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Abstract

current available protein interaction networks (PIN).

identifying disease-related genes from WTSN.

Background: Predicting disease-related genes is one of the most important tasks in bioinformatics and systems
biology. With the advances in high-throughput techniques, a large number of protein-protein interactions are

available, which make it possible to identify disease-related genes at the network level. However, network-based
identification of disease-related genes is still a challenge as the considerable false-positives are still existed in the

Results: Considering the fact that the majority of genetic disorders tend to manifest only in a single or a few
tissues, we constructed tissue-specific networks (TSN) by integrating PIN and tissue-specific data. We further
weighed the constructed tissue-specific network (WTSN) by using DNA methylation as it plays an irreplaceable role
in the development of complex diseases. A PageRank-based method was developed to identify disease-related
genes from the constructed networks. To validate the effectiveness of the proposed method, we constructed PIN,
weighted PIN (WPIN), TSN, WTSN for colon cancer and leukemia, respectively. The experimental results on colon
cancer and leukemia show that the combination of tissue-specific data and DNA methylation can help to identify
disease-related genes more accurately. Moreover, the PageRank-based method was effective to predict disease-
related genes on the case studies of colon cancer and leukemia.

Conclusions: Tissue-specific data and DNA methylation are two important factors to the study of human diseases.
The same method implemented on the WTSN can achieve better results compared to those being implemented
on original PIN, WPIN, or TSN. The PageRank-based method outperforms degree centrality-based method for

Background

With the completion of HGP (Human Genome Project)
and the development of high-throughput technologies,
more and more protein-protein interaction data can be
obtained, which makes it possible for us to study the life
activity at the network level [1-3]. Many network-based
methods have been proposed to predict protein functions,
identify essential proteins and disease-related genes and
complexes [5-7]. It has been shown that the network-based
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disease-related gene discovery approaches can achieve
comparable qualities with current integrative methods
[8-11]. More and more attentions have been paid to dis-
cover disease-related genes by using network-based meth-
ods. Moti et al. [12] developed a neighbourhood-based
algorithm to predict disease genes using protein-protein
interactions by using the associated intervals. In a similar
way, Kar et al. [13], Chavali et al. [14], and Sun et al. [15]
further analyzed different diseases and demonstrated that
the topological features of genes in associated intervals
were different in the corresponding networks. Xu et al.
[16] predicted disease-related genes by using topological
features to improve KNN clustering algorithm. Sun et al.
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[17] used clustering analysis method to predict human dis-
ease-related gene clusters based on the network. In addi-
tion, some typical graph partitioning methods and
clustering approaches, such as GS[18], MCL [19], VI-Cut
[20], IPCA [21], MSCE [22], HC-PIN[23], RW[24], and
their improved algorithms, can also be used to discover
candidate disease-related genes.

Although great progresses have been made on the net-
work-based methods, it is still a challenge task to identify
disease-related genes as the considerable false-positives
are still existed in the current available PINs [25]. To
reduce the effect of false-positives, researchers started to
integrate different types of biological information, such
as gene expression profiles [26-29], orthology data [30],
gene ontology annotations [31], and DNA methylation
[32], into protein interaction networks. Accumulated stu-
dies suggested that DNA methylation may cause changes
of chromatin structure, DNA conformation, DNA stabi-
lity, and interaction mode between DNA and proteins,
and such aberrant conditions may cause cancers[32].
Therefore, DNA methylation information can be used to
improve identification of disease-related genes. For prior-
itizing cancer-related genes, Liu et al. [32] constructed a
weighted human protein interaction network by using
DNA methylation correlations.

Recently, some researchers tried to develop new net-
work-based methods for finding disease-related genes by
using tissue-specific networks (TSN). Tissue specificity is
an important aspect of many genetic diseases and the
majority of genetic disorders tend to manifest only in a
single or a few tissues [33-35]. Magger et al. [36] believed
that the predicted precision would be influenced when the
same data sets were used to predict disease-related genes
of different tissues and diseases. Tissue-specific networks
can reflect the features of related tissues of diseases better,
and usage of the network will enhance the accuracy of
predicting disease-related genes.

In this paper, we constructed a weighted tissue-specific
network (WTSN) by integrating human protein interac-
tion network, DNA methylation, and tissue-specific data.
A PageRank-based method was developed to identify
disease-related genes from the constructed WTSN. To
validate the effectiveness of the constructed network and
the proposed method, we tested them on the prediction
of disease-related genes of colon cancer and leukemia.
The experimental results show that tissue-specific data
and DNA methylation are two important factors to the
study of human disease. The same method implemented
on the WTSN can achieve better results compared to
those being implemented on original PIN, WPIN, or
TSN. The PageRank-based method outperforms degree
centrality-based method for identifying disease-related
genes from WTSN.
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Methods

Materials

The human protein-protein interactions were down-
loaded from DIP [37], IntAct [38], MINT [39], BioGRID
[40], HPRD [41], Uniprotkb and HGNC databases.
These protein-protein interactions were combined to
construct a PIN by filtering the self-interactions and
repeated interactions. The final PIN comprises 15,389
human proteins and 108,317 physical interactions.

