is shifting from the present
“phenotype-first” medical model to a “data-first” model,
which leads to multiple complexities. An alternative
phenotype-driven approach was recently put forward
[6]. This approach, namely Individualized Mutation-
weighed Phenotype On-line Search (I-MPOS), aims to ad-
dress the above mentioned issues and facilitate widespread
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clinical utilization of ES. We hereby present PhenoVar, a
software consistent with this phenotype-driven approach,
and provide preliminary evidence of its potential benefits.

Implementation

PhenoVar and phenotype-driven analysis of exome data
Figure 1 summarizes the overall workflow of PhenoVar. In
brief, PhenoVar automatically prioritizes diagnoses for
validation based on both the phenotypic and genomic
information of a proband. It calculates a patient-specific
diagnostic score for each OMIM entry (Online Mendelian
Inheritance in Man; http://www.ncbi.nlm.nih.gov/omim)
with known molecular basis. The diagnostic score assigned
to a given syndrome is the sum of its phenotypic and
genotypic weight.

Calculation of phenotypic weight

For each syndrome listed in the Human Phenotype
Ontology (HPO; http://www.human-phenotype-ontology.
org) the phenotypic weight is determined by calculating
the similarity between the proband and the different
(simulated) patients available in a local database, as de-
scribed below.

In order to compare the phenotype of a patient with
an unknown diagnosis to phenotypes corresponding to
known genetic syndromes, we simulated a large num-
ber of sample patients, hereafter referred to as simu-
lated patients, using HPO and OMIM databases. For
each syndrome listed in the HPO database, twenty to
twenty-five simulated patients were randomly generated
using the phenotypic traits corresponding to that diagno-
sis and the information was stored in a local database
(Phenobase). On average, a total of 5 traits corresponding
to the respective disease were assigned to each simulated
patient. The probability of each trait to be present in the
phenotype of a given simulated patient was chosen to be
proportional to the prevalence of that trait in the respect-
ive disease, as available in the HPO database. Only simu-
lated patients corresponding to a syndrome with a known
molecular basis, according to the OMIM database, are
considered in the subsequent steps of the analysis.

Each trait entered by the user for a given proband is an-
alyzed by PhenoVar using the HPO ontology, a directed
acyclic graph representing the relationships between the
traits. For each node (trait) in the graph, previous (parent)
nodes are more generic traits and forward (child) nodes
are more accurate descriptions of the trait. This allows
more flexibility in the terms used by the clinician, while
still enabling recognition of similarity between the pro-
band and each (simulated) patient in Phenobase. For a
given syndrome, accurate and general hits are limited to
one child or parent node, in relation with traits listed
in HPO. The PhenoVar algorithm first compares the pro-
band to all patients contained in Phenobase (currently


http://www.ncbi.nlm.nih.gov/omim
http://www.human-phenotype-ontology.org/
http://www.human-phenotype-ontology.org/

Trakadis et al. BMC Medical Genomics 2014, 7:22
http://www.biomedcentral.com/1755-8794/7/22

Page 3 of 13

Traits

Similarity
search

Exome
- ¥
VCF

|

v

Phenobase

v

Local patients

Simulated
+

Real patients

v

PhenoVar

Genotypic weight
model

Other

DC

100

4

Phenotypic weight
for each OMIM entry #

Figure 1 Workflow of PhenoVar. PhenoVar automatically prioritizes diagnoses for validation based on both the phenotypic and genomic information
of a proband. It calculates a patient-specific diagnostic score for each OMIM entry with known molecular basis. The diagnostic score assigned to a given
syndrome is the sum of its phenotypic and genotypic weight. For each syndrome listed in the HPO database the phenotypic weight is determined

by calculating the similarity between the proband and the different patients available in a local database (Phenobase). Phenobase includes simulated
patients using HPO and real patients (here denoted as “local patients”). The genotypic weight for each syndrome corresponds to the (predicted)
pathogenicity of any variants present in the proband'’s exome specifically in the gene(s) causing the respective syndrome. When no variation is found in
these genes, the genotypic weight for that syndrome is automatically set to null value. Otherwise, the variants are sorted into known disease-causing
variants (DC var) versus possibly pathogenic variants (other var) and assigned a different score. The genotypic weight and phenotypic weight described
above are summed to obtain the diagnostic score for each syndrome. The different syndromes are then ranked according to their diagnostic score.
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including mostly simulated but also some real pa-
tients with known diagnoses) and calculates a pheno-
typic similarity weight for each patient in PhenoVar
relative to the proband. For every syndrome (repre-
sented by different patients in Phenobase) the
phenotypic similarity weights are summed and then
averaged to obtain the final phenotypic weight for
that syndrome. A higher weight correlates with a
higher likelihood that the proband is affected by this
syndrome, based on phenotype only.

