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Abstract

Background: Differential gene expression is important to understand the biological differences between healthy
and diseased states. Two common sources of differential gene expression data are microarray studies and the
biomedical literature.

Methods: With the aid of text mining and gene expression analysis we have examined the comparative properties
of these two sources of differential gene expression data.

Results: The literature shows a preference for reporting genes associated to higher fold changes in microarray data,
rather than genes that are simply significantly differentially expressed. Thus, the resemblance between the literature
and microarray data increases when the fold-change threshold for microarray data is increased. Moreover, the
literature has a reporting preference for differentially expressed genes that (1) are overexpressed rather than
underexpressed; (2) are overexpressed in multiple diseases; and (3) are popular in the biomedical literature at large.
Additionally, the degree to which diseases are similar depends on whether microarray data or the literature is used
to compare them. Finally, vaguely-qualified reports of differential expression magnitudes in the literature have only
small correlation with microarray fold-change data.

Conclusions: Reporting biases of differential gene expression in the literature can be affecting our appreciation of
disease biology and of the degree of similarity that actually exists between different diseases.

Background
Investigating the differences between diseased and
healthy state helps us understand the pathology of dis-
eases and, eventually, treat them. One particular focus of
investigation is differentially-expressed genes (DEGs),
which involves the identification of genes that are differ-
entially expressed in disease. In pharmaceutical and clin-
ical research, DEGs can be valuable to pinpoint
candidate biomarkers, therapeutic targets and gene sig-
natures for diagnostics. While particular gene expression
changes may not always translate into consequential bio-
logical activity, such data can nonetheless be pooled with
other biological data in a high-throughput fashion to
create integrated analyses, such as building the target
landscape of a disease [1, 2].

Our goal in this study was to compare two widely used
sources of DEG information, namely high-throughput
microarray expression studies and the scientific litera-
ture. For that purpose, we mined the scientific literature
and analyzed microarray datasets on a set of diseases to
study the similarities and differences of these two types
of data within specific biological contexts.
In the scientific literature, information about DEGs is

largely found in unstructured form and scattered across
publications. It can appear in the form of gradable state-
ments, which are statements that describe a measure-
ment with respect to a baseline, scale or norm [3]. For
example, the sentence “The expression of protectin was
found to be decreased in the epithelium of patients with
ulcerative colitis.” [4] compares the pathological expres-
sion of protectin to an implicit baseline, presumably the
expression level of protectin in healthy state. Such a sen-
tence describes a “negative regulation of gene expres-
sion” as defined by the Gene Regulation Ontology [5].
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DEG information can also be found in non-gradable
statements in which a comparison is implicit. For
example, in the sentence “Expression of the COX-2
enzyme has been reported in animal models of inflam-
matory bowel disease (IBD) as well as in patients af-
fected by ulcerative colitis and Crohn's disease.” [6] it is
implied that there is lack of expression in wild-type ani-
mals and healthy patient tissue.
Statements about DEGs in the literature often lack de-

tail or specificity, which is a challenge for human inter-
pretation and for their automatic extraction by
computers. Thus, they can refer indistinctly to protein
or RNA [7], and use baselines that are not defined or
vague. Vagueness is a general feature of natural language
and is a special problem with gradable statements [8].
For example, in the sentence “Involucrin [...] is markedly
increased in inflammatory skin diseases such as psoria-
sis.” [9], the magnitude implied by “markedly” is difficult
to evaluate. Furthermore, the baseline of the statement
is implicit, although it is probably the expression level in
healthy skin tissue. Finally, the source of supporting evi-
dence and experimental details, such as the technique
employed, is missing in the sentence and in the article in
which the sentence appears. Such a statement shows a
low level of presented evidence as defined by [10].
In contrast to DEG information found in scientific

text, microarray expression data typically appear in
structured form in numerical datasets that cover
thousands of genes and can be stored in repositories
such as the Gene Expression Omnibus (GEO) [11] and
ArrayExpress [12]. Such repositories allow the pooling of
multiple datasets to create an aggregate view across dif-
ferent experimental settings [13]. While better organized
than the literature, microarray expression datasets
present their own challenges. The raw expression data
from these datasets require processing and quality as-
sessment [14], and resulting expression values convey a
relative rather than an absolute measure. Thus, the ana-
lysis of microarray expression is usually restricted to
identifying expression values with largest change
between samples (e.g., [15]) or that change beyond a
certain statistically-significant threshold or a fixed fold-
change threshold.
An important limitation of microarray expression

studies is that they concern only mRNA and not
protein, and in particular only whole-cell mRNA
[16]. Therefore, they lack the detail and granularity
of experimental methods, such as immunohistochem-
istry, that can describe detailed spatial distributions.
Moreover, interpretation of microarray expression re-
sults is complicated by the natural variation that ex-
ists across biological samples, as well as by
differences in technical settings across experiments
and laboratories [17]. Finally, microarray expression

datasets not stored in standard repositories can be
hard to obtain.
The advent of gene expression measurement with

