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Abstract

Background: In human genomes, long non-coding RNAs (lncRNAs) have attracted more and more attention because
their dysfunctions are involved in many diseases. However, the associations between lncRNAs and diseases (LDA) still
remain unknown in most cases. While identifying disease-related lncRNAs in vivo is costly, computational approaches
are promising to not only accelerate the possible identification of associations but also provide clues on the underlying
mechanism of various lncRNA-caused diseases. Former computational approaches usually only focus on predicting
new associations between lncRNAs having known associations with diseases and other lncRNA-associated diseases.
They also only work on binary lncRNA-disease associations (whether the pair has an association or not), which cannot
reflect and reveal other biological facts, such as the number of proteins involved in LDA or how strong the association
is (i.e., the intensity of LDA).

Results: To address abovementioned issues, we propose a graph regression-based unified framework (GRUF). In
particular, our method can work on lncRNAs, which have no previously known disease association and diseases that
have no known association with any lncRNAs. Also, instead of only a binary answer for the association, our method tries
to uncover more biological relationship between a pair of lncRNA and disease, which may provide better clues for
researchers. We compared GRUF with three state-of-the-art approaches and demonstrated the superiority of GRUF,
which achieves 5%~16% improvement in terms of the area under the receiver operating characteristic curve (AUC).
GRUF also provides a predicted confidence score for the predicted LDA, which reveals the significant correlation
between the score and the number of RNA-Binding Proteins involved in LDAs. Lastly, three out of top-5 LDA candidates
generated by GRUF in novel prediction are verified indirectly by medical literature and known biological facts.

Conclusions: The proposed GRUF has two advantages over existing approaches. Firstly, it can be used to work on
lncRNAs that have no known disease association and diseases that have no known association with any lncRNAs.
Secondly, instead of providing a binary answer (with or without association), GRUF works for both discrete and
continued LDA, which help revealing the pathological implications between lncRNAs and diseases.
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Background
According to the central dogma of molecular biology,
DNAs should be transcribed into different kinds of RNAs
[1]. The transcriptional outputs of DNAs comprise both
protein-coding messenger RNAs (mRNAs) and non-coding
RNAs (ncRNAs). The latter was commonly regarded as
transcriptional noise [1]. However, the Human Genome
Project unexpectedly reveals that only ~2% of chemical
bases in the genome sequence were transcribed into
mRNAs [1], while the remaining bases accounting for a
very big portion of the whole genome are transcribed
to ncRNAs [2]. As a result, ‘Why is the majority of the
genome non-coding?’ becomes one of the core ques-
tions in genomics [3].
In recent years, biological experiments show the crit-

ical biological roles of ncRNAs, which are involved in
regulation of transcription, translation, RNA modification,
maturation or transportation and in epigenetic modifica-
tion of chromatin structures [3]. ncRNAs have amazing
variety in structure and in gene regulation outcomes. As
the number of known functional ncRNAs is increasing
[4], various RNA species in the human genome can be
roughly categorized as short (sncRNAs) and long
(lncRNAs) groups by sequence length (200 nucleotides
generally). sncRNAs, such as siRNA (small inhibitory
RNA), miRNA (microRNA), piRNA (piwi RNA) and
antisense RNA, have less than 200 nucleotides (nts)
and are highly conserved in different species and have
a key role in transcriptional and post-transcriptional
silencing of genes. On the other hand, lncRNAs with
lengths of over 200 nts, are poorly conserved and have
low expression levels and high tissue specificity.
lncRNAs are usually encoded as intergenic, intronic or
overlapping regions [5], unfortunately, how they perform
their diverse functions is still largely unknown [6, 7].
The dysfunction (e.g. mutations and de-regulations

