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Abstract

Background: In biomedical research, events revealing complex relations between entities play an important role.
Biomedical event trigger identification has become a research hotspot since its important role in biomedical event
extraction. Traditional machine learning methods, such as support vector machines (SVM) and maxent classifiers,
which aim to manually design powerful features fed to the classifiers, depend on the understanding of the specific
task and cannot generalize to the new domain or new examples.

Methods: In this paper, we propose an approach which utilizes neural network model based on dependency-based
word embedding to automatically learn significant features from raw input for trigger classification. First, we employ
Word2vecf, the modified version of Word2vec, to learn word embedding with rich semantic and functional
information based on dependency relation tree. Then neural network architecture is used to learn more significant
feature representation based on raw dependency-based word embedding. Meanwhile, we dynamically adjust the
embedding while training for adapting to the trigger classification task. Finally, softmax classifier labels the examples by
specific trigger class using the features learned by the model.

Results: The experimental results show that our approach achieves a micro-averaging F1 score of 78.27 and a
macro-averaging F1 score of 76.94 % in significant trigger classes, and performs better than baseline methods. In
addition, we can achieve the semantic distributed representation of every trigger word.
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Background
With the development of system biology which emphasizes
the importance of relations and interactions between
biological entities, revealing biomedical events, the complex
interactions between biological molecules, cells, and tissues,
becomes imperative [1]. Biomedical events play a key role in
the development of biomedical research, which can contrib-
ute to biomedical database development and pathway cur-
ation. However, there is little knowledge about biomedical
events in existing databases that we can utilize directly.
Consequently, with the rapidly growing quantity of biomed-
ical scientific literature, continuing effort must be put into

mining the underlying knowledge (e.g. entity relations and
biomedical events) hiding in the scattered literature. As such,
biomedical event extraction has attracted much attention.
BioNLP shared tasks [2] have been held for three editions
aiming to extract fine-grained, complex, and structural
events from biomedical scientific literature and many novel
methods have been proposed.
In general, we define an event as a triple tuple: <event type,

theme, cause>. The event type denotes the related event be-
havior, such as gene expression, regulation, or binding. An
event contains the theme and cause, where the theme is the
primary participant of the event and the cause is the reason
that the event behaves. For instance, as shown in Fig. 1, the
words “inhibited” and “formation” denote the events “Regu-
lation” and “Development,” respectively. We call the event
“inhibited” a complex event that contains another event and

* Correspondence: wangjian@dlut.edu.cn
1School of Computer Science and Technology, Dalian University of
Technology, Dalian, China
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Wang et al. BMC Medical Genomics 2016, 9(Suppl 2):45
DOI 10.1186/s12920-016-0203-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-016-0203-8&domain=pdf
mailto:wangjian@dlut.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


the event “formation” a simple event that only contains the
theme. No matter is an event simple or complex, the trigger
plays a major role in the whole event extraction procedure.
The current popular approaches for biomedical event

extraction mainly follow a pipeline procedure: event trigger
detection and event argument extraction. In such pipeline
methods, event trigger detection plays a primary role. Our
preliminary analysis has shown that more than 60 % of
extraction errors are caused by trigger detection. Unsurpris-
ingly, much effort [3, 4] has been put into improving the
performance of trigger detection.
There are mainly two kinds of approaches for trigger detec-

tion: rule-based and machine learning approaches. Rule-
based approaches focus on the definition of a set of extraction
rules, such as regular expression and matching pattern rules.
However, it is much difficult to define different rules to match
all trigger words, which influences the overall performance of
trigger detection. Furthermore, rule-based methods fail to
generalize to the new dataset, which is an unavoidable prob-
lem in extracting new events between new biological entities.
Machine learning approaches treat the trigger detection

task as a traditional classification problem that assigns an
event label to every word. These kinds of methods usually
extract high-end hand-designed features from processed
training data. For training a trigger detection model [5],
the features are fed into a classification model, such as
Support Vector Machine (SVM). However, the annotated
data we can utilize is often not enough for training a
classification model with acceptable performance. Conse-
quently, Zhou [6] proposed a novel method that learns
domain knowledge from a large corpus of text and em-
beds it into word features with a natural language model.
In these approaches, the hand-designed features generally
reach hundreds of thousands of dimensions in order to
better represent the trigger feature information that will
be fed into the classification algorithm. To obtain this use-
ful classification information, the method usually needs to
parse the data using a shallow and deep dependency
parser which is usually time and computation consuming.
Afterwards, features are manually designed through the
parse results. However, these kinds of methods need to
design different features for different NLP tasks based on
the particularities of each specific task. Furthermore, the
hand-designed features are traditional one-hot features
lacking semantic information about the trigger. Nowadays,
there are many methods for modeling words’ semantic
information. Of these, word2vec [7] is one of the most
popular tools because of its effectiveness and efficiency.

