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Abstract

Background: Necrotizing enterocolitis (NEC) is the most frequent life-threatening gastrointestinal disease
experienced by premature infants in neonatal intensive care units. The challenge for neonatologists is to
detect early clinical manifestations of NEC. One strategy would be to identify specific markers that could be
used as early diagnostic tools to identify preterm infants most at risk of developing NEC or in the event of a
diagnostic dilemma of suspected disease. As a first step in this direction, we sought to determine the specific
gene expression profile of NEC.

Methods: Deep sequencing (RNA-Seq) was used to establish the gene expression profiles in ileal samples
obtained from preterm infants diagnosed with NEC and non-NEC conditions. Data were analyzed with
Ingenuity Pathway Analysis and ToppCluster softwares.

Results: Data analysis indicated that the most significant functional pathways over-represented in NEC neonates were
associated with immune functions, such as altered T and B cell signaling, B cell development, and the role of pattern
recognition receptors for bacteria and viruses. Among the genes that were strongly modulated in neonates with NEC,
we observed a significant degree of similarity when compared with those reported in Crohn’s disease, a chronic
inflammatory bowel disease.

Conclusions: Gene expression profile analysis revealed a predominantly altered immune response in the intestine of
NEC neonates. Moreover, comparative analysis between NEC and Crohn’s disease gene expression repertoires revealed
a surprisingly high degree of similarity between these two conditions suggesting a new avenue for identifying NEC
biomarkers.
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Background
Necrotizing enterocolitis (NEC) is the most common
life-threatening gastrointestinal disease of premature in-
fants occurring in neonatal intensive care units [1, 2].
NEC is associated with severe intestinal inflammation,
intestinal necrosis and high morbidity [3]. Survivors of
NEC are at higher risk for developing short bowel

syndrome, cholestatic liver disease as well as impaired
growth and neurodevelopmental outcomes [4]. Several
epidemiological risk factors have been proposed to
play major roles in the pathogenesis of NEC, including
preterm birth, enteral feeding and abnormal bacterial
colonization [5, 6]. Only prematurity has been recog-
nized in the literature as an established risk factor for
NEC, although the exact mechanism has not yet been
fully elucidated [1, 2].
The greatest challenge for neonatologists is to identify

reliable early clinical signs and symptoms of NEC [1, 2].
While there are multiple NEC-like conditions with various
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presentations, the most common form of the disease, re-
ferred to as “classic NEC”, is an inflammatory intestinal
condition in prematurely born infants [1–3]. However, the
early clinical manifestations of NEC are relatively nonspe-
cific and can be easily misinterpreted as other gastrointes-
tinal problems [1, 2, 7]. Given its unpredictable onset, at
diagnosis NEC is often already at an advanced stage due
to the initially insidious and then fulgurating progression
of the disease [8, 9]. One strategy to prevent or treat NEC
would be to develop an early diagnostic tool allowing
the identification of preterm infants either at risk of de-
veloping NEC or at the onset of symptoms to aid in the
diagnostic dilemma. Several attempts have been made to
identify biomarkers in preterm infants with NEC [10–12]
or distinguish it from related pathologies [13] but the ideal
biomarker remains to be identified [14].
Over recent years, the development of high-throughput

sequencing of RNA transcripts (RNA-Seq) has become an
emerging tool for transcriptional profiling of differentially
expressed genes [15, 16]. The objective of this study
was to take advantage of this approach to determine
the complete gene expression profiles of ileal specimens
resected from preterm infants diagnosed with NEC vs
non-NEC conditions to identify pathways that could lead
to more insight into the pathogenesis of NEC in prema-
ture infants. As NEC is a relatively uncommon disease for
which surgical intervention does not necessarily result in
an improved survival rate and as such is becoming more
and more avoided [17], specimens from NEC patients are
rare, most notably those with mRNA quality sufficient for
being used in RNA-Seq studies. For these reasons and in
conjunction with the fact that the aim of the study was to
identify general molecular markers for NEC screening, we
chose to combine all available ileal NEC specimens that
fulfill the mRNA criteria for RNA-Seq for this study. This
approach has been used in the past [13] although it is
more and more accepted that NEC characteristics for
25-28 w vs 29-32 w preterm are not identical.
Our analysis revealed that multiple components of the