RNA sequencing (RNA-seq) technology has affected the
number of microarray studies being undertaken. How-
ever, in 2016, GEO still released 4945 array expression
profiling series (“expression profiling by array”[DataSet
Type] AND “gse”[Entry Type]), or about the same
quantity released for high-throughput sequencing series
(“expression profiling by high throughput sequencing,”
n = 4894). Moreover, a large trove of microarray studies
has been accumulating in GEO over time, with 49,026
array series available (search performed on 2017-2-14).
While RNA-seq is increasingly favored for high-
throughput expression analysis, modern microarray and
RNA-seq platforms produce expression values that are
highly correlated and each possesses its own technical
advantages [18, 19].

Methods
For the text mining part of our study, there is no prior
work focused specifically on DEGs in disease. The clos-
est work concerns the extraction of population percent-
ages of lymphoma tumors that show expression of a
gene in immunohistochemistry experiments [20]. In that
work, gene names were tagged using dictionary-
matching and a set of rules was devised to identify sen-
tences with potentially relevant information about gene
expression. There have also been studies on identifying
genes expressed in cell types [21] and anatomical loca-
tions [22], or in both [23]. The identification of sen-
tences that describe gene expression, without any other
contextual details, has also been addressed as part of
more-general event extraction tasks [24, 25].
Our approach was to identify sentences from Medline

abstracts that provide information of the type “X is
differentially regulated in Y” with respect to healthy
controls, with X being a gene and Y a disease. Such
information can be mapped to vectors of the type
(PMID, X, Y, Δ) where PMID is the corresponding
PubMed ID of the abstract and Δ refers to the direction
and magnitude of expression change between diseased
and healthy states. The values that the vectors (PMID,
X, Y, Δ) can take were based, in our case, on the content
of the sentences identified, thus coreferences or informa-
tion from the rest of the document were not considered
except in cases of ambiguity in the gene name or ana-
tomical location of the expression. In such cases this in-
formation could come from the rest of the abstract if
appearing therein. Redundant (PMID, X, Y, Δ) state-
ments were discarded.
Typically, qualifier keywords and phrases (such as

“overexpressed,” “decreased expression” and “greatly
elevated”) helped determine the value of Δ. The set of
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possible values for Δ were defined to be the following:
{high increase, increase, decrease, high decrease}. We
tracked qualifiers that indicated a very large change in
expression to assign the Δ values high decrease and high
increase. For example, expression that was described as
“greatly elevated” in disease was mapped to high
increase, while “elevated” or “significantly overexpressed”
was mapped to increase.
Since DEG information can be conveyed through text

in many ways, we devised a generally-inclusive method
based on tri-occurrence. We searched first for abstracts
mentioning a disease Y and a gene X using disease and
human gene annotations from NCBI’s PubTator (down-
load 2016-01-25) [26]. Those abstracts were then split
into sentences with the aid of the JULIE Sentence
Boundary Detector [27]. For each sentence we detected
whether there were mentions of gene X, disease Y (or
abbreviation) and trigger word (or substring). The trig-
ger words were selected after [22] to be the following:
{express, production, produce, transcription, transcribe}.
Finally, the resulting sentences were manually reviewed.
Our goal was to produce a sample of sentences that rep-
resented an unbiased view of the literature. Undefined
expression changes were not considered (e.g. expression
described as altered/alteration, aberrant, abnormal, dys-
regulation, expressed differentially, modulated, discord-
ant). Moreover, names indicating protein complexes or
families of proteins or genes that could not be mapped
to at most three genes were not considered.
Human microarray expression series relative to each

disease were searched in GEO by using the correspond-
ing disease names as keywords. To maintain consistency,
all series selected were based on the same platform,
Affymetrix Human Genome U133 Plus 2.0 Array
(GPL570), and included both diseased tissue samples
and normal samples. Unaffected-tissue samples, samples
after drug treatment or samples from non-primary dis-
ease tissue (such as blood peripheral samples) were not
considered. From the series found following these cri-
teria, those with the largest sample size were prioritized.
The series selected for in-depth analysis were:

GSE36842 for atopic dermatitis, GSE36807 for Crohn’s
disease, GSE13355 for psoriasis and GSE38713 for ul-
cerative colitis. DEGs were identified using the limma
Bioconductor R package using Benjamini & Hochberg
(false discovery rate) to correct for multiple testing and
adjusted p-value <0.05. The fold change (FC) in expres-
sion was used as a variable filter (cutoff ) throughout the
study. We did not identify any covariates that required
batch correction. Box plots and principal component
analysis for each dataset are provided in the supplemen-
tary information (see Additional files 1, 2, 3 and 4). For
calculating the positive likelihood ratio between micro-
array data and the literature we took into account only

the subset of genes (HUGO gene symbols) shared by
both PubTator and GPL570 (n = 17,126).

Results
The focus of our work was on four diseases: Crohn’s dis-
ease (CD), ulcerative colitis (UC), psoriasis (PS) and
atopic dermatitis (AD). Their choice stemmed partially
from their specificity to particular tissues: psoriasis and
atopic dermatitis to the skin, Crohn’s disease and ulcera-
tive colitis to the gastrointestinal tract. Another reason
for their selection was our interest in exploring similar
diseases that are often compared to each other, in our
case the pairs PS-AD and UC-CD. We collected DEG
statements from the literature and microarray datasets
concerning these four diseases (see Methods), focusing
only on the main affected tissues (e.g., we discarded
serum measurements). We then compared the data re-
ported in the literature with the information contained
in microarray datasets.
Through our text mining approach, we created a sam-

ple of DEG statements coming from 200 Medline ab-
stracts for AD, 308 for CD, 429 for PS and 273 for UC.
These statements concerned 173 unique genes for AD,
240 for CD, 327 for PS and 285 for UC. (The text min-
ing results are available as supplementary information,
see Additional file 5.) The microarray datasets presented
different quantities of DEGs depending on fold change
(FC) filtering. For example, for |FC| > 2, 110 unique
genes were differentially expressed in AD, 92 in CD, 998
in PS and 2339 in UC.

Overexpression is more reported than underexpression
As can be seen in Fig. 1 and Table 1, DEG reports
favor overexpressed genes 3-4 times more than
underexpressed genes. Intriguingly, the magnitude of
this bias does not differ much between diseases.
Microarray expression data shows no such systematic
imbalance.
To simplify the discussion, the focus in the next sec-

tions is on overexpressed genes, for which there exist
more data in the literature.

The reporting of high overexpression correlates with the
reporting of overexpression and only weakly with
microarray fold change
The more a gene is mentioned as overexpressed in a dis-
ease the more likely it will be mentioned as highly over-
expressed (highly increased) in the same disease (Fig. 2).
One potential explanation for this is that highly overex-
pressed genes are the focus of more scrutiny due to their
presumed heightened biological relevance. There are ex-
amples of this phenomenon that can be observed in the
literature. Such is the case of gene S100A7 in psoriasis,
which first raised interest as a highly expressed gene in
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psoriatic skin [28]. On the other hand, it is also possible
that overexpressed genes that are often studied end up
being considered highly overexpressed as the result of
sheer multiple testing. Using the data available in our
study we used a simple linear model to disentangle this
question:

high increase mentions ∼ f ðFC; increase mentionsÞ
¼ α ⋅ FC þ β ⋅ increase mentionsþ γ:

ð1Þ

Through this model we saw that, once we account
for the fact that a gene has been mentioned as

overexpressed in the literature, the microarray FC
value still influences whether it will be described as
highly increased or not. The α coefficient for the lin-
ear model varies from smallest for UC to largest for
PS and is in all cases smaller than 0.01. Thus, vague
high increase statements are only to a small degree
linked to the FC value from microarray data.