We propose a biomedical event trigger detection method
by employing neural network model and dependency-based
word embedding for addressing the complex problem of
manually designing task-specific features. The method aims
to not only solve the problem of dimension disaster but also
can be generalized to new extraction tasks with new data
without extra intervention. The dependency-based word
embedding is learned from all available PubMed abstracts
which have similar topic with the annotated data. The em-
bedding contains more functional semantic information.
Words have higher similarity when they behave similar in
function. Consequently, the dependency-based word em-
bedding contributes more to the trigger detection task than
topical word embedding does since the classification of
trigger needs more functional information. Then the senior
and significant features are automatically learned by the
neural network model (also called deep learning model).
For evaluating the effectiveness of our proposed approach,
we perform the experiment in MLEE dataset to extract the
biomedical event trigger containing 19 trigger classes. Our
experimental results show that the method has better
performance compared to baseline approaches.
The proposed method mainly contains following con-

tributions: (1) Dependency-based word embedding is
employed to address the functional semantic informa-
tion in the trigger detection task. (2) Features are auto-
matically built from raw input with dependency-based
word embedding. (3) Neural network model is utilized
to learn powerful features which are fed to softmax
classifier. Meanwhile, the word embedding is dynamic-
ally adjusted based on backup propagation algorithm.
The remaining part of the paper is organized as follows.

Section II detailed illustrates the proposed method. Section
III presents the experimental results and detailed discussion.
Section IV concludes our paper and describes the future
work.

Method
Our method consists of four major parts as shown in
Fig. 2: (1) Dependency-based word embedding is trained
by Wordvecf [8] with all available PubMed abstracts.
The embedding contains more functional information,
which contributes more to our trigger identification task
in that most of the detected triggers are verbs or words
acting as verbs. (2) The distributed semantic feature
vectors, which have low dimension and continuous
value, are extracted from the processed dataset by a sim-
ply window-based approach without extra preprocess.

Fig. 1 The annotation example of biomedical event
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(3) The neural network classification model is employed
to automatically learn the hidden and significant feature
representation from the raw input and train the trigger
detection system with the labeled dataset based on a
back propagation algorithm. At same time, the algorithm
dynamically adjusts the input word embedding to learn
the better word embedding for the trigger detection task.
(4) The biomedical event triggers are predicted by the
softmax layer.

Biomedical knowledge
The annotated dataset only contains 262 documents
with annotations. We cannot learn the exact semantic
information from such little data. However, there are
large amounts of biomedical knowledge hiding in public
databases. Consequently, we employ the public available
biomedical knowledge, PubMed abstracts, to accurately
capture the semantic information of every word, espe-
cially event trigger words to promote the performance of
trigger identification. The data are approximately 20G,
which are enough to model the semantic information of
every word.

Word embedding
The machine learning algorithm requires some fix-
length feature vectors, such as bag-of-words [9]. Despite
its popularity, the bag-of-words lacks the order infor-
mation and semantics. So, word embedding, also called
word vector or word distributed representation, aims

to present the semantics of words and lower the fea-
ture dimension with a low-dimension semantic vector
instead of a high dimensional and sparse feature vec-
tor. Specially, we can learn different word embedding
for different tasks. Of all word embedding, word2vec
[7] achieves giant success in many NLP tasks, such as
Named Entity Recognition(NER) and Part-of-Speech(POS)
Tagging. There are mainly two kinds of word embedding:
bag-of-words-based embedding and dependency-based
embedding.

1) Bow-based word embedding
The linear bag-of-words contexts are employed to
train word embedding by word2vec and many other
neural language models. The method uses a window
of size k to predict the current word or current
word to predict its surrounding words. Generally,
we utilize the skip-gram model to maximize the
average log probability:

1
T

XT

t¼1

X

−c≤j≤c;j≠0

log℘ wtþjjwt
� � ð1Þ

where c is the window size (a hyper-parameter to be
chosen while training). We call this kind of word em-
bedding bow-based word embedding, which is trained
by the linear contexts. The embedding is full of semantic
information, usually topic semantics. For example, the

Fig. 2 The framework of our method
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word “dancing” is most similar to the words “dance,”
“dances,” and “dancers.”