immune response were strongly modulated in the small
intestine of neonates with NEC. The data support the
suggestion that the development of NEC is related to
the immaturity of the intestinal mucosa in dealing with
an altered microbiome [1, 2, 4, 18, 19]. Since a defect
in the immune response is also a landmark of Crohn’s
disease (CD) [20–22], a chronic inflammatory bowel
disease that also preferentially affects the terminal
small intestine, we investigated whether NEC shares
common functional alterations with CD. To address this
question, the RNA-Seq data generated herein for NEC
were compared with available microarray data generated
from ileal CD samples from 4 studies [23–26], leading to
the identification of several common functional and
canonical pathways including genes under evaluation

for their usefulness as CD biomarkers that could be of
interest for the non-invasive diagnosis of NEC.

Methods
Study population and informed consent
This multi-centre collaborative study recruited premature
infants from neonatal intensive care units at the Centre
Hospitalier Universitaire de Sherbrooke (Sherbrooke,
QC, Canada), Erasmus MC-Sophia Children’s Hospital
(Rotterdam, The Netherlands), Children’s Hospital of
Eastern Ontario (Ottawa, ON, Canada) and Hôpital Pierre
Zobda-Quitman (Fort-de-France, Martinique) between
October 2008 and May 2013. Prior approval of the local
Institutional Review Committees for the use of human
material was obtained at each center. The overall project
was approved by the Ethic Review Board on Human
Health Research of the Centre Hospitalier Universitaire de
Sherbrooke. Written informed consent from parents or
guardians was obtained for each patient.
Premature infants having undergone bowel resection

were eligible for the study. The diagnosis was confirmed
by pathologists and clinical staging of NEC were based
on the criteria of Bell et al. [8]. Freshly resected intes-
tinal specimens taken from ileum were preserved in
RNAlater (Ambion) before RNA extraction. Preterm
patients who had undergone bowel resection for stage
III acute NEC constituted our positive NEC cases and
preterm patients who had undergone resection for diseases
other than NEC made up the control (CTRL) group, as
detailed in Table 1.

Sample preparation and RNA sequencing
Total RNA from intestinal specimens was extracted
using the RNeasy Lipid Tissue total RNA mini kit (Qiagen,
Valencia, CA). Extracted RNA samples underwent quality
control assessment using the Agilent Bioanalyzer (Agilent,
Santa Clara, CA) and all RNA samples submitted for
sequencing had an RNA Integrity Number >7. Poly-A
library preparation and sequencing were performed at
the McGill University and Génome Québec Innovation
Centre (Montréal, QC, Canada) as per standard proto-
cols. Briefly, ribosomal RNA from each RNA sample
was removed using TruSeq Stranded Total RNA with
Ribo-Zero for Human (Illumina, San Diego, CA), then
first-strand cDNA was generated using random hexamer-
primed reverse transcriptase, followed by second-strand
cDNA synthesis using RNase H and DNA polymerase,
and ligation of sequencing adapters using the TruSeq
RNA Library Preparation Kit (Illumina, San Diego, CA).
The prepared libraries were then sequenced using Illumi-
na’s HiSeq 2000 to obtain 50-bp single-end reads using
four lanes (4 samples per lane). Sequence data quality
check was performed using FastQC (v1.0.0).[27] The
RNA-Seq data were mapped to the hg19 reference
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genome using TopHat for Illumina (v1.5) using default
options. Assembly of transcripts and estimation of their
abundance (FPKM: fragments per kilobase of exon per
million fragments mapped) were calculated using Cuf-
flinks software (v0.0.6) [27]. We used the program Cuffdiff
(v0.0.7) [27] to test for differential transcript expression
between CTRL and NEC (p < 0.05).