[8, 9]) of lncRNAs is heavily involved in the develop-
ment or progression of diseases, such as cardiovascular
disease [10] and cancer [11]. Thus, lncRNAs could be
novel molecules for disease diagnosis and therapy [3, 9, 12].
Nevertheless, the number of lncRNAs, which has been
functionally characterized and associated with diseases, is
extremely small. The relationship between lncRNAs and
human diseases remains unknown in most cases up to
now. Consequently, there is an increasing need to identify
lncRNAs-disease associations (LDA) on a genome-wide
scale [12].
However, identifying disease-related lncRNAs based on

biological experiments is still a great challenge because of
the lengthy process (time) and high cost. Computational
approaches provide alternatives for identifying possible
lncRNA-disease associations for further study and valid-
ation in wet lab [13]. Besides, computational approaches
can also help provide clues on the underlying mechanism

of various lncRNA-caused diseases and accelerate the
identification of potential biomarkers for disease diag-
nosis, treatment, prognosis and prevention [3, 14].
Computational approaches, especially based on machine

learning, such as Laplacian Regularized Least Squares
[15], network topology inference [16] [17], Random Walk
[13, 18] and SVM [19], have been developed to predict
potential LDA, based on the assumption that similar
diseases tend to be associated with similar lncRNAs in
function [19].
Most of the former approaches only focus on the pre-

dicting scenario between the lncRNAs with known asso-
ciating diseases and the diseases with known associating
lncRNAs. However, the majority of lncRNAs has no
known disease association. Also, there exist more and
more diseases which have no known association with
any lncRNAs. It is desirable to have an approach that
can work on these lncRNAs and diseases. Moreover, to
the best of our knowledge, existing computational ap-
proaches only work on binary LDA (i.e. only reports if
there is an association or not), which cannot reflect and
reveal many biological facts or knowledge. For example,
a disease-associated lncRNA may cause the disease by
dysregulating diverse proteins [3, 20]. Binary associations
cannot show the number of proteins involved in the as-
sociations as well as the intensity of the associations.
To address abovementioned issues, we propose a

Graph Regression-based approach which provides a
Unified Framework (GRUF) for four predicting tasks,
including the traditional task solved by existing ap-
proaches that work on lncRNA with known disease as-
sociation and diseases having known association with
some lncRNAs. GRUF is also able to work for lncRNAs
with no known disease association and diseases without
known association with any lncRNAs. Moreover, in-
stead of predicting binary LDA only, GRUF can also
work for both discrete and continued LDA, which helps
to reveal the implications between lncRNA and path-
ology. We demonstrate the superiority of GRUF by
both the comparison with three state-of-the-art ap-
proaches and the comprehensive prediction across distinct
tasks over multi-type associations. In addition, its effect-
iveness is further verified by validating the prediction of
novel lncRNA-disease associations from both medical lit-
erature and a related database.

Methods
Problem formulation
Given a set of associations between m known lncRNAs
{ri} (denoted as R) and n known diseases {dj} (denoted
as D), we have four predicting scenarios/tasks (Fig. 1).
The first one (T1) is the traditional one handled by
existing approaches, which infers how likely there are
novel associations between R and D, where both R and

Shi et al. BMC Medical Genomics 2017, 10(Suppl 4):65 Page 56 of 91



D have other known associations. The second one (T2)
is to find potential associated diseases from D for an
lncRNA rx, which has no known disease association.
Symmetrically, the third one (T3) is to find potential as-
sociated lncRNAs from R for a disease dy, with no
known association with any lncRNAs. The last one (T4)
is the most difficult task which deduces how likely there
are potential associations between lncRNAs with no
known disease association and diseases with no known
association with any lncRNAs. Solving T4 could provide
clues for researchers to further investigate unexpected
associations between lncRNAs and diseases. Moreover,
lncRNAs without known disease association and diseases
without known association with lncRNAs are the
majority.
The set of known LDAs between R and D can be or-

ganized into an association matrix Am×n. We consider
three types of associations between lncRNAs and dis-
eases, including binary, discrete and continued LDAs.
The corresponding association matrices are denoted as
Ab

m�n , A
d
m�n and Ac

m�n . Traditionally, in Ab
m�n , a

b(i, j) = 1
if there is a known interaction between lncRNA ri and
disease dj, and ab(i, j) = 0 otherwise. By contrast, in