2) Dependency-based word embedding
Unlike other NLP tasks, such as POS or CHUNCK,
the trigger detection task needs more information
in dependency contexts than in linear contexts.
Consequently, an alternative to the bag-of-words
approach is to derive contexts based on deep
dependency parse. As shown in Fig. 3 and Table 1,
after parsing each sentence, we derive word contexts
in syntactic relations and use them to train word
embedding. And we can capture relations of words
that are far apart and thus “out-of-reach” with small
window bag-of-word.

More specifically, we parse all available PubMed abstracts
with Gdep parser [10], a dependency parse tool specialized
for biomedical texts, and train the dependency-based word
embedding based on the contexts in dependency relations
with the tool word2vecf [8].
Generally, this kind of word embedding model derives

more functional semantic information. For example, the
word “dancing” is most similar to the words “singing,”
“rapping,” and “miming,” which act in similar roles in a
sentence. This kind of functional semantic information is
the important resource for our trigger identification task.

Corpus preprocessing
In most trigger recognition methods, complex prepro-
cessing, such as shallow and deep parse, usually need to
be made for extracting complex, high-end, and useful
features that are fed to the specific classifier. However,
in our method, there is no need to do such complex pre-
processing. In fact, we do not even use entity annotation
information, which takes significant time to annotate.
In our method, only the following steps are employed

to process the annotated data.

� Sentence split. There are no events with cross
sentences in the dataset. Consequently, we utilize
the GENIA Sentence Splitter [11] to split the source
text into the sequence of sentences for facilitating
further processing.

� Tokenization. Tokenization refers to the process of
breaking the input text into words, phrases, and
symbols that become the input of further

processing. We employ the NLTK toolkit [12],
which is a widespread used natural language toolkit,
to tokenize a sentence into the sequence of tokens.

Word embedding based neural network model
As described previously, the trigger detection task can be
seen as a classification task. Traditional trigger identifica-
tion methods mainly extract high-end, hand-designed
features from the data with being processed by kinds of
NLP methods containing sentence split, tokenization, and
dependency parse. Then feature extraction is finished
based on these parse results and the annotated entity in-
formation. This is a complex and task-dependent process.
Consequently, it is difficult to generalize to new data or
new task. Instead, we employ the dependency-based word
embedding with rich functional semantic information to
automatically learn significant features using a general
purpose learning procedure (called deep learning [13]).
Our methods follow the process as shown in Fig. 4.

Window processing
Inspired by word2vec [7], we can predict the trigger
word by its context information with rich semantic in-
formation that is called distributed semantic representa-
tion. Consequently, we only utilize the linear context of
the target trigger to identify the target trigger, instead of
extracting complex features from the dependency tree or
entity annotation.
For example, as shown in Fig. 3, “inhibited” is a trigger

with type “Regulation”. We use the words “Thalidomide”
and “formation”, where the word “the” is a stop-word to
predict the word “inhibited”, whether it is a trigger and
which types it belongs to. Although the method looks
simple, it is effective. As a result, in this step, we process
every instance into the sequence of word indices, which
are fed into the next steps.

Lookup table layer
Then, the sequence of word indices are projected into
the word vector through the lookup table layer and con-
catenating operation. The operation of lookup table re-
fers to projecting every word in a specific window to the
semantic representation which is utilized to predict the
trigger. And the concatenating operation refers to join-
ing every single vector of the word end to end into the
corresponding feature vector. The vector is regarded as
the semantic feature representation of the target trigger.

Fig. 3 Example of a dependency parse result
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Then, the generated vectors are fed into the neural
network model to train the trigger detection model by a
backup propagation and gradient descent algorithm.
More formally, for each word w∈D , the responding

vector representation is acquired by the lookup table
layer LTw ∙ð Þ:

LTW wð Þ ¼ W 1
w ð2Þ

where W �R Dj j�size is the word matrix parameter being
learned using PubMed abstracts and fine-tuning the
training process to be more adaptive to the specific data-

set. Wh i1w is the wth column of W and size is the word
vector size (a hyper-parameter to be chosen) [14].