Functional pathway enrichment analysis
Ingenuity Pathway Analysis (IPA; Ingenuity Systems Inc.,
Redwood City, CA, USA) and ToppCluster [28] were
used to identify functional pathway enrichment involved
in NEC and CD. IPA generated a score for each predefined
canonical pathway, which gave the likelihood that the set of
genes in this pathway could be explained by chance alone.
Canonical pathways with a score ≥2 have ≥99 % confidence
that they are not generated by chance. ToppCluster gener-
ated P values (P < 0.05 with FDR correction) for human
and mouse phenotypes associated with up-regulated or
down-regulated genes in NEC and CD.

RNA amplification and data validation by qPCR
Total RNA from 15 samples (fourteen used for RNA
sequencing analysis plus one late additional sample
added for reverse transcriptase-qPCR) was first amplified
using the « TargetAmp™ 2-Round aRNA Amplification Kit
2.0 » (Epicentre Biotechnologies, Madison, WI) according
to the manufacturer’s protocol. First-strand cDNA synthe-
sis using Superscript II (Invitrogen) was performed on
1 μg total RNA using oligo (dT) 12–18 as primer. All qPCR

reactions were performed in duplicate using 25 ng of input
template as previously described [29]. Amplification
efficiencies ranged from 93 % to 104 % and the absence of
primer-dimers was verified post-amplification by melting
curve analysis. The genes investigated were beta-actin
(ACTB), beta-2-microglobulin (B2M), chemokine (C-X-C
motif ) ligand 8 (CXCL8) and 10 (CXCL10), alpha-
defensin 5 (DEFA5) and 6 (DEFA6), hemoglobin subunits
(HBA2 and HBG2), lipocalin 2 (LCN2), regenerating
islet-derived 3 alpha (REG3A), trefoil factor 1 (TFF1) and
3 (TFF3), Toll-like receptor 4 (TLR4) and 10 (TLR10).
Primers (listed in Additional file 1) were generated using
the primer formation software Primer3 (http://bioinfo.
ut.ee/primer3). Differences in gene expression were evalu-
ated by comparing reversed ΔCt (rΔCt =Ctreference gene–
Cttarget gene) of CTRL vs NEC samples using B2M as the
validated reference gene [30] (same results were obtained
using ACTB).

Results
RNA-Seq analysis and identification of differentially
expressed genes (DEGs)
RNA-Seq analysis of intestinal samples generated 2231 ×
106 base pairs (bp) from NEC and 1589 × 106 bp from
CTRL. Mapping resulted in 44.63 × 106 (±8.7 × 106)
reads in NEC and 31.79 × 106 (± 0.12 × 106) in CTRL.
In total, 24346 genes were identified in both preterm in-
testinal samples. The data have been deposited in the
National Center for Biotechnology Information’s Gene

Table 1 Patient characteristics

Patient # Sex GA at birth (wk) Birth weight (g) GA at surgery (wk) Diagnosis at surgery Location

CTRL

1 F 33 5/7 2001 33 6/7 Small intestinal perforation ileum

2 F 26 6/7 905 29 4/7 Milk curd syndrome Ileum, proximal

3 M 26 5/7 750 31 Meconium ileus ileum

4 M 33 6/7 1675 34 1/7 Bowel obstruction ileum

5 F 39 3635 39 2/7 Small intestinal atresia ileum

6a M 33 4/7 1779 33 4/7 Omphalocele Ileum

NEC

7 M 32 1500 40 NEC Ileum

8 M 25 3/7 820 29 NEC Ileum, proximal

9 F 26 2/7 690 36 NEC Ileum

10 M 27 2/7 842 27 4/7 NEC Ileum

11 F 24 6/7 600 26 NEC Ileum, terminal

12 F 26 2/7 870 35 1/7 NEC Ileum

13 M 25 4/7 830 27 1/7 NEC Ileum

14 F 29 6/7 1160 30 6/7 NEC Ileum, terminal

15 F 29 2/7 n/a 35 6/7 NEC Ileum, terminal

BW birth weight, F female, GA gestational age, M male; a only used for qPCR
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Expression Omnibus and are accessible through GEO
Series accession number GSE64801.
We used the Illumina HiSeq2000 to investigate the

gene expression profiles of the ileum of preterm infants
with NEC vs without NEC (CTRL). In total, 804 DEGs
(p < 0.05) were identified, 383 up-regulated and 421
down-regulated genes (See Additional file 2 for the gene
list with fold changes).