Ad
m�n , a

d(i, j) ∈ℕ+ (positive integers) if there is a known
interaction between lncRNA ri and disease dj, and
ad(i, j) = 0 otherwise. In Ac

m�n, a
c(i, j) ∈ ℝ+ (positive real

numbers) and, ac(i, j) ≥ 1 if there is a known interaction
between lncRNA ri and disease dj, and ac(i, j) < 1 other-

wise. Ad
m�n is able to provide more information than

Ab
m�n , such as the number of proteins (or its coding

genes) involved in the associations, while Ac
m�n can fur-

ther reflect how strong the association is (i.e., the in-
tensity of LDA). Three kinds of associations can be
represented as a binary graph, a weighted graph and a
completed weighted graph respectively, in which lncRNAs
and disease are nodes and their associations are edges. For
short, the graph is denoted as Ga.
We aim to develop a unified framework for predicting

LDAs in the above four scenarios. Involving new nodes,
the prediction in either T2, T3 or T4 can be regarded as
a cold-start problem in recommendation systems. Except
for the topology of association graph, additional attri-
butes of nodes should be integrated in T2, T3 and T4,
which have a requirement of predicting links for nodes
having no existing links at all.

Fig. 1 Graph regression for predicting the associations between lncRNAs and diseases. From top to bottom, Gr, Ga and Gd are listed. Circle nodes
and rounded square nodes denote lncRNAs and diseases respectively. In Gr and Gd, lines denote the similarities between nodes. In Ga, solid lines
linking nodes represent LDAs and dashed lines denote the pairs to be predicted. T1, T2, T3 and T4 account for four predicting tasks
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Note that pairwise lncRNA similarities can be inde-
pendently measured with respect to the topology of
LDA graph, and are organized into a lncRNA similarity
graph Gr. Similarly, pairwise disease similarities can be
organized into a disease similarity graph Gd. Their sym-
metric adjacent matrices, represented as Sr and Sd re-
spectively, are further integrated with Am×n to perform
the prediction of LDAs.

Graph regression
We transform the predicting task into a graph regression
between Gr, Gd and Ga (Fig. 2). The graph regression is
synchronously performed in three latent spaces, associat-
ing space, lncRNA similarity space and disease similarity
space. Therefore, the graph regression can be formulized
as follows,

fA�
r ;A

�
d; F

�
r ; F

�
d;B

�
r ;B

�
dg ¼ argmin ∥A−ArA

T
d∥

2
F þ ∥Sr−FrFT

r ∥
2
F

þ∥Sd−FdFTd∥
2
F þ ∥Ar−FrBr∥2

F

þ∥Ad−FdBd∥2
F :

ð1Þ

The first three items in the above objective function
account for three low-rank decompositions, which map
Ga into the associating space, Gr into the lncRNA simi-
larity space and Gd into the disease similarity space re-
spectively. While the last two items account for the
regression between the associating space and the
lncRNA similarity space, and the regression between the
associating space and the disease similarity space. For
elegance, the regularization items are omitted. In details,
the lncRNAs and diseases in Ga are mapped into an
m × r lncRNA associating matrix Ar (RAM) and a n × r
disease associating matrix Ad (DAM); the lncRNAs in
Gr are mapped into an m × p lncRNA latent feature
matrix Fr (RLFM); the diseases in Gd are mapped into
an n × q lncRNA latent feature matrix Fd (DLFM); the

p × r matrix Br and the q × r matrix Bd are the corre-
sponding regression coefficient matrices.
When assuming that the five items in formula (1)