The following formula summarizes the details of this
process:

anPutient
i=1

Where nbPatient is the number of simulated patients
with the same syndrome; nbHit; is the number of traits
shared between the i simulated patient and the patient;
nbAccurateHit; is the number of traits in the patient that
correspond to more accurate versions of a trait in the ;™
simulated patient. nbGeneralHit; is the number of traits
in the patient that correspond to more general versions
of a trait in the /™ simulated patient; nbMiss; is the num-
ber of patient traits not matched with the /™ simulated
patient; KH, KA, KG and KP are constant parameters
which were determined based on an independent cohort
of test patients (KH, KA and KG =2, KP =1).

exp(nbHit; x KH + nbAccurateHit; x KA + nbGeneralHit; x KG-nbMiss; x KP)

nbPatient
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Calculation of genotypic weight

The genotypic weight for each syndrome corresponds
to the (predicted) pathogenicity of any variants present
in the proband’s exome specifically in the gene(s) caus-
ing the respective syndrome. Hence, the genotypic
weight is generated in parallel for each syndrome using
the proband’s exome VCF (Variant Call Format) data file.
When no variation is found in these genes, the genotypic
weight for that syndrome is automatically set to null value.
Predetermined values (weight) are assigned to each vari-
ation in the VCEF file, according to SNPEff annotation or
known disease-causing status (ClinVar, HGMD).

Two different models are used in the present paper.
In the first model all filtered variations are assigned by
PhenoVar the same weight (arbitrary value of 1000),
irrespective of zygosity. The final genotypic weight for
each syndrome corresponds to the greatest variation
weight across all genes causing the disorder. When no
variation is found in these genes, the weight is auto-
matically set to null value.

The only difference in the second model is that the
variants are filtered and sorted in two groups: known
disease-causing variants (group 1) versus possibly patho-
genic variants (group 2). The disease-causing variants listed
in ClinVar and HGMD, as described above, are classified
in group 1, while the genetic variations with moderate
or high functional impact based on SNPEff predictions
(i.e. frameshift, missense, non-sense and splice sites) are
classified in group 2. In this model, variants in groups 1
and 2 are arbitrary assigned a weight of 1000 and 100,
respectively, and the remaining variants a null value.

Phenotype and genotype score integration, ranking of
possible diagnoses and filter for incidental findings

The genotypic weight and phenotypic weight described
above are summed to obtain the diagnostic score for each
syndrome. The different syndromes are then ranked ac-
cording to their diagnostic score. The syndrome with the
highest diagnostic score represents PhenoVar’s prediction
of the most likely diagnosis. An option to filter the ranked
syndromes based on the suspected mode of inheritance is
also available. Finally, using an empirically determined
phenotypic threshold, disorders unrelated to the proband’s
phenotype were filtered out.

To determine this phenotypic threshold (cut-off: 0.9705),
simulated patients whose exome VCF files were modified to
include a pathogenic variant corresponding to their diagno-
ses but also an incidental finding were used.

Test-patients selection and preparation of variants files

Ten test-patients with different polymalformative genetic
syndromes were randomly selected from previously pub-
lished case reports (patients 1a to 10a in Table 1). For each
patient selected, the mutation, phenotypic data, and
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genetic diagnosis were available in the published manu-
script. Next, the VCF files of 10 control exomes were ob-
tained from the National Institute of Environmental
Health Sciences (NIEHS) Environmental Genome Project
(EGP) (http://evs.gs.washington.edu). These control
exome VCF files were modified so that each of them
subsequently included the disease causing variant cor-
responding to one of the test patients (la to 10a) in
Table 1.