Functional pathways analysis in NEC
To identify functional and canonical pathways involved
in the pathogenesis of NEC, the DEGs were submitted
to IPA core analysis. The top twelve most significant ca-
nonical pathways modulated between NEC and CTRL
and their associated genes are displayed in Fig. 1a (See
Additional file 3 for the complete list of pathways and
associated genes). Interestingly, most significant canon-
ical pathways over-represented in the intestine of NEC
neonates were associated with innate immune functions,
such as altered T and B cell signaling, granulocyte adhe-
sion and diapedesis, B cell development and the role of
pattern recognition receptors for bacteria and viruses. In
addition, ToppCluster analysis identified several biological
functions as being altered in NEC (Fig. 1b) including up-
regulation of lymphocyte and leukocyte migration, T
lymphocyte and antigen presenting cells chemotaxis, ad-
hesion of T lymphocytes, leukocytes and granulocytes and
down-regulation of functions related to lipid metabolism,
establishing a signature of biological functions associated
with NEC.

Validation of the gene expression profile of NEC
To further validate the gene expression profiles identified
by RNA-Seq analyses, we used qPCR to test representative
DEGs in NEC samples among those known to be involved
in the inflammatory processes, innate immunity and
antimicrobial responses: CXCL10, TLR4, TLR10, DEFA5,
DEFA6, REG3A, LCN2, TFF3, HBA2 and HBG2. Tran-
script levels of TFF1 and CXCL8 were also determined
although these 2 genes were not identified as DEGs by
RNASeq. As shown in Fig. 2, qPCR analyses confirmed
the up-regulation of CXCL10, TLR4, TLR10, DEFA5,
REG3A, LCN2 and TFF3 and down-regulation of HBA2
and HBG2 expression in NEC. As expected, TFF1 was not
modulated but CXCL8 levels were found to be signifi-
cantly up-regulated in NEC samples (Fig. 2). The lack of
detection of CXCL8 by RNA-Seq in NEC at statistically
significant levels can be explained by the high variability in
its expression in both NEC and CTRL neonatal intestines
as observed by qPCR (Fig. 2) and the fact that shorter
transcripts such as CXCL8 are less efficiently detected by
the short read procedure used in RNA-Seq [31]. Taken
together, these gene expression profiling results suggest

that specific alterations in the intestinal innate immune
response could contribute to the pathogenesis of NEC.

Comparison between NEC and CD expression profiles
Considering that dysregulation in the innate immune
response is a landmark of CD [20–22], one of the most
common inflammatory bowel diseases that also pre-
dominantly affects the ileocecal region, we undertook a
systematic comparison of the DEGs observed herein in
the ileum of NEC with those reported in the ileum of
adult patients with active CD [23–25] followed by a
comparative functional analysis with IPA software. As
used previously to compare gene clustering under two
conditions [29, 32, 33], we plotted the negative logarithm
of p-values calculated by IPA for each of the functional
categories found in NEC against the negative logarithm of
p-values of the corresponding categories found in CD in
order to identify the relationship between individual func-
tions in the two diseases (Fig. 3a). Overall, we noted that
more than 60 % of the significant pathways identified in
NEC were also identified in CD (Fig. 3a, insert). Interest-
ingly, 11 of the 12 most significant common canonical
pathways identified in NEC (Fig. 1a) were found among
those also significantly altered in CD (Fig. 3a; see Additional
file 4 for the list of the 103 significant pathways and corre-
sponding DEGs in CD and Additional file 5 for the list of
the 44 common pathways) including T and B cell signaling,
diapedesis and autoimmune response. Gene set enrichment
analysis using ToppCluster [28] with DEGs identified for
both NEC and CD, confirmed the closeness of the two
diseases by demonstrating several common gene families
related to immunity and infection (Fig. 3b). It is note-
worthy that at the individual gene level, 175 (21.8 % of
the total) of the DEGs identified in NEC also appear
to be significantly altered in human ileal CD [23–25]
(see Additional file 6 for a complete list of common
DEGs between NEC and CD). Also included are genes
involved in antimicrobial activity such as DEFA6, DUOX2,
LCN2 and LYZ as well as other important genes involved
in mucosal immunity (Fig. 3c).
Recently, Haberman et al. [26] have reported specific