To be reported as overexpressed a gene’s popularity is
more important than its fold change
One way to see the relation between microarray FC
and the literature is by looking at the probability that
a gene will be reported as overexpressed for FC
values above a certain threshold. As can be seen in
Fig. 3 for the case of AD, the cumulative probability
increases with FC, which means that genes associated
to higher FCs are more likely to be reported as over-
expressed in the literature.
However, there is also a correlation between the fre-

quency with which a gene is mentioned as overexpressed
and its popularity in the overall biomedical literature, as
can be seen in Table 2. Thus, genes that are reported as
overexpressed in a disease tend to be popular in the

Fig. 1 Ratio of overexpressed vs. underexpressed unique DEGs in
microarray datasets vs. the literature. |FC| > n indicates microarray
DEGs with absolute fold change above n

Table 1 Percentage of overexpressed vs. underexpressed unique DEGs in microarray data and the literature. |FC| > n indicates
microarray DEGs with absolute fold change above n

Microarray Literature Microarray Literature

|FC| > 0 |FC| > 2 |FC| > 0 |FC| > 2

AD PS

Overexpressed 44.6% 23.6% 79.4% Overexpressed 55.5% 58.5% 79.2%

Underexpressed 55.4% 76.4% 20.6% Underexpressed 44.5% 41.5% 20.8%

CD UC

Overexpressed 32.6% 30.4% 75.2% Overexpressed 50.4% 60.6% 77.4%

Underexpressed 67.4% 69.6% 24.8% Underexpressed 49.6% 39.4% 22.6%

Fig. 2 Relation between overexpression mentions in the literature
and the subset of those which are high increase. The figure shows
the relation between gene overexpression mentions and mean
number of high increase mentions for genes with up to nine
overexpression mentions. Slope of the zero-y-intercept trend line is
0.21 and its associated r2 is 0.89
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biomedical literature at large. Microarray data FC, on
the other hand, exhibit lower correlation with overex-
pression reporting or none. Only the PS and UC micro-
array datasets showed statistically significant correlation
and of smaller magnitude than that associated to
popularity.
To further test the relation between overexpression

reports, microarray FC and popularity; we created a

linear model in which overexpression mentions were a
function of the variables log2FC and popularity:

increase mentions ∼ f ðlog2FC; popularityÞ
¼ α ⋅ log2FC þ β ⋅ popularityþ γ: ð2Þ

Both of these variables turned out to be significant for
each disease, except in the case of PS, for which log2FC
was not significant. Thus, a gene’s chances to be men-
tioned as overexpressed can increase both with its
microarray FC value and with its popularity in the gen-
eral literature, but popularity has greater influence.

In terms of overexpression, the literature shows diseases
to be more similar than microarrays do
As can be seen in Fig. 4, from the point of view of gene
overexpression, similarities between any pair of diseases
are generally higher in the literature than in microarrays.
This can be quantified using the positive likelihood ratio
(LR+) following the equation:

LRþ ðY 1=Y 2Þ ¼ p ðoverexpression in Y 1 j overexpression in Y 2Þ
p ðoverexpression in Y 1j no overexpression in Y 2Þ

ð3Þ

For example, based on microarray data with FC > 0
cutoff, the LR+ for AD based on CD (AD/CD) is 1.6,
which means that a gene is 1.6 times more likely to be
overexpressed in AD when that gene is overexpressed in
CD. Meanwhile, in the literature, the value of LR+(AD/
CD) is 48.4, which is much higher. Thus, the literature is
enriched for genes that are overexpressed in more than
one disease, as can be seen in Fig. 4. Overall, for FC > 0,
microarray datasets show LR+ values between 1 and 5
while the literature yields LR+ values between 32 and
110. For FC > 2, on the other hand, microarray data
shows higher LR+ values, although still lower than those
for the literature.
The differences in LR+ between the literature and

microarray data are larger when it comes to genes re-
ported to be overexpressed in three out of our four dis-
eases. The LR+ for microarray data with FC > 0 ranges
between 1 and 5 (mean ~ 2.6) while it ranges between
40 and 91 (mean ~ 64) for the literature. Finally, for
genes overexpressed in all four diseases the LR+ for
microarray data with FC > 0 ranges between 1 and 7
(mean ~ 3.4) while for the literature it ranges between
75 and 122 (mean ~ 110).
Naturally, certain disease pairs will share more overex-

pressed genes due to biological similarities. However, we
found that the level of similarity between diseases differs
depending on whether microarray data or the literature
was considered. For example, taking microarray data
with FC > 0 cutoff as a “true” baseline, the literature

Fig. 3 Cumulative probability of a gene being reported as
overexpressed in AD given its microarray FC. The abscissa
corresponds to microarray FC and the ordinate to the cumulative
probability of a gene being reported as overexpressed when its
associated microarray FC is above a certain value, p(overexpression in
AD | FC in AD > x)

Table 2 Pearson correlation coefficient (r) between a gene’s
popularity (total number of mentions in the biomedical
literature) and its overexpression in a disease according to the
literature (0 = not mentioned, 1 = mentioned) or to microarray
data (0 = not overexpressed, 1 = overexpressed)

AD CD PS UC

Literature 0.167* 0.208* 0.219* 0.222*

Microarray FC > 0 0.003 0.002 0.036* 0.031*

FC > 2 0.002 −0.002 0.026* 0.060*

Asterisks indicate statistically significant values
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would be overstating the similarity of PS and AD the
most, while the similarities between PS and CD would
be the least emphasized. Thus, it is possible that the
similarities between PS and CD have received insuffi-
cient attention (see for example [29]) in comparison to
the similarities between PS and AD, if microarray data is
to be used as guidance.