To determine tissue-specific interactions, gene expres-
sion microarray data GSE1133 and gene identity matched
data GPL96 [42] were used to extract expression values
of each gene in different tissues. All the co-expression
relationships in 79 tissues were marked by binary vari-
ables. 79 tissues were mathematically represented in a
matrix of 108,317 interactions.

DNA methylation information was downloaded from
GSE17648 [43] and GSE28462 data sets of GEO. Aber-
rant methylation information was downloaded from
PubMeth [44] database. Gene signing messages of
related diseases in the gene signatures bank were down-
loaded from GeneSigDB [45].

Construction of WTSN
As shown in Figure 1, we constructed the WTSNs
according to the following three steps:

Step 1: Construct the human PIN by integrating protein-
protein interaction data obtained from DIP [37], IntAct
[38], MINT [39], BioGRID [40], HPRD [41], Uniprotkb
and HGNC databases and filtering the self-interactions
and repeated interactions.

Step 2: For a special disease, construct its TSN by
using the PIN, tissue-specific data and disease-tissue
association data.

Step 3: Weight the constructed TSN by using DNA
methylation data.

In step 2, to construct the TSN for a special disease, we
first obtained the relationship between diseases and tissues
from the works of Lage et al [46]. From the disease-tissue
association data we can extract the tissues which are
related to the special disease. Tissue-specific subnetworks
were constructed by using gene expression microarray
data GSE1133 and GPL96. When constructing the tissue-
specific subnetworks we also used the mode removal
method which has been used by Waldman et al. [34],
Bossi et al. [35] and Lopes et al. [47]. The main idea of the
mode removal method is to construct tissue-specific sub-
networks through removing unexpressed genes in related
tissues. There are 79 different human cells or gene expres-
sion data of tissues. For each gene, its normalized expres-
sion level is calculated and it is considered to be expressed
in the tissue [33] if its normalized expression level is larger
than a certain threshold. For each tissue, a corresponding
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Figure 1 Steps of constructing WTSN.
A

subnetwork is generated by removing the unexpressed
nodes and its interactions from the PIN. Then, a final
TSN can be constructed by combing the subnetworks for
all the disease-related tissues.

In step 3, we further weighted the TSN by using DNA
methylation data. For two connected proteins in TSN,
the Pearson Correlation Coefficient (PCC) [48-50], as
shown in formula (1), was calculated to assess the two
proteins’ association of the methylation.

Y xipi— DX Vi
PCC(X,Y) = i N )
/ e - &1

where X and Y are two proteins which interact with
each other in TSN. The variables

x; and y; denote the corresponding DNA methylation
value of protein X and protein Y at i*" point, respec-
tively. N indicates the total number of methylation data

for each protein in TSN.

PageRank-based method

The PageRank algorithm was first proposed by Brin and
Page [51], which was used to evaluate webpage and pro-
duce an authority value to show the importance of each
webpage. The main idea of PageRank is to suppose that
a random walker selects chains to be visited according
to uniform probability distribution. As the PIN is

generally considered as an undirected graph, we imple-
mented PageRank on undirected graph in this paper. It
has been shown that the PageRank of an undirected
graph is statistically close to the degree distribution.
Hence, we compared the results of PageRank-based
method and degree-centrality-based method in the sec-
tion of results. The PageRank algorithm was computed
in an iterative way where the probability distribution is
used as the input of the next walking of this process.

In this paper, we treated known aberrant methylation
genes as seed nodes and set initial quantity value with
the use of the seed set, which will enhance the impor-
tance of seed nodes in network and solve defects of initial
PageRank algorithm. The aberrant methylation data
related to specific diseases in PubMeth database [44]
were used in this paper.

Before using the PageRank-based method to predict dis-
ease-related genes, we perturbed the DNA methylation
data 1000 times and recalculated the PCC of the random
DNA methylation for the gene pairs in each perturbed
methylation dataset. Then, 1000 random WTSNs were
obtained and the PageRank algorithm was applied on
these 1000 random WTSNs. The average PageRank value
for each protein was calculated on the 1000 random
WTSNs and it is considered to be distinctiveness if its
PageRank value on the WTSN is higher than the average
PageRank value on the 1000 random WTSNs. All the pro-
teins in the WTSN were ranked according to their PageR-
ank values in original WTSN and those distinctiveness
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proteins will be outputted as candidate disease-related
genes.