are independent, we give a simple solution for
above optimization problem by minimizing the
items individually. For the low-rank decompositions,
we apply Singular Value Decomposition (SVD) to
generate RAM, DAM, RLFM and DLFM respectively

by M¼SVDUΣVT¼ U
ffiffiffi

Σ
pð Þ V

ffiffiffi

Σ
pð ÞT¼LRT

, where M denotes A, Sr
or Sd. For the regression, we utilize Partial Least-Squares
(PLS) regression to generate Br and Bd individually.
Sequentially, the proposed graph regression model en-

ables us to solve T1, T2, T3 and T4 in a unified frame-
work. The predicted confidence scores of being a
potential LDA in all the tasks are defined as

~A T1ð Þ ¼ FrΘFT
d ;

~A T2ð Þ ¼ Fr;xΘFT
d ;

~A T3ð Þ ¼ FrΘFT
d;y;

~A T4ð Þ ¼ Fr;xΘFTd;y;

ð2Þ

where Fr, x, calculated from the lncRNA similarity
matrix, is the latent feature vectors of newly given
lncRNAs rx (having no association with diseases), Fd, y,
calculated from the disease similarity matrix, is the fea-
ture vectors of newly given diseases dy (having no associ-
ation with lncRNAs), and Θ ¼ BrBT

d is the bi-regression
coefficient matrix, calculated by the known lncRNA set
R and the known disease set D.
Moreover, this framework is flexible when there are no

similarity graph available but real-world feature vectors,
such as lncRNA sequence features. In this case, Θ builds
the bridge between the features of lncRNAs, the features
of diseases as well as the associations between them. Its
entries indicate the importance of the pairs between
lncRNA features and disease features among associations
and non-associations. Compared with latent features,
real-world features are usually able to provide more

Fig. 2 A toy example of illustrating three kinds of LDAs involving 3 lncRNAs and 4 diseases. The first row shows a 3×5 binary lncRNA-protein
interaction matrix, a 5×5 protein similarity matrix and a 5×4 binary gene-disease association matrix from left to right. The second row lists three
kinds of 3×4 LDA matrices, including a binary matrix, a discrete matrix, and a continued matrix. The entries highlighted by different colors in
discrete and continued matrices have different values. Binary LDA provides a coarse information about how a lncRNA is associated with a disease,
while discrete LDA and continue LDA provide the number of proteins involved in LDA and the intensity of LDA for that question respectively
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straightforward elucidation of why an lncRNA is associ-
ated with a disease.

Generation of non-binary association
Considering the discovery that the interaction between
lncRNAs and RNA-binding proteins (RBPs) can reveal
the roles of lncRNAs in the multi-layered transcriptional
[21] and the possible involvement in the alterations of
cellular pathways [3], we hope RBPs may contribute to
better lncRNA annotations in understanding disease-
related regulations. In addition, the genes coding RBPs
are probably associated with diseases. Therefore, we uti-
lized both lncRNA-RBP interactions and gene-disease
associations to construct discrete and continued lncRNA-
disease associations, which are reflected by integer and
real values respectively but not binary indicators. For con-
venient description, the terms of gene and protein refer to
as the same object in the following texts.
The traditional binary association Ab

m�n can be easily
generated by checking whether or not an lncRNA and a
disease share common genes/proteins. If yes, they are as-
sociated with each other. The discrete association Ab

m�n

can be generated by counting the number of common
genes/proteins. The numbers account for the values of
discrete associations. The continued association is gen-
erated as follows. Let Ar − p be the interaction matrix
between lncRNAs and RBPs, Ad − g be the association
matrix between diseases and disease-related genes, and
SP is the symmetric similarity matrix between the pro-
teins, which are coded by the common genes between
the coding genes of RBPs in Sr − p and the disease-
related genes in Ad − g. We believe that the larger the
number of common genes/proteins is and the more
similar they are, the more possible the RNA is asso-
ciated with the disease. Thus, the continued associ-
ation matrix between lncRNAs and diseases can be
defined as Ac