gene expression profiles in pediatric ileal CD (pedCD)
patients. By conducting comparative functional analyses
by IPA and ToppCluster using NEC vs pedCD gene ex-
pression profiles, we determined that NEC also shares a
large number of functional canonical pathways (Fig. 4a;
see Additional file 7 for the list of the 130 significant
pathways and corresponding DEGs in pedCD) and spe-
cific disease phenotypes (Fig. 4b) with pedCD (67 and
46 %, respectively). At the individual gene level, 197
(25 % of the total) of the DEGs identified in NEC also
appear to be modulated in pedCD [26] (see Additional
file 8 for a complete list of common DEGs) such as
CXCL10, DUOX2, LCN2 and LYZ (Fig. 4c).
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Fig. 1 (See legend on next page.)

Tremblay et al. BMC Medical Genomics  (2016) 9:6 Page 5 of 12



However, our analysis also revealed individual genes
that were exclusively modulated in the small intestine of
neonates with NEC but not in CD or pedCD. A few of
these genes are TLR10, DEFA5, TFF3, HBA2 and HBG2
(Fig. 2). Even if these genes were found in functional ca-
nonical pathways common to CD, their gene expression
profiles were specifically altered in NEC.

Distinctive upstream regulators in NEC
To further identify biological processes specifically involved
in the pathogenesis of NEC, we compared IPA upstream
regulator analyses between NEC and CD, including pedCD,
and found that six upstream transcriptional regulators
were exclusively altered in NEC (Table 2). Interestingly,
these upstream regulators were involved in antiviral and
antimicrobial host defense. We validated the gene expres-
sion profiles of some representative genes in NEC samples
known to be involved in the antiviral or antimicrobial re-
sponses: IFIH1, MX1, OAS1, OAS2 and HLAC (Fig. 5).
Taken together, these distinctive upstream regulator
analyses suggest that the antiviral or antimicrobial response
has been triggered in the intestinal mucosa of NEC neo-
nates and could specifically participate in the pathogenesis
of NEC.

Discussion
To further investigate the functional processes underlying
NEC pathogenesis at the molecular level, we have used
high-throughput mRNA sequencing analysis combined
with enrichment analysis tools on ileal samples obtained
from premature neonates affected with NEC vs CTRL to
fully characterize the repertoire of NEC-related gene
expression. Our results showed that the most significant
biological pathways altered in NEC are those encoding
immune functions such as T and B cell signaling, B cell
development and dendritic cell maturation, diapedesis
and role of pattern recognition receptors for bacteria
and viruses. A previous study using microarrays to in-
vestigate gene expression profiles in a limited number
of NEC samples of small and large intestines (n = 5)
also identified the immune response among the signifi-
cantly altered biological processes in NEC but the lack of
individual gene listing [13] prevented any direct com-
parison. Nevertheless, herein, modulation in the expres-
sion of pro-inflammatory cytokines, Toll-like receptors,
antimicrobial molecules and hemoglobin subunits were
noted at the individual gene level and confirmed by qPCR.