Results and discussion

To validate the effectiveness of the constructed WTSN
and the PageRank-based method, we used four different
types of PINSs: original human PIN, TSN for each special
disease, WPIN by using DNA methylation, and WTSN.
We applied the PageRank-based method to these four
different types of protein interaction networks, and the
corresponding results were marked as PR, SPR, WPR,
SWPR, respectively. Two important cancers of colon can-
cer and leukemia were used as case studies here. For each
test, the predicted precision was calculated by using the
following formula:

precision = MSignalure/ NPrediclion (2)

where Np,gicsion is the number of predicted candidate
disease-related genes and Mg;gasure is the number of
disease-related genes which can be found in GeneSigDB
[52] with the corresponding signatures.

In this paper, the improved PageRank algorithm by
using significant analysis is also compared to the degree
centrality-based method. In 2011, Liu et al. [32] identi-
fied potential disease-related genes by using weighted
degree centrality based on the integration of DNA
methylation and protein-protein interaction data. Degree
centrality (DC) of a given protein in an unweighted net-
work is defined as the number of nodes that directly
connect to it. The weighted degree centrality (WDC) of
a given protein in a weighted network is defined as the
sum of weights of edges connecting the given node and
its neighbors. We marked the results of DC as SDC and
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SWDC when it being applied on the TSN and the
WTSN, respectively.

Identification of disease-related genes from TSN

To analyze whether the tissue specific information is
useful to the identification of disease-related genes, we
first applied the PageRank-based method by using signif-
icant analysis and degree centrality-based method to the
original PIN and the TSN. The experimental results on
colon cancer and leukemia were shown in Figure 2.
From Figure 2 we can see that both the PageRank
method and degree-centrality-based method achieved
better results when being applied on TSN than being
applied on PIN for colon cancer and leukemia. Espe-
cially for colon cancer, the predicted precision of the
PageRank algorithm and degree-centrality were
improved more than 20% on average when predicting
no more than 100 candidate disease-related genes. For
the same cancer, the PageRank-based method by using
significant analysis performs a little better than degree
centrality-based method when being applied on TSN.

Identification of disease-related genes from WTSN

In the above subsection, we have shown that tissue spe-
cific information contributes to the accurate identifica-
tion of disease-related genes. In this subsection, we
further evaluated the effectiveness of weighting by using
DNA methylation and compared the results on WPIN
and PIN. As shown in Figure 3 (A), both the PageRank-
based method and the degree-centrality-based method
achieved better results when being applied on WPIN
than on PIN for predicting no more than 80 colon can-
cer-related candidate genes. Similar results were

Figure 2 Comparison of results for PageRank and degree centrality when being applied on the original protein interaction network
(PIN) and tissue specific network (TSN). The x axis represents the number of identified disease-related genes. The y axis represents the
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Figure 3 Comparison of results for PageRank and degree centrality when being applied on the original protein interaction network
(PIN), weighted protein interaction network (WPIN), and weighted tissue specific network (WTSN). The x axis represents the number of
identified disease-related genes. The y axis represents the predicted precision of each result. (A) Results on colon cancer. (B) Results on leukemia.
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obtained for leukemia, as shown in Figure 3(B). How-
ever, the improvement is not so clear for the high pre-
dicted precision on leukemia. The improvement of
predicted precision on the WPIN shows that weighting
protein interaction network by using DNA methylation
contributes to more accurate prediction of disease-
related genes.

To analyze the contributions of combination of tissue-
specific and DNA methylation, we showed the results of
PageRank-based method and Degree-centrality-based
method both on WPIN and WTSN. From Figure 3 we

can see that the predicted precisions of PageRank-based
method and Degree-centrality-based method were both
further improved when being applied on WTSN. As
shown in Figure 3(A), the precision of SWPR is 1.2
times more than that of WPR for predicting no more
than 100 colon cancer-related candidates. On the
WTSN, the PageRank-based method still performs a lit-
tle better than the degree centrality-based method.
Hence, we further analyzed the candidate disease-related
genes predicted by the PageRank-based method. Table 1
and Table 2 showed the top 20 candidate disease-related

Table 1 Top 20 candidate disease-related genes identified by PageRank method with significant analysis from PIN,

TSN, WPIN, WTSN, for colon cancer, respectively.