As the microarray fold-change cutoff increases, micro-
array data and the literature increase in resemblance
The LR+ can also help us determine further the relation-
ship between overexpression in the literature and in mi-
croarrays. We can compute the LR+ of a gene being
overexpressed in the literature when it is overexpressed
in microarray data and vice versa. Our interest is in
knowing whether the odds of a gene being overex-
pressed in one of the sources change when it is known
to be overexpressed in the other source.
Our finding was that the LR+ depends on the FC cut-

off chosen. For example, the LR+ of microarray overex-
pression for FC > 0 given the literature (and vice versa)
is not significant for AD and CD. For PS and UC the LR
+ is significant and ranges between 1.5 and 4 (see Fig. 5).

Thus, the information conveyed by these two sources
can be quite distinct when choosing a FC > 0 cutoff. In
the case showing highest LR+ (UC), the probability of a
gene being overexpressed in the microarray dataset goes
up from 21 to 50% when the literature states that it is
overexpressed. The probability of a gene being overex-
pressed in the UC literature goes up from 0.09 to 0.34%
when it is overexpressed in the microarray dataset.

Fig. 4 Number of overexpressed genes for each disease. Number of overexpressed genes for each disease (a) as reported in the literature and (b
and c) as appearing in microarray datasets (FC > 0 and FC > 2, respectively). The tables show the LR+ for genes overexpressed in one disease
(table headers) that are overexpressed in another disease (row names) based on (d) the literature or (e) microarray data with FC > 0 or (f) FC > 2

Fig. 5 Positive likelihood ratio given microarray data and the
literature. Positive likelihood ratio (LR+) of (a) microarray data given
the literature and (b) the literature given microarray data for
different values of log2FC threshold and for each disease: AD
(diamonds), CD (squares), PS (triangles), UC (crosses). The higher the
LR+ the more likely one data source can predict another one
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A different picture arises with increased FC thresholds,
as can be seen in Fig. 5. The LR+ then increases sub-
stantially, which means that the literature becomes more
related to microarray data as the FC threshold increases.
This is probably due to the fact that, as has been already
stated, the probability that a gene is mentioned as over-
expressed in the literature increases with higher micro-
array FC.

Differences between microarray data and the literature
translate into alternative views of the underlying disease
biology
As could be expected, the differences that have been de-
scribed between microarray and literature data translate
into different representations of the pathological pro-
cesses that characterize each disease. To measure this
quantitatively, we looked at the level of enrichment of
Gene Ontology (GO) functional classes associated to the
genes overexpressed in microarray data and in the litera-
ture. Figure 6 shows the top 20 statistically overrepre-
sented GO functional classes in microarray and
literature data for UC based on the PANTHER statistical
overrepresentation test with Bonferroni correction [30].
For UC and FC > 0, 16 functional classes were shared
between the 38 overrepresented in the literature and the
36 overrepresented in the microarray dataset. For PS
and FC > 0, on the other hand, only the “unclassified”
functional class was shared between the 17

overrepresented in the microarray dataset and the 15
overrepresented in the literature.
For FC > 2, the similarities between microarray data

and the literature were greater. For UC there were 28
shared functional classes between the 47 overrepre-
sented in the microarray dataset and the 38 overrep-
resented in the literature. For PS, there were 11
shared functional classes between the 28 overrepre-
sented in the literature and the 18 overrepresented in
the microarray dataset.

Discussion
Our goal was to explore the relationship between micro-
array expression data and the expression data reported
in the literature because in our daily work both of these
data sources are used as complementary sources of in-
formation. From the therapeutic point of view, for ex-
ample, every DEG in disease is a potential point of
intervention or target. Thus, the sole use of microarray
data or of the literature could lead to missing out on po-
tential targets that appear in one source and not the
other. For instance, EGFR does not appear upregulated
in the PS microarray dataset, while it is one of the most
frequently mentioned upregulated genes in the PS litera-
ture dataset. On the other hand, defensin beta 4B
(DEFB4B) does not appear in the PS literature dataset
despite showing the second-highest level of overexpres-
sion in the PS microarray dataset.