Next, ten genetic syndromes whose phenotypic features
had a documented prevalence in HPO were identified.
Each of these syndromes was then searched in OMIM for
previously published case reports and one patient repre-
senting each syndrome was selected from the literature
(1b to 10b in Table 1). The ten original (unmodified) con-
trol exome-files were now modified so that each of them
subsequently included the disease causing variant corre-
sponding to one of the test-patients 1b to 10b in Table 1.

Each test patient was thus assigned a specific exome VCF
file modified to include his/her disease causing variant. The
resulting files were first annotated using SNPEff (version
2.0.5) for variation functional impact, and then for known
disease-causing variants as classified in ClinVar database
(clinical significance = “4”, probable pathogenic or “5”,
pathogenic) and in the professional version of Human Gene
Mutation Database (HGMD) (Disease mutation —“DM”
variants). The files were further filtered to exclude non-
disease-causing intronic or synonymous variants, as well as
variations with >5% frequency listed in dbSNP (build 135).

A medical geneticist, “blinded” to the diagnoses of the
test-patients, was provided with the clinical description of
the twenty patients. Based on our previous experience
PhenoVar performs best when three or more traits are
used. Using terms in HPO, the geneticist selected for
each case three traits that he perceived as significant
and more specific. Subsequently, for each patient, he
introduced the selected terms along with the respective
modified exome VCF file in the web-based interface of
PhenoVar. The results obtained were analyzed for the
position of the correct diagnosis, by the members of
the team aware of the diagnoses, to test the efficiency
of PhenoVar.

Next, the medical geneticist, while still blinded to the
diagnoses, was asked to select different keywords and en-
sure that 2-3 of the keywords selected were present in
Phenobase and the analysis was repeated. Of note, the
number of matching traits from the traits entered is evi-
dent after each analysis with the software.

Incidental findings

For each test-patient, we reviewed genes known to be
responsible for mendelian disorders which harboured
previously reported diseases-causing variants (ClinVar,
HGMD) or variants predicted to be likely pathogenic
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Table 1 Characteristics of the test patients selected from the literature

Patient Phenotype search traits Gene  Mutation Correct diagnosis
identification (Patient reference) (OMIM)
1a Holoprosencephaly SIX3 c977G>C Holoprosencephaly-2 (157170)

Microphthalmos p. Arg257Pro

Iris coloboma
(Wallis et al.) [21]
2a Preaxial polydactyly NEKT c379C>T Short rib-polydactyly syndrome, type Il (263520)
Median cleft lip and palate pArgT27Ter
Short ribs
(Thiel et al)) [22]
3a Cutaneous finger syndactyly SLC26A2 1984 T>A Epiphyseal dysplasia, multiple, 4 (226900)
Patellar dislocation pLys6535er
Scoliosis
(Makitie et al.) [23]
4a Polymicrogyria GPR56  c1036 T>A Polymicrogyria, bilateral frontoparietal (606854)
Seizures p. Cys346Ser
Microcephaly
(Piao et al) [24]
5a Synophrys RAD21  c1127C>G Cornelia de Lange syndrome 4 (614701)
Microcephaly pPro376Arg
Tetralogy of Fallot
(Deardorff et al.) [25]
6a Micromelia COL2AT  c4172A>G Platyspondylic lethal skeletal dysplasia, Torrance type (151210)
Radial bowing pIyr1391Cys
Pulmonary hypoplasia
(Nishimura et al.) [26]
7a Generalized myoclonic seizures EHMT1 ~ c3409C>T Kleefstra syndrome/Chromosome 9q34.3 deletion

Global developmental delay p. Arg1137Ter syndrome (610253)

Short stature
(Kleefstra et al.) [27]
8a Anophthalmia STRA6  c878C>T Microphthalmia, syndromic 9 (601186)
Pulmonic stenosis pPro233Leu
Blepharophimosis
(Pasutto et al.) [28]
9a Oligohydramnios RBM10  c1235G>A TARP syndrome (311900)
Cleft palate p. Trpd12Ter
Defect in the atrial septum

(Johnston et al.) [29]

10a Hyperventilation TCF4 c1727G>A Pitt-Hopkins syndrome (610954)
. p.Arg576GIn
Postnatal microcephaly
Seizures
(Amiel et al.) [30]
1b Limb shortening WNT7A  ¢1179C>T Ulna and fibula absence of with severe limb deficiency (276820)