Increased expression of CXCL8/IL8 in NEC is in agree-
ment with previous studies [19] which report an excessive
inflammatory response in the immature intestine. Like
CXCL8/IL8, up-regulation of CXCL10 was also noted in
the intestine of preterm neonates [34]. Interestingly, el-
evated circulating levels of both of these cytokines were
recently noted in preterm infants diagnosed with NEC
[35]. Up-regulation of TLR4 and TLR10 in NEC neonates
as compared to non-NEC preterm neonates is consistent
with the key role played by these bacteria sensing mole-
cules in infectious diseases [20]. Indeed, several lines of
evidence have demonstrated the central importance of the
bacterial lipopolysaccharide receptor TLR4 in many as-
pects of NEC pathogenesis in the context of an immature
innate inflammatory response leading to apoptosis, au-
tophagy, proliferation and cell differentiation [36, 37].
Modulation of TLR10 expression has not been described
previously in the intestine of NEC patients but has re-
cently been reported to act as an anti-inflammatory
pattern-recognition receptor [38]. TLR10 is one of the few
Toll-like receptors without known ligand specificity but
recent work in intestinal cells suggests that it could medi-
ate the inflammatory response to Listeria monocytogenes
[39] and an association of the TLR10 gene with CD
susceptibility has been reported [40].
Up-regulation of intestinal antimicrobial peptide expres-

sion in NEC is another indication supporting immaturity
in the innate immune response in this disease. Among
these genes were the two main α-defensins expressed in
the human intestine: DEF5A and DEF6A. Both defensins
are produced by Paneth cells along with a panel of other
antimicrobial peptides and proteins that include REG3A,
LYZ and PLA2G2A [41], also found herein to be up-
regulated in NEC samples by RNA-Seq. The microbiocidal
activity of α-defensins against Gram-positive and Gram-
negative bacteria, certain fungi, spirochetes, protozoa and
enveloped viruses has been well demonstrated for DEFA5
[41, 42]. DEFA6 appears to be able to kill specific microbes
under certain conditions [43] in addition to its ability to
form nanonets to entrap pathogenic bacteria [44]. Anti-
microbial activity has also been reported for REG3A [45].
These results are consistent with the fact that Paneth cells
have been suggested to be involved in NEC pathogenesis
[46, 47]. However, in contrast to CD [41, 42], no suscepti-
bility gene has yet been identified in NEC. In fact, Paneth
cell abundance in preterm infants with NEC in compari-
son to preterm controls was found to be comparable [47]

(See figure on previous page.)
Fig. 1 Most significant functional pathways identified in necrotizing enterocolitis. a The negative logarithm of p-values (Fisher’s test), calculated
by IPA, for each of the top 12 most significant canonical pathways over-represented in ileal NEC samples compared to control non-NEC samples.
([-Log (0.05) =1.3]) and the corresponding lists of genes associated with each functional pathway. b Biological function enrichment analyses
associated with NEC. Activation z-score calculated by IPA for biological function enrichment represents the level of activation (red) or suppression
(blue) of a function
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or even increased [48]. Interestingly, Paneth cell hyperplasia
and metaplasia was noted in infants recovering from NEC
while Paneth cell products obtained from NEC patients dis-
played strong antimicrobial activity, suggesting that Paneth

cells are at least partially functional in this disease [47]. A
recent interesting hypothesis suggests that other Paneth cell
products such as the pro-inflammatory cytokine TNFα and
IL-17 could trigger the inflammatory process in NEC [46].

Fig. 2 Differential expression of innate immune inflammatory response genes in human necrotizing enterocolitis. Real-time qPCR analysis of transcript
levels of selected target genes related to intestinal innate immunity. Ct values of selected genes were normalized using B2M as reference
gene and data are expressed as rΔCt values (reverse ΔCt: Ctreference gene-Ctgene of interest) in order to display direct variation in NEC vs non-NEC
controls (CTRL). Horizontal line represents the median value of rΔCt values for CTRL and NEC samples. *: p <0.05 between CTRL and NEC samples.
Numbers indicated represent the fold variation between NEC and CTRL
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While neither TNFα nor IL-17 was found to be up-
regulated in the intestine of patients affected by NEC
in the present study, the possibility that an acute in-
flammatory response could be initiated by Paneth cells
cannot be ruled out.
The increase of LCN2 encoding neutrophil gelatinase-