Automatic feature learning
Conventional supervised machine learning (shallow classi-
fier) methods are used to design a good feature extractor
that requires a considerable amount of engineering skills
and domain expertise, but the hand-designed feature
doesn’t allow the learner to generalize well outside of
training examples. In our methods, we employ the neural
network model to automatically learn good feature repre-
sentation from raw input for making the classifier more

powerful. At each layer, the total input z is computed for
each units which is the weighted sum of the outputs of
the last layer. Then a nonlinear activation function f ∙ð Þ is
applied to z to generate the output of the current unit.
Among all nonlinear activation functions, the rectified
linear unit (ReLU) f zð Þ ¼ max 0; xð Þ is chosen, commonly
used in recent years, for its effectiveness and fast
convergence.

H xð Þ ¼ f ω⋅xþ bð Þ ð3Þ

Where x is the output of upper layer, ω is the param-
eter matrix between the layers, b is the bias item, and H
xð Þ can be regarded as the senior feature representation,
which can be classified better. Then the learned features
are fed into the classifier to classify the sample into a
specific trigger class.

Training
After building the biomedical event trigger identification
model, we need to choose an optimization algorithm to
train the model and search for optimal parameters.
Among most optimization algorithms, such as gradient
descent and Newton method, gradient descent is the
most efficient and popular algorithm because it is simple
and requires less computation. Gradient descent is a
first-order optimization algorithm to find the local mini-
mum of a function. However, we usually employ batch
gradient descent for saving expensive computation and
its power of acquiring a better solution. We compute
the partial derivative of objective function toward the
parameter of each layer based on a backup propagation
algorithm. Then we update the parameters of each layer
using the gradient in that of fast convergence throwing
the negative direction of gradient. The algorithm walks
through all training examples with multiple iterations

Fig. 4 Neural network model

Table 1 Dependency Contexts

Words Dependency contexts

Thalidomide inhibited/SUB

Inhibited Thalidomide/SUB-1a,formation/OBJ

The formation/NMOD-1a

Formation the/NMOD, of/NMOD-1

Of activity/NMOD, tubes/PMOD-1a

Capillary tubes/NMOD-1a

Tubes capillary/NMOD, of/PMOD-1a

a’-1’ refers to the inverse relation
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and stops iterating until the algorithm is convergence.
Finally, we can acquire the optimal parameters of model
and we can predict new examples using these optimal
parameters.
In addition, we modify the neural network architecture

with dropout architecture [15] and employ AdaDelta up-
date rules [16] to update the parameters dynamically.
The AdaDelta update rule dynamically adapts over time
using only first order information and has minimal com-
putational overhead beyond vanilla stochastic gradient
descent. The dropout architecture refers to random
dropout values of some nodes. This can prevent the
complex co-adaptations in which a feature node can
only be helpful in the context of several other feature
nodes. Overfitting usually can be avoided by randomly
omitting some feature nodes.
Finally, we implement the trigger identification model

by Theano [17]. Theano is python library that allows
users to define, optimize, and evaluate mathematical
expressions. Consequently, we can implement the neural
network model more easily. In addition, Theano supports
convenient configuration for GPU running, which can
greatly accelerate the training speed.

Hyper-parameters
As described in the last section, we adopt AdaDelta up-
date rule to update the parameters of the model. Conse-
quently, we do not need to initialize the learning rate,
which plays a considerably important role in the entire
training process. This facilitates the process of choosing
parameters to some extent. In addition to learning rate,
there are some other hyper-parameters, such as word
embedding size, dropout rate, layer number, layer size,
and batch size. The different combinations of different
hyper-parameters will lead to different results. As we all
know, there are no methods to find the best combination
of all the hyper-parameters theoretically. Consequently,
we empirically search for the reasonable combination of
all the hyper-parameters through a large number of exper-
iments. The combination of hyper-parameters of the
model is shown in Table 2.

Experiment results and discussion
In order to evaluate the performance of our proposed
biomedical trigger detection model, we conducted the
experiment study with the MLEE dataset1, which aims
to support event extraction across levels of biological
organization from the molecular to the organ system
level. At the same time, we also employ all the available

PubMed abstracts to train the rich functional semantic
information for every trigger word. Then we design a
multi-layer neural network model based on dependency
word embedding for trigger classification. The neural
network architecture automatically learns the good fea-
tures from raw word embedding without redundant pro-
cessing and task dependence, and it classifies the event
triggers by the learned hidden features. Furthermore, the
raw word embedding is dynamically adjusted based on a
backup propagation algorithm while training to be more
adaptive to the specific dataset and represent more ac-
curate functional semantic information of event triggers.
At last, we compare our experiment results with other
state-of-the-art methods based on precision, recall, and
F1 score.