Aplasia/hypoplasia of the fibula pAG292Cys

Aplasia/hypoplasia of the ulna
(Woods et al) [31]
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Table 1 Characteristics of the test patients selected from the literature (Continued)

2b Synostosis of carpals/tarsals NOG c.104C>G p. Tarsal-carpal coalition syndrome (186570)
) ) Pro35Arg
Proximal symphalangism
Radial head subluxation
(Dixon et al.) [32]
3b Adrenal hypoplasia WNT4  c341C>T p. Serkal syndrome or sex reversal, female, with dysgenesis of kidneys,
. ) Ala114Val adrenals, and lungs (611812)
Intrauterine growth retardation
Renal agenesis
(Mandel et al.) [33]
4b Anal atresia GLI3 €.2188_2207del Pallister-Hall syndrome (146510)
Central polydactyly (hands)
Short thumb
(Killoran et al.) [34]
5b Global developmental delay SC5DL c86G> A p. Lathosterolosis (607330)
Arg29Gl|
Postaxial polydactyly of foot 1g29GIn
Toe syndactyly
(Brunetti-Pierri et al.) [35]
6b Central polydactyly (feet) RAB23  c434T>Ap. Carpenter syndrome (201000)
) ) Leul45Ter
Craniosynostosis
Finger syndactyly
(Jenkins et al) [36]
7b Cleft palate DHCR24  c571G>Ap. Desmosterolosis (602398)
Glu191Lys
Short stature
Aplasia cutis congenita
(Waterham et al) [37]
8b Generalized hypotonia NSDT c.1310C> G p. Sotos syndrome (117550)
Ser437Ter
Macrocephaly
Overgrowth
(Kurotaki et al.) [38]
9 Holoprosencephaly DHCR7  c832-1G>C Smith-Lemli-Opitz syndrome (270400)
Median cleft lip and palate
Microcephaly
(Wright et al.) [39]
10b Short stature IHH c137C>Tp. Acrocapitofemoral dysplasia (607778)
) : Pro46Leu
Limb shortening
Cone-shaped epiphysis
(Hellemans et al.) [40]

Table 1 summarizes the characteristics of the test-patients selected from the literature. The first column lists the identification number assigned to each patient.
The phenotypic traits selected by the medical geneticist “blinded” to the diagnoses and the reference articles are listed in the second column. The affected gene,
exact mutation, and corresponding diagnosis for each test-patient are also included in this table.

(non-sense, frameshift, consensus splice site). To re- a known BRCAI pathogenic variant (incidental finding)
port incidental findings, we focused mostly on the in each case, were analyzed. Entering this VCF file in
ACMG minimal list [11]. PhenoVar along with corresponding set of 3 phenotypic
Moreover, the modified control exome VCEF files men-  traits summarized for each case in Table 1 allowed for
tioned above, which were further modified by introducing testing the phenotype filter for incidental findings.
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Analysis of real patients with unknown genetic disorders
To illustrate that PhenoVar can be used with data
from real patients, four patients with multiples con-
genital anomalies, previously diagnosed via exome se-
quencing to have a known mendelian disorder, were
used. With regards to exome sequencing, DNA librar-
ies were prepared for each patient (TruSeq, [llumina),
followed by target enrichment (Agilent SureSelect All
Exon kit v4) and sequencing on a HiSeq2000 (Illumina)
with 3 exomes per lane, giving an average coverage
of ~100X. Analysis of sequencing data was done with
the GATK v2 package as per the recommendations
of the Broad Institute [41]. SnpEff 2.0.5 (GRCh37/hgl9)
was used for variant annotation and ClinVar database
for identification of known pathogenic variants. The
variants identified were filtered using a cut off of
1% for minor allele frequency (dbSNP database built
137 and local control exomes). From the remaining
variants, the ones predicted to alter amino acid se-
quences or consensus splice sites junctions, which
were determined to not be tolerated by Polyphen2
or SIFT software, were manually reviewed under the
supervision of a medical geneticist (SL). After con-
firming the diagnosis, the data analysis was repeated
for these patients using PhenoVar, as illustrated in
Table 2.