m�n ¼ Ar−pSPAd−g .
A toy example illustrates these three types of LDAs

in Fig. 2. Three observations can be drawn: (1) the
binary LDA matrix only denotes whether or not
lncRNAs are associated with diseases; (2) beyond the
binary matrix, the discrete matrix indicates an extra
information of how many RNA binding proteins or
their coding genes are involved in each LDA; (3) going
deeper, the continued matrix shows the intensity of
LDAs, which can distinguish the entries even having
the same number of RBPs (e.g. the blue entry and the
green entries). As a result, compared with the binary
associations, the union of the discrete associations and
the continued associations provides evidence for func-
tionally annotating the roles of lncRNAs and discover-
ing their underlying mechanisms associated with
diseases.

Similarity measurement
The similarity matrices of lncRNA, protein and disease
are constructed as follows. First, the occurring frequency
of K-mer, a short substring consisting of K letters de-
rived from the set {A,C,G,U} is applied to characterize
an RNA sequence. In general, the occurring frequency
of 4-mer is applied to calculate the sequence features of
lncRNA [22]. Considering that the binding between
RNAs and proteins occurs on local zones in sequence,
we enhance the original 4-mer feature by dividing a se-
quence of lncRNA into multiple (e.g. 35) sequence seg-
ments of approximately same lengths, calculating 4-mer
features separately and concatenating them into one fea-
ture vector. Then, the pairwise similarity between any
two lncRNA sequences, accounting for an edge in
lncRNA graph Gr, can be generated from their feature
vectors ri and rj by 1/(1 + dist(ri, rj)), where dist denotes
Euclidian distance.
Secondly, considering the importance of specific prop-

erties of amino acids in diverse kinds of bindings, we
adopted the approach in [23] to calculate protein se-
quence similarity as follows. According to both dipole
moments and side chain volume, twenty kinds of amino
acids are firstly separated into 7 groups, {A,G,V}, {I, L, F, P},
{Y,M,T, S}, {H,N,Q,W}, {R, K}, {D, E}, and {C}. Then,
protein sequences are encoded into a new type of se-
quences, which consists 7 corresponding letters with
respect to those groups. Last, the occurring frequency
of 3-mer is applied on these encoded sequences to rep-
resent protein sequences. The pairwise similarity be-
tween two protein sequences, which feature vectors are
represented as pi and pj respectively, can be defined by
1/(1 + dist(pi, pj)) as well.
Thirdly, we calculated disease similarity with the help

of MeSH, which provides a hierarchical disease classifi-
cation system containing a set of semantic disease de-
scriptors (nodes) [24]. Each descriptor accounts for a
disease category containing one or more diseases. Mean-
while, a disease may be assigned to one or more categor-
ies. For example, Breast Neoplasms belongs to two
categories, C04.588.180 and C17.800.90.500. Base on
MeSH descriptors, each disease can be represented a di-
rected acyclic graph (DAG) and the pairwise similarity
of two diseases is calculated by comparing their DAGs.
The more the common parts of their DAGs are, the
more similar they are. The details can be found in [25].
We adopt this semantic similarity as the disease similar-
ity when predicting lncRNA-disease associations.

Assessment
The assessment of a predicting approach should con-
sider two crucial factors, including algorithm validation
and performance evaluation. Algorithm validation is al-
ways implemented by the well-known Cross Validation
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(CV). Remarkably, when assessing approaches, the ap-
propriate schemes of CV for different scenarios should
be adopted, otherwise over-optimistic results are perhaps
obtained [26, 27]. We generated different tasks of CV
under four scenarios as follows (see also Fig. 1):

� CV_T1: CV performed on lncRNA-disease pairs,
where random entries (lncRNA-disease pairs) in A
were selected for testing and the remaining entries
were used for training.

� CV_T2: CV performed on lncRNAs, where random
rows corresponding to lncRNAs in A were blinded
for testing and the remaining rows were used for
training.