associated lipocalin/lipocalin-2 in NEC samples could be
of interest for diagnostic purposes. Indeed, this anti-
microbial molecule has been reported to be up-regulated
in intestinal cells in response to a variety of pro-
inflammatory stimuli [49] and can serve as an efficient
blood and fecal biomarker for monitoring inflammatory
bowel diseases in the adult [50, 51]. Incidentally, TFF3,
also identified among the up-regulated genes expressed

in NEC in this study, is one of the recently identified gut-
associated serum markers for the diagnosis of NEC [52].
Another interesting finding from this study is the

significant decrease observed in the expression of all
hemoglobin subunits in the intestine of NEC cases in-
cluding α, β, δ and γ hemoglobin subunits as well as
AHSP, the α-hemoglobin chaperone, which was con-
firmed by qPCR (AHSP; not shown). Although not yet
described in the intestine, non-erythroid hemoglobin
expression has been reported in various cell types where it
exerts antimicrobial activity and plays a role in oxidative
and nitrosative stresses [53]. Considering the hematologic
abnormalities associated with the development of NEC
[1, 2], future investigation of hemoglobin is needed in

Fig. 3 Comparative analysis of functional enriched pathways between necrotizing enterocolitis and Crohn’s disease. a The negative logarithm of
p-values (Fisher’s test), calculated by IPA, for each of the functional categories over-represented in NEC samples was plotted against those modulated
in Crohn’s disease according to published data [23–25]. Canonical pathways represented by colored squares indicating the top 12 functional pathways
identified in NEC are listed in Fig. 1. As shown, 11 of them are shared between NEC and CD. Insert: Venn diagram showing the 131 canonical pathways
between NEC and CD. Of the 70 pathways found in NEC, 44 were also found in CD. Thresholds (dotted lines) denote the limit of statistical significance
(p = 0.05 [-Log (0.05) =1.3]). b Venn diagram showing ToppCluster enrichment analysis associated with NEC patients and adult CD using phenotype
terms. c Heatmap of some common genes found in the intersection of the ToppCluster enrichment analysis between NEC and adult CD as detailed in
Additional file 6: Table S6
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Fig. 4 Comparative analysis of functional enriched pathways between necrotizing enterocolitis and pediatric Crohn’s disease. a The negative
logarithm of p-values (Fisher’s test), calculated by IPA, for each of the functional categories over-represented in NEC samples was plotted against
those modulated in pedCD according to published data. [26] Canonical pathways represented by colored squares indicate the top 12 functional
pathways identified in NEC as listed in Fig. 1. As shown, 9 of them are shared between NEC and CD. Insert: Venn diagram showing the 153 canonical
pathways identified in NEC and pedCD. Of the 70 pathways found in NEC, 47 were also found in pedCD. Thresholds (dotted lines) denote the limit of
statistical significance (p = 0.05 [-Log (0.05) =1.3]). b Venn diagram showing ToppCluster enrichment analysis associated with NEC patients and pedCD
using phenotype terms. c Heatmap of some common genes found in the intersection of the ToppCluster enrichment analysis between NEC and
pedCD as detailed in Additional file 8: Table S8

Table 2 Exclusive upstream regulators in human necrotizing enterocolitis

Upstream Regulator Molecule Type Predicted Activation State Activation
z-score

Target molecules in dataset

EBI3 Cytokine Activated 2.646 CD80, HLA-A, HLA-C, HLA-DMA, HLA-DMB, HLA-OB, HLA-DQA1

KDM5B Transcription regulator Activated 2.343 CAV1, GAL, GCA, MCAM, MT1H, MT1X, PTPLA, REEP1, TUBB2A