Table 2 Four real patients analyzed by PhenoVar
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Results

Table 1 summarizes the information of the patients se-
lected from the literature, including only the phenotypic
traits selected by the medical geneticist blinded to their
diagnoses. The genetic syndromes represented in Table 1
include both autosomal recessive and dominant condi-
tions. Table 3 lists the number of variants identified in
the exome corresponding to each test patient and the
ranking of the correct diagnosis by PhenoVar. On aver-
age 3942 variants were obtained per filtered exome, of
which 53 and 23 were included as disease-causing in
HGMD and ClinVar, respectively. When PhenoVar
ranked the possible diagnoses based only on the pheno-
typic traits entered, its efficiency appeared to be similar
to that of Phenomizer or OMIM search engines (data
not shown). When ranking the possible diagnoses solely
based on phenotypic weight, PhenoVar predicted the
correct diagnoses in three patients but did not rank the
correct diagnosis as part of the top 20 possible diagnoses
in 9 out of 20 patients (Table 3, Column 3).

By including both the patient’s phenotype and exome
data, PhenoVar’s efficiency improved significantly. When
assigning the same weight to all variants in the exome
(Table 3, Column 4), PhenoVar predicted the correct
diagnosis in 10 out of 20 patients, while in 15 out of 20
the correct diagnosis was among the 4 highest ranked

Patient Phenotype search traits Gene  Mutation

ID (Patient reference)

PhenoVar
ranking

Correct diagnosis (OMIM)

A Cleft palate SATB2
Congenital myopia
Global developmental delay
Micrognathia

B Cutis laxa NBAS
Hydrocephalus
Intellectual disability
Optic atrophy

@ Abnormality of dental enamel  JUP
Generalized ichthyosis
Palmar hyperkeratosis
Plantar hyperkeratosis
Woolly hair

D Congenital cataract
Intellectual disability
Microcephaly

Seizures

c.1165C>T (p.Arg389Cys)

c.5741G > A(p.Arg1914His)/
€682insT (p.Cys228Fs)

c902A > G (p.Glu301Gly)/
C902A > G (p.Glu301Gly)

COL4AT ¢3149G > A (p.Gly1050Glu)

Cleft palate, isolated; cleft palate and mental 1
retardation (119540)

Short stature, optic nerve atrophy, and 2
Pelger-Huet anomaly (614800)

Naxos disease (601214) 3

Porencephaly, Familial (175780) 7

Table 2 summarizes four examples illustrating that Phenovar can be used with real patients data. The first column lists the identification letter assigned to each
patient. The phenotypic traits used when running PhenoVar are listed in the second column. The next three columns denote the affected gene, exact mutation,
and corresponding diagnosis (as determined after standard analysis of all the data, i.e. without using PhenoVar) for each patient. Finally, the last column indicates

the ranking assigned by PhenoVar to the correct diagnosis.
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possible diagnoses. The correct diagnosis was not ranked
in the top 20 diagnoses in only two patients.

When using PhenoVar’s option to automatically assign a
higher weight to variants known, or bioinformatically pre-
dicted, to cause disease, PhenoVar’s diagnostic yield in-
creased to 14/20, with the correct diagnosis ranking in the
top 4 highest ranked diagnoses in 18/20 patients. More
specifically, in the second set of patients (1b-10b) the diag-
nosis was successfully predicted by PhenoVar in 8/10 pa-
tients and ranked within the top 4 diagnoses in the other
two patients (Table 3, Column 5). Optimization of the se-
lected keywords to ensure that two or three traits from
the ones used were present in Phenobase further im-
proved the diagnostic yield: PhenoVar successfully identi-
fied the correct diagnosis in 17 out of 20 patients, while
20/20 were ranked in the top 3 (data not shown).

With regards to incidental findings, two findings unre-
lated to the presenting complaint were identified when
manually analyzing the VCF files of the test-patients. One
of the variants was previously reported to cause Lynch
syndrome (MLH3) and the other to cause Renal cell
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carcinoma/MODY type 3 (HNFI1A). These incidental find-
ings were not identified when using PhenoVar’s cut-off
phenotypic threshold. Furthermore, when repeating the
Phenovar analysis for all patients using the VCF files which
had been further modified to include a variant known to
cause the BRCAI cancer syndrome, this incidental finding
was not identified using our cut-off phenotypic threshold.