Dataset
The MLEE dataset mainly focuses on the topic about
angiogenesis, a key process in tumor development. The
dataset supports event extraction across more concrete
entity and trigger types. The entities contains molecular,
cell, tissue and organ and the related event triggers are
divided into four categories containing 19 pre-defined
trigger classes, such as “Regulation”, “Cell proliferation”
and “Blood vessel development”. However, as shown in
Table 3, there are distinct differences in trigger numbers
among different trigger classes [18].

Table 2 The combination of hyper-parameters of the model

Hyper-parameter Layers Word Dropout Batch

Value 4 200 0.5 256

Table 3 The number of different trigger classes

Category Event type Number

Cell proliferation 43

Development 98

Blood vessel development 305

Anatomical Growth 56

Death 36

Breakdown 23

Remodeling 10

Synthesis 4

Gene expression 132

Transcription 7

Molecular Catabolism 4

Phosphorylation 3

Dephosphorylation 1

Localization 133

Binding 56

General Regulation 178

Positive regulation 312

Negative regulation 223

Planned Planned process 175
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Evaluation metrics
As with most of classification tasks, we chose preci-
sion (P), recall (R), and F1 score (F1) to evaluate the
performance of our trigger detection model for every
trigger class.

P ¼ tp
tpþ f p

ð4Þ

R ¼ tp
tpþ f n

ð5Þ

F1 ¼ 2 � P � R
P þ R

ð6Þ

Where tp is true positive for test examples, fp is false
positive, and fn is false negative.
Furthermore, for evaluating overall performance, we

employ the micro-averaging (7), and macro-averaging
(8) methods to evaluate the overall F1 score per-
formance [19, 20].

MacroAvgF1 ¼
X Cj j

i¼1
F1i

Cj j ð7Þ

MicroAvgF1 ¼
X Cj j

i¼1
2 � P � Rð Þi

X Cj j
i¼1

P þ Rð Þi
ð8Þ

Where C is trigger class, and Cj j is the responding
class number.
As is the same of most of supervised machine learning

methods, we cannot accurately predict the trigger whose
instance number is rare. At the same time, the predic-
tion failure of these triggers may have a serious impact
on the overall performance. Consequently, we evaluate
the overall performance ignoring the trigger class with
rare quantities (less than 10).

Performance analysis
For evaluating the efficiency of our proposed method, we
compute the precision, recall, and F1 score for each class
and compare them with state-of-the-art methods. More
specifically, we compare the results of dependency-based
word embedding with bow-based word embedding and
compare the results of non-static word embedding with
static word embedding, which shows that our proposed
method is efficient.

1) Overall analysis and discussion
We employ Pyysalo et al. [5] and Zhou et al. [6] as
the baseline methods. Pyysalo et al. implemented an
SVM-based approach, which manually designs
salient features such as context and dependency
features and fed them into SVM classifier. Zhou et
al. also conducted a similar experiment. The

method achieved significant results over existing
methods. However, this method only utilizes the
annotated data and fails to utilize the rich semantic
information contained in massive amounts of
biomedical literature. Zhou et al. employed a
feedforward neural network to train word embedding
and integrated it with hand-designed features into the
SVM classifier. This method has achieved state-of-
the-art results. However, as mentioned in [21], the
feedforward neural network is not the optimal method
for training word embedding compared with the Skip-
gram model. Furthermore, this method still needs
manually designed features, which limits the power of
generalization.
As shown in the Fig. 5, we compare our experimental
results (only event types with more than 10) with
Pyysalo et al. and Zhou et al. to show the potential
of our proposed method. From Fig. 5, we can
observe that there are eight classes that perform
better than Pyysalo et al. and six classes that
perform better than Zhou et al. As shown in
Tables 4 and 5, it can be observed that we achieve
better overall performance over micro-averaging
and macro-averaging F1 score. More significantly,
our proposed approach automatically learns
significant feature representation based on
dependency-based word embedding without any
manual intervention and hand-designed features
compared with the methods of Pyysalo et al. and
Zhou et al. Consequently, our proposed approach
has stronger power of generalization and it can be
applied to new examples.