WTSN WPIN TSN PIN
Genes In GeneSigDB Genes In GeneSigDB Genes In GeneSigDB Genes In GeneSigDB
CDH1 yes APC yes NR3C1 yes UBC no
FAS yes CDH1 yes MLH1 yes ELAVLI yes
CD44 yes FAS yes CDH1 yes SUMO2 yes
THBS1 yes CD44 yes CDKN2A yes MYC yes
TIMP3 yes THBS1 yes ATM no GRB2 no
GSTP1 yes STK11 no FAS yes SUMO1 yes
CREBBP yes GSTP1 yes MGMT no SNCA no
STK11 no UBC no THBS1 yes ESR1 yes
HDAC1T yes ALX4 no CD44 yes GABARAPL2 no
UBC no HRK yes RASSF1 yes TP53 yes
NCL yes TIMP3 yes STK11 no YWHAZ yes
CCND1 yes SRC yes DAPK1 yes GABARAPL1 yes
PRKDC yes NCL yes CHFR no GABARAP no
SFN yes CREBBP yes GSTP1 yes TRAF6 yes
ELAVL1 yes HDAC1T yes UBC no RAD23A yes
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Table 1 Top 20 candidate disease-related genes identified by PageRank method with significant analysis from PIN,

TSN, WPIN, WTSN, for colon cancer, respectively. (Continued)

TGM2 yes SFRP1 yes TIMP3 yes EP300 no
FYN no ELAVL1 yes HSPO0AAT yes EGFR yes
FN1 yes CCND1 yes TP53 yes SRC yes

ACTR3 yes PRKDC yes SFRP1 yes YWHAG yes

MMP14 yes FYN no PML yes ESR2 no

Table 2 Top 20 candidate disease-related genes identified by PageRank method with significant analysis from PIN,

TSN, WPIN, WTSN, for Leukemia, respectively.

WTSN WPIN TSN PIN

Genes In GeneSigDB Genes In GeneSigDB Genes In GeneSigDB Genes In GeneSigDB
ABL1 yes ESR1 yes ESR1 yes ESR1 yes
CDKN1TA yes ABL1 yes ABL1 yes ABL1 yes
MLH1 yes CDKN1TA yes MLH1 yes RB1 yes
MGMT yes CCND1 yes RB1 yes CDKN1TA yes
LMNA yes CDKN2A yes CDKNTA yes RARA yes
NROB2 yes MLH1 yes CDKN2A yes MLH1 yes
CHFR yes PARK2 no PTPN6 yes CDH1 yes
DIABLO yes MME yes SYK yes PTPN6 yes
CEBPD yes MYOD1 yes PTEN yes CDKN2A yes
DAPK1 yes LMNA yes MGMT yes PARK2 no
GRB2 yes NROB2 yes HCK yes SYK yes
ACTB yes MGMT yes THBS1 yes CCND1 yes
HDACT yes APAF1 yes LMNA yes TP73 yes
HSP90AAT1 yes PGR yes NROB2 yes MYOD1 yes
PAX6 yes AHR yes UBC yes PTEN yes
FYN yes DAPK1 yes CHFR yes LMNA yes
EEF1A1 yes PAX6 yes DAPK1 yes THBST1 yes
JAK1 yes CIITA yes GSTP1 yes MGMT yes
CRKL yes CHFR yes RARB yes HCK yes
CCNB1 yes HIC1 yes DIABLO no NROB2 yes

genes of colon cancer and Leukemia, respectively, which
were identified by the PageRank method with significant
analysis from PIN, TSN, WPIN, WTSN.

As shown in Table 1, out of the top 20 candidate dis-
ease-related genes of colon cancer, 17 genes were found
to have gene signatures in GeneSigDB. The number of
true colon cancer-related genes identified from WTSN
is higher than that identified from PIN, WPIN and TSN.
For the unknown gene STK11 identified from WTSN,
we found that it has been reported to contribute to the
development of both sporadic and familial forms of can-
cer and germline and somatic genetic alterations of the
STK11/LKB1 gene may play a causal role in carcinogen-
esis [53]. For leukemia, we were delighted to see that all
the top 20 candidate disease-related genes were included
in GeneSigDB. The top 100 candidate disease-related

genes of colon cancer and Leukemia can be seen in
additional file 1 and additional file 2 respectively.

Conclusion

The primary purpose of this study is to use WTSN to pre-
dict disease-related genes. We proposed a PageRank-based
method to identify disease-related genes from WTSN.
Firstly, TSN was constructed by combining PIN and gene
expression data. Secondly, WTSN was constructed by
weighting TSN with methylation information. Finally, an
improved PageRank algorithm was used to predict dis-
ease-related genes by using significance analysis based on
WTSN. To validate the effectiveness of the proposed
method, we constructed PIN, WPIN, TSN, WTSN for
colon cancer and leukemia, respectively. The experimental
results on colon cancer and leukemia show that the
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combination of tissue-specific data and DNA methylation
can help to identify disease-related genes more accurately.
Moreover, the PageRank-based method was effective to
predict disease-related genes on the case studies of colon
cancer and leukemia.

Additional material

Additional File 1: The top 100 candidate disease-related genes of
colon cancer

Additional File 2: The top 100 candidate disease-related genes of
Leukemia
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