� CV_T3: CV performed on diseases, where random
columns in A (accounting for diseases) were blinded
for testing and the remaining columns were used for
training.

� CV_T4: CV performed on lncRNA-disease pairs,
where random entries in A were selected for testing,
but all the rows and columns containing the testing
entries should be blinded for testing as well as train-
ing simultaneously. In other words, both the rows
and the columns in A for training contain NONE of
the testing entries.

We adopt K-fold cross validation (K-CV) to assess our
approach on different predicting scenarios. The objects
in an LDA matrix are randomly split into K subsets with
approximately equal sizes. In each round of CV, one
subset of objects is taken as the testing set while the
union of other subsets of objects is taken as the training
set. This procedure keeps running K-1 rounds by assign-
ing each subset of objects as the testing set in turn.
Here, the term ‘object’ refers to as the entries of LDA in
CV_T1 and CV_T4, while as the rows and the columns
of LDA in CV_T2 and CV_T3.
Moreover, over these CV schemes, we use two metrics

to evaluate the performance of LDA prediction. One is
the popular Area Under the receiver operating charac-
teristic Curve (AUC), which can be calculated according
to the predicted confidence scores of positive and nega-
tive entries. In the binary prediction of LDA, known
LDAs and other lncRNA-disease pairs are assigned with
positive labels and negative labels respectively. AUC is
appropriate to binary LDA prediction, however, is un-
available to discrete and continued prediction. We de-
sign a strategy to accommodate AUC for them.
Because there is a one-to-one correspondence between

each entry of binary LDA matrix(BAM) and its enriched
entry in either discrete LDA matrix (DAM) or continued
LDA matrix (CAM), the binary values of the entries in
BAM can be taken as the binary labels of those entries
in DAM or CAM. Once the labels are set, the predicted

confidence scores generated by discrete prediction or
continued prediction can be used to calculate AUC by
the same way as that in binary prediction.
However, AUC is not enough to measure the perform-

ance of discrete prediction or continued prediction be-
cause it can only indicate how well the approach can
distinguish LDA from non-LDA. Therefore, another
metric, Correlation, is proposed as an enhanced measure
of discrete prediction or continued prediction. It indi-
cates the consistency between the intensity of LDA and
its predicted confidence scores. The higher, the better. A
perfect predicting model generates the predicted scores,
which are completely correlated with DAM or CAM.

Result and discussion
Datasets
We collected three datasets to evaluate GRUF. The first,
denoted as DB1, was used as a benchmark dataset in
former approaches [15, 28] and was also used to build a
web server of predicting binary lncRNA-disease associ-
ation in the most recent work [19]. DB1 contains 117
lncRNA, 159 diseases, and 285 binary associations be-
tween them. It also contains two lncRNA similarity matri-
ces (sequence similarity and disease association-based
similarity) as well as five disease similarity matrices (gene
functional similarity, GO-based similarity, PPI topology-
based similarity, PPI’s shorted path-based similarity and
lncRNA association-based similarity). The lncRNA simi-
larity matrices and the disease similarity matrices are com-
bined respectively [19].
The second benchmark dataset, denoted as DB2,

was collected from the recently published database,
LncRNA2Cancer [29], which provides comprehensive
experimentally supported associations between lncRNA
and human cancer. After removing the lncRNAs having
no available sequence in LncRNA2Cancer [29] and their
associated cancers, we obtained 345 lncRNA, 93 cancers,
and 747 binary associations between them in DB2. Using
the approach in Section “Similarity Measurement”, we cal-
culated the sequence similarity of RNA. Since LncRNA2-
Cancer contains no MeSH code for cancer, but the labels
of International Classification of Diseases (ICD). We sim-
ply calculated the disease similarity of cancers by setting
the pairwise disease similarity as 1 if two cancers belong
to the same category in ICD, and 0 otherwise.
Moreover, we built the third dataset (DB3) to demon-