Table 2 demonstrates that PhenoVar can also be used
with real patients’ data. All four patients’ diagnoses
(previously identified by standard bioinformatics analysis
of exome sequencing results) were ranked highly by
PhenoVar. Moreover, the two incidental findings known
to be present in the real patients (specifically, a disease-
causing variant for pigmented nodular adrenocortical
disease, OMIM 610475, and another one in BRCA2, found
in patients B and D, respectively) were not found using
our cut-off phenotypic threshold.

Discussion
With conventional approaches multiple genetic tests are
typically required before a molecular diagnosis is reached.

Table 3 Diagnosis prediction for test-patients using PhenoVar

Patient identification =~ Number of Phenovar ranking PhenoVar ranking (equal Phenovar ranking (disease-  Matched
number variants£5%  (phenotypic weight only)  genotypic weight model)  causing genotypic weight) traits
la 3631 1 1 1 2
2a 3848 1 1 1 3
3a 3842 >200 37 7 1
4a 3841 84 1" 3 2
5a* 4353 26 2 1 2
6a* 3913 30 3 2 2
7a 3850 >200 131 22 1
8a* 3819 1 1 1 3
9a 4519 2 1 1 2
10a 3799 2 1 1 3
1b 3631 3 1 1 2
2b 3848 6 4 4 2
3b 3842 100 3 1 1
4b 3841 4 1 1 2
5b 4353 3 1 1 3
6b 3913 136 8 2 1
7b 3850 M 1 1 2
8b 3819 156 17 1 1
9% 4519 22 2 1 2
10b 3799 1 1 1 3

The first column in this table lists the identification number assigned to each test-patient. The number of variants with global minor allele frequency (GMAF) of
less than 5% present in the modified exome assigned to each patient is highlighted in the second column. The next three columns denote the position of the
correct diagnosis for each patient, as ranked by Phenovar using some of its different options: first solely based on the selected phenotypic traits of the respective
patient (third column); next, by integrating the phenotypic traits and variants present in the exome of the patient: while assigning the same weight to all variants
(fourth column); and finally, by assigning a higher weight to mutations known or predicted to cause disease (fifth column). The last column indicates how many
of the traits selected by the medical geneticist “blinded” to the correct diagnoses matched any traits in Phenobase.

*Mutation annotated incorrectly (please refer to discussion).
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This leads to increased cost and time delay. Widespread
use of clinical ES could accelerate genetic diagnosis to an
unprecedented scale at low cost.

PhenoVar prioritizes diagnoses (mendelian disorders
whose molecular bases are known) for validation based on
both the phenotypic and genomic information of a pro-
band. It was shown to perform very well with a limited
number of phenotypic traits being used (three traits). Our
data demonstrate that, by taking into consideration both
the patient’s phenotype and encrypted exome data, the cor-
rect diagnosis for patients with different clinical presenta-
tions was prioritized more efficiently than relying solely on
the patient’s phenotype (as seen when comparing columns
3 and 5 in Table 3). This was true when using different
variants databases (ClinVar or HGMD, data not shown)
or, to a lesser but still significant degree, when assigning
the same weight to all variants present in an exome.
Selecting PhenoVar’s option to assign the same weight
for all variations present in a patient’s exome, rather
than prioritizing the known pathogenic variants, has an
important advantage: it minimizes the impact that er-
roneous variant classification, as benign or pathogenic,
has on the efficiency of the software.

Interestingly, PhenoVar performed equally well for the
cases where the phenotypic keywords selected were not
specific for the correct diagnosis. For instance, in the
case of patient 3b, although the phenotype-based rank-
ing was very poor (Table 3, Column 3), the final ranking
by PhenoVar was not compromised (Table 3, Columns 4
and 5). This suggests that PhenoVar will be particularly
helpful in the unfortunate occasions where an important
clinical trait is missed during the genetic evaluation or
when dealing with atypical presentations of known gen-
etic syndromes. In turn, diagnosing more patients with
atypical presentations of known genetic syndromes
would potentially help to better define the spectrum of
clinical characteristics of these conditions. Additional
studies using real patient data, in collaboration with in-
dividuals who will be using this software, need to be pro-
spectively performed to achieve this goal but also to
further validate this analysis tool. Table 2 summarizes
four examples of real patients whose diagnosis was facili-
tated using PhenoVar. This table illustrates that PhenoVar
can be used with real patient data. However, a follow-up
study using a large cohort of patients will be needed to
evaluate how effective PhenoVar is in prioritizing the cor-
rect diagnosis in a real clinical setting.