Fig. 6 Statistically overrepresented Gene Ontology functional classes. Top-20 statistically overrepresented Gene Ontology functional classes based
on overexpressed genes in the UC literature (left) and in the UC microarray dataset (right)

Rodriguez-Esteban and Jiang BMC Medical Genomics  (2017) 10:59 Page 7 of 10



Our strategy for gathering microarray data was to se-
lect one dataset for each disease of interest, each dataset
created with the same platform to avoid variability
across manufacturers. For literature data, our approach
was to gather a representative sample of the literature,
rather than to create an exhaustive representation. We,
moreover, focused on abstracts, rather than on full text
articles, due to limited full text availability. Thus, the
true number of statements regarding differential expres-
sion in the literature is larger than what is reported here.
The fact that more literature results were oriented to-

wards overexpression than underexpression, unlike in
microarray data, indicates a scientific bias towards report-
ing overexpression. This bias could be related to the fact
that most drugs are inhibitors and therefore an overex-
pressed gene is more likely to represent a potential target.
Since, in principle, downregulation may have as much
functional importance in disease as upregulation, this bias
could be distorting in our understanding of diseases.
We also noted that popular genes tend to be more

often described in the literature as overexpressed in
disease, an effect that is much milder or non-
existent for overexpressed genes from microarray
data. This could explain partially why differential ex-
pression similarities between diseases are higher
within the literature in comparison to microarray
data. The quest for higher research impact could be
one of the drivers for the additional attention paid
to popular genes [31–33], leading to further amplifi-
cation of their presumed biological importance be-
yond actual biological evidence.
Our analysis also hints that our perception of the level of

similarity between certain diseases could be biased by gen-
eral properties of the diseases that are not reflected in the
expression data. Thus, PS and AD, which share anatomical
location, appear more similar in the literature than UC and
AD, contrary to what is reflected in microarray data.
We also found that microarray data and the literature

can produce divergent views of the pathological mecha-
nisms driving diseases depending on the fold-change cut-
off. For FC > 0, the functional classes associated to
overexpressed genes in the literature can be very different
from those associated to microarray data. As the threshold
for FC increases, the similarity between the literature and
microarray data increases, which is then reflected in
higher LR+ values and overlapping functional classes.
One explanation for the divergences between micro-

array data and the literature comes obviously from the
differences in experimental settings. Expression data
from the literature stem from a variety of sources involv-
ing methods such as immunohistochemistry, flow cy-
tometry, in situ hybridization, RT-PCR, next-generation
sequencing–and also microarrays. Each of these sources
differs in level of granularity and molecule measured

(e.g. mRNA vs. protein). On the other hand, even though
all microarray data in our study came from the same
platform from the same manufacturer, and each dataset
was created within a single research study, microarray
data variability has been shown to be a challenge for re-
producibility [34–37].
Moreover, because experiments in the literature can

be more fine-grained than microarray studies, it is pos-
sible that a gene might be found to be upregulated in
some parts of a diseased tissue and downregulated in
others, confounding the simplified representation used
here and hampering comparisons with microarray data.
One additional aspect not considered in this study was

the historical dimension. High-throughput techniques
have been gaining in popularity only recently; therefore
older publications would have been less affected by find-
ings coming from high-throughput studies.

Conclusion
At the start of this study we had the expectation that
there would be certain biases in the literature in com-
parison to microarray data. The literature evidently has
a focus that is, at the very least, biased by past research
history, which does not affect microarray data. Our goal
was to quantify this bias, using microarray data as the
unbiased “ground truth.” However, we did not expect
that the relationship between microarray data and the
literature could be dependent on FC cutoff (which in
retrospect appears to be naïve), and therefore that we
should not necessarily consider microarray data a
ground truth that the literature only partially represents.
The use of an FC threshold does not in principle have

a fixed biological meaning and its link to biological ac-
tivity can change from gene to gene. Moreover, different
FC thresholds yield different outcomes from an expres-
sion study [38]. Based on our work, the literature has a
closer connection with microarray expression data fil-
tered with higher FC thresholds, which means that it
may not track biological phenomena appropriately when
the FC thresholds do not actually separate meaningful
and non-meaningful expression changes.
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