JAK1 Kinase Activated 2 HLA-A, HLA-C, IFIT2, MX1

TICAM1 Other Activated 2 CXCL10, IFIT1, IFIT2, IL8

SOCS3 Phosphatase Inhibited −2.433 CXCL10, IFIT1, IFIT2, IL6, MX1, OAS1, OAS2

SOCS1 Other Inhibited −2.586 CXCL10, IFIH1, IFIT1, IFIT2, MX1, OAS1, OAS2
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light of a recent study that reported a toxic effect of α-
hemoglobin on colonic epithelial cells [54].
Finally, we also identified six cascades of upstream

transcriptional regulators that were exclusively modu-
lated in NEC. Among these regulators, we observed that
SOCS1 and SOCS3 were predicted to be inhibited in
NEC. SOCS proteins play major roles in inflammatory
diseases and infection by suppressing cytokine signaling
[55]. It has been previously reported [56] that SOCS1
and SOCS3 inhibit the expression of OAS1 and MX1
[57, 58], two key antiviral effectors. The up-regulation of
antiviral genes MX1, OAS1 and OAS2 that we observed
in NEC confirmed the inhibited state of SOCS1 and
SOCS3, and suggests that an antiviral response could
have been triggered and play a role in the pathogenesis
of NEC.
Taken together, these results suggest that the mucosa

of the intestine of neonates affected by NEC has been

exposed to a disproportionate inflammatory response likely
due to an immature innate immune response concurrent
with an altered microbiota composition and overgrowth of
specific microorganisms. It is noteworthy that many of the
genes identified to be modulated in neonates with NEC
have also been proposed to be involved in chronic inflam-
matory bowel disease, even though NEC is considered to
be an acute condition. To further investigate this question,
we compared our RNA-Seq results on NEC with available
microarray data from adult [23–25] and pediatric [26] CD.
Our results confirm that a large proportion of the signifi-
cant functional pathways and phenotypes are common be-
tween NEC and CD. More importantly, 22 and 25 % of the
DEGs identified in NEC also appear to be modulated in
CD [23–25] and pedCD [26], respectively. As mentioned
above, these DEGs include specific cytokines and TLRs,
antimicrobial peptides such as α-defensins and REGs, as
well as the multifunctional proteins LCN2 and TFF3 that

Fig. 5 Differential expression of antiviral response genes in human necrotizing enterocolitis. Real-time qPCR analysis of transcript levels of selected
target genes related to the antiviral response. Ct values of selected genes were normalized using B2M as reference gene and data are expressed
as rΔCt values (reverse ΔCt: Ctreference gene-Ctgene of interest) in order to display direct variation in NEC vs non-NEC controls (CTRL). Horizontal line
represents the median value of rΔCt values for CTRL and NEC samples. *: p <0.05 between CTRL and NEC samples. Numbers indicated represent
the fold variation between NEC and CTRL
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are all up-regulated. Recently, it has been reported that a
specific ileal gene expression profile in pediatric CD is asso-
ciated with a depletion of a specific microbial community
[26]. The possibility that the NEC-associated ileal gene
expression pattern could be linked to a specific micro-
bial signature in NEC preterms could be an interesting
avenue and needs to be investigated. In a context where
there is still a crucial need for the characterization of
reliable predictive markers for NEC development [14], our
observations suggest that the some of the biomarkers
identified to be of good diagnostic value for CD could be
useful in the pediatric intensive care unit as non-invasive
markers to predict NEC development, such as LCN2
[50, 51] for instance. This approach is not without prece-
dent, as recently demonstrated for calprotectin [59].

Conclusions
In conclusion, this study has led to the identification of
several DEGs in intestinal samples of premature infants
affected with NEC that could be of clinical interest as
potential biomarkers for the prediction of the disease and
its diagnosis. Furthermore, considering that a significant
proportion of the DEGs are common with those identified
in CD, a widespread intestinal condition for which the bio-
marker pipeline is much more advanced, our observations
suggest that the evaluation of some of the characterized
CD biomarkers could also be useful for a non-invasive
diagnosis of NEC.
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