One of PhenoVar’s major advantages it that it optimizes
prioritization of possible diagnoses taking into consider-
ation the patient’s exome data without requiring an in-
crease in the bioinformatics human resources available in
the clinical setting. This could potentially allow for a wide-
spread use of ES in clinical practice, as a screening test for
known mendelian conditions. Moreover, through the
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optional use of a cut-off phenotypic weight threshold, the
clinician can focus the analysis on the genetic causes
which can potentially explain the specific phenotype/med-
ical-issue at hand, thus preventing the undesired discovery
of incidental findings. As a result, the approach described
simplifies pre-test counselling and informed consent for
exome sequencing as a clinical screening tool. It does not
contradict but rather complements the bining approach
previously put forward [7,10]. Widespread usage of ES in
clinic will help evaluate the significance of different vari-
ants, including their penetrance/expressivity. It will thus
aid in the identification of appropriate genes to target for
screening [42,43], as well as, help improve the interpret-
ation of incidental findings of interest to the patient.

As illustrated by cases 5a, 6a, 8a (Table 3) correct gene
annotation (e.g. correct exon/intro borders) is crucial for
the software to run properly, albeit, this limitation is not
specific to PhenoVar, as it affects similarly the currently
standard ES data analysis. Moreover, to optimize the effi-
ciency of the software, the HPO database and Phenobase
need to be properly curated. For instance, including in
HPO the prevalence of the phenotypic features for dif-
ferent genetic syndromes has a significant impact on the
efficiency of the software, as illustrated by PhenoVar’s ef-
ficiency in patients 1b-10b (Table 3). Including more real
patients in Phenobase will, in time, overcome this prob-
lem. Also, an option to explore the presence or absence
of a given variant in affected/unaffected family members
(based on simultaneous comparison of their encrypted
genomes) could allow for adjusting the weight assigned
to different variants and further improve PhenoVar’s effi-
ciency. Finally, the VCEF files in our study were filtered to
include variations with >5% frequency listed in dbSNP
(build 135). The filter was intentionally set higher than
usual to illustrate the efficiency of PhenoVar. However,
since most genetic conditions are rare (low carrier fre-
quency), one could opt to use a filter with a lower thresh-
old (e.g. 1%). This would filter out more benign variants
and thus improve the efficiency of PhenoVar.

The proposed approach follows the existing “phenotype-
first” medical model and allows for better prioritization of
the genes to be tested in a clinical lab. It is particularly
useful in phenotypes caused by multiple different genes
(e.g. evaluation of global developmental delay). Recent
studies have provided evidence for the high diagnostic
yield of exome sequencing [44-46]. Using ES as a scree-
ning test can increase the diagnostic yield of a clinical
evaluation in a cost-effective fashion and decrease the
time to diagnosis [2-4,47,48]. If used properly, PhenoVar
can help address many of the challenges associated with
integrating genomic technologies into clinical practice
(see “Challenges of integrating ES in clinic” subsection). It
remains the responsibility of the physician to seek con-
firmatory clinical diagnostic test targeting the suspected
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Figure 2 Future directions about Phenovar or similar software using the I-MPOS approach and data from real patients. A database
containing phenotypic and encrypted genomic information of real patients with known or not-yet identified diagnoses can be made available (1).

A patient with an unknown diagnosis presents in clinic. His encrypted ES data are obtained and his phenotype is assessed (2 a, ). The software
automatically searches the “Encrypted Patients Database” using target patient’s assessed phenotype (3) thereby providing a first ranking of possible
genetic conditions based on “phenotype weight” (4), (5). For all patients in the database meeting a specific phenotype-similarity threshold in relation
to the proband, the software will compare the changes present in their genomes against the ones present in the genome of the patient seen in clinic
(6). Matching the proband with the phenotypically similar subjects in the database based on similarity of their genetic changes (“mutation weight”)
forms the basis of adjusting the first ranking to calculate the second ranking (6), (7). Subjects sharing adequate phenotypic characteristics who also
share a genetic variant cluster together. As a result, a given match is indicative of the possibility that the target subject shares the same genetic
condition with the matched other subject(s). After the second ranking, the information about the shared phenotype and genotype of the patients
clustering together is accessible and can aid in reaching the diagnosis. It should be noted that “phenotype” (steps 2-5) is not limited to clinical traits
but also refers to other levels of phenotype, such as a metabolomic profile. Also, the word “mutation” (steps 6, 7) can refer to variants in more than

one genetic loci which are simultaneously present in all matched patients allowing one to explore the possibility of gene-gene interaction.