2) Dependency-based word embedding versus bow-based
word embedding
Most NLP tasks employ bow-based word embedding
as semantic representation for its popularity and
efficiency. However, it is not proper for the trigger
detection task. In a trigger identification task, the
target triggers usually are verbs or words acting as
verbs. We cannot simply predict the trigger using
bag-of-words because the target trigger is usually
far away from entities, such as proteins and RNA.
Consequently, we employ dependency-based word
embedding for the trigger classification problem.
Generally, dependency-based word embedding is
trained based on syntax contexts instead of bag-of-
words. More specifically, the syntax contexts are
acquired by Gdep parsing. The dependency word
embedding contains more functional semantic
information.
To verify the efficiency of dependency-based word
embedding, we compare the experimental results of
dependency-based word embedding and bow-based
word embedding. As shown in Figs. 6 and 7. Figure 6

Wang et al. BMC Medical Genomics 2016, 9(Suppl 2):45 Page 129 of 204



is the change of macro-averaging F1 score over
iteration and Fig. 7 is the change of micro-averaging
F1 score over iteration. From these two figures, it
can be observed that dependency-based word
embedding (“dep10” in Figs. 6 and 7 where “10”
suggests that we filter the words less than 10)
performs better than bow-based word embedding
(“bow” in Figs. 6 and 7).
Through our experiments on different word
embedding, we can conclude that different word
embedding has a different influence on different
tasks. Consequently, we must choose a specific
word embedding (such as dependency-based word
embedding in our task) based on different
problems.

3) Word embedding static versus non-static
In order to learn better trigger semantic information
for our task in the specific dataset, we dynamically
modify the trigger word embedding matrix based
on a backup propagation algorithm and gradient
descent algorithm while training. In this process,

we adjust the word embedding parameters using
the annotated data, which can be regarded as a
supplement for unsupervised training.
Different experiments are conducted to evaluate
the different influence of static and non-static
word embedding. Figure 8 is the changing of
macro-averaging F1 score over iteration epochs,
and Fig. 9 is the changing of micro-averaging F1
score. As shown in Figs. 8 and 9, word embedding
with non-static achieves better experimental
results (macro-averaging and micro-averaging F1
score) in stability and efficiency over iterations.
Consequently, it is suggested that adjusting the
word embedding in the training process not only
makes the neural network model more stable and
gives it stronger power of generalization but it can
also achieve more optimal experimental results.
Finally, we can achieve semantic distributed
representation (word embedding) for every trigger.
The word embedding contains rich semantic
information of the trigger.

Fig. 5 Experimental Results

Table 4 Micro-averaging F1 score of significant events

Method R(%) P(%) F1 Score(%)

Pyysalo [5] 81.44 69.48 74.99

Zhou [6] 80.60 74.23 77.28

Proposed 83.62 73.56 78.27

Table 5 Macro-averaging F1 score of significant events

Method R(%) P(%) F1 Score(%)

Pyysalo [5] 78.04 68.74 73.09

Zhou [6] 79.18 72.03 75.43

Proposed 81.89 72.56 76.94
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Fig. 6 The influence of word embedding on Macro-averaging F1 score

Fig. 7 The influence of word embedding on Micro-averaging F1 Score
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Fig. 8 The influence of static and non–static on Macro-averaging F1 score

Fig. 9 The influence of static and non-static on Micro-averaging F1 score
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Conclusion and future work
In this paper, we proposed a method to automatically
extract biomedical event triggers from biomedical texts.
This method combines word embedding and neural net-
work classification models to build the trigger identifica-
tion architecture. The method takes advantage of word
embedding with massive biomedical resources containing
rich semantic information and does not need annotated
information of the entity, which can save the expensive
cost of annotating data. At the same time, we utilize dis-
tributed semantic vector instead of convolutional hand-
designed features for its stronger power of generalization.
In addition, we employ dependency-based word embed-

ding, which contains more functional semantic informa-
tion, to better capture semantics of triggers. And we
dynamically adjust word embedding based on supervised
training. The experimental results show that our proposed
approach is efficient compared with baseline methods and
it can generalize better.
In the future, we will explore tree-based deep learning

model such as tree LSTM which can automatically learn
features from dependency tree for trigger detection task.
And we will extract complete biomedical events after
detecting triggers.

Endnote
1http://nactem.ac.uk.
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