diagnosis and, for the unresolved cases, to clinically
prioritize testing using the whole spectrum of clinical
genetic testing modalities available.

Future directions

In the future, Phenobase can be expanded to incorporate
special databases containing phenotypic and genomic
data of real patients [49,50], thus enabling encrypted on-
line data sharing from consenting individuals. By includ-
ing both patients with known and not-yet identified
diagnoses in such interconnected encrypted databases,
the method described above may have numerous bene-
fits. First, when a large cohort of real patient data is
made available in Phenobase, PhenoVar’s diagnostic yield
for known syndromes would likely improve. This would
be particularly true when atypical features are present.
Secondly, continuously upgrading the database could

allow the software to evolve and contribute in the iden-
tification of new syndromes as illustrated in Figure 2.
In brief, a patient evaluated in clinic (target patient)
could be automatically matched by the software with
patients in the database based on phenotypic similar-
ity. The software could then perform an automatic
comparison of the exomes of the matched patients and
that of the target patient. When the target patient’s ex-
ome file contains a variant shared by the phenotypic-
ally matched patients in the database whose diagnosis
is known, his/her diagnosis could be inferred. In cases
where the diagnosis of the phenotypically matched pa-
tients in the database is not yet known, an identical
variant shared by these patients and the target patient
could point to a candidate gene explaining their shared
phenotype, a potentially newly described syndrome.
This can be achieved while maintaining the genomic
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information of all participating patients in the database
encrypted at all times.

Such an approach would also have implications about
the delineation of heterogeneous complex genetic dis-
eases with high heritability (e.g. schizophrenia [51-54])
into more homogenous endophenotypes based on sub-
groups of patients present in the database. Finally, the
software could ultimately evolve to use, besides clinical
traits, other levels of phenotypic information (e.g. meta-
bolomic, transcriptomic, miRNomic data) when match-
ing the target patient with patients in the database. The
metabolome and/or other levels of phenotype, which can
be accurately quantified and followed over time, constitute
the downstream effect of unknown gene-gene or gene-
environment interactions. If the metabolomic profiles of
the patients in the database and the target patient were
made available, such a software could integrate this infor-
mation during the phenotype matching step. This ap-
proach would thus indirectly factor in differences in the
genomic backgrounds and environmental exposures (both
potentially influencing the pathogenic role of a specific
shared variant). Hence, the affected patients with the
shared variant would be prioritized, accounting for varia-
tions in penetrance and/or expressivity of different genetic
conditions. As a result, this approach could facilitate
screening, even in the newborn period, for genetic dis-
eases whose biochemical phenotype (e.g. metabolomic
profile) precedes the clinical presentation. Similarly, in
time, such a tool could potentially be used at regular in-
tervals in a patient’s lifetime through routine visits to a
general clinic and facilitate the transition towards a
more personalized practice of medicine [55].

Conclusions

PhenoVar follows the existing “phenotype-first” medical
model and facilitates the diagnostic approach by taking
into consideration both the patient’s phenotype and all
variations present in his exome, when ranking possible
diagnoses (see Additional file 1). It is particularly useful in
phenotypes caused by multiple different genes (e.g. evalu-
ation of global developmental delay). Besides addressing
many of the challenges associated with integrating gen-
omic technologies into clinical practice, it can potentially
provide in the future the infrastructure needed to further
advance these tools safely and effectively.

Availability and requirements

Project name: PhenoVar project.

Project home page: http://phenovar-dev.udes.genap.ca/.
Operating system(s): Platform independent.
Programming language: python.

Other requirements: No other requirement for the web
bases version.

License: GNU GPL.
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Any restrictions to use by non-academics: licence
needed.

Additional file

[Additional file 1: PhenoVar starting guide (Web version 1.0). ]
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