strate the capability of GRUF in four kinds of predicting
scenarios over three types of lncRNA-disease associa-
tions. In order to construct three kinds of LDAs, we
collected the interactions between lncRNAs and their
RBPs from LncRNADisease [30] and collected disease-
associated genes and their diseases from DisGeNET
[31]. We only kept the intersection of the coding genes
of the proteins and the disease-associated genes, and
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selected their related lncRNAs and diseases respect-
ively. Finally, DB3 contains 89 lncRNAs, 108 genes, and
406 diseases. In total, there are 154 experimentally sup-
ported lncRNA-protein interactions and 884 experi-
mentally confirmed gene-disease associations.
When calculating lncRNA similarity, we split lncRNA se-

quences into 35 segments and obtained 8960-dimensional
(35∗44 = 8960) feature vectors based on 4-mer. Because all
the values of 4-mer feature entries are small, we processed
them by Z-score and obtained the normalized feature
matrix, of which the columns have sample mean zero and
sample standard deviation one. In addition, to accelerate
the calculation of lncRNA similarity matrix, we performed
Principal Component Analysis (PCA) on the feature vec-
tors. After removing those dimensions, which have only
entries of zeros within numerical accuracy, we obtained
88-d feature vectors. Moreover, we calculated the protein
features for genes based on 7 amino acid groups, after
turning gene sequences into protein sequences. Similarly,
by PCA, we mapped the original 73 -d feature vectors of
proteins into 107-d feature vectors. After preprocessing
lncRNA and protein feature vectors, we calculated the
lncRNA similarity. The protein similarity was also calcu-
lated. The disease similarity was calculated directly based
on MeSH descriptors of the diseases (see also Section
Similarity Measurement).

Comparison with state-of-the-art approaches
In order to demonstrate the effectiveness of GRUF, we
performed three experiments. We first compared our
approach with three state-of-the-art approaches, RWR
[28], LRLSLDA [15] and LDAP [19]. However, the
former approaches are not designed to work in the case
of non-binary lncRNA-disease associations and are also
unable to meet the need of predicting associations for
lncRNAs and diseases without known associations. The
comparison was only performed in the case of predicting
the traditional binary association in Scenario T1. To
make a fair comparison, we adopted the same dataset
(DB1), the same cross validation (leave-one-out), the
same measure (AUC) as those in LDAP (the most recent
approach). The result shows that our approach is signifi-
cantly superior to those state-of-the-art approaches in
terms of AUC (Fig. 3).
To our knowledge, there is no existing approach using

DB2 as benchmark dataset since it was published very
recently. Thus, we compared GRUF with two models,
MLKNN [26] and RLS [27], which work on the similar
form of problem (drug-target interaction prediction). As
recommended in [26, 27], an extra metric, the area under
precision-recall curve (AUPR), was adopted to measure
the prediction performance with AUC together. Since
those models were originally designed for Scenario T2
and T3, the prediction was run in the same scenarios

under 10-CV (Table 1). The comparison of prediction
shows that the performance of GRUF is significantly
better than that of those models, especially in terms of
AUPR.

Predicting comprehensive lncRNA-disease associations
We demonstrated the prediction ability of our GRUF
when encountering both discrete and continued associ-
ation in three scenarios, T2, T3 and T4, which involve
lncRNA and/or diseases with no known association.
Ten-fold CV was run on DB3 to evaluate the perform-
ance of GRUF. In details, all lncRNAs and all diseases,
with known associations, are randomly partitioned into
10 non-overlapping subsets of equal size respectively. In
each round of the CV, each subset of lncRNAs is re-
moved as the testing lncRNAs Tstr and the remaining
lncRNAs are referred to as the training lncRNAs Trnr in
T2. Similarly, each subset of diseases is removed as the
testing diseases Tstd and the remaining diseases are
regarded as the training diseases Trnd, in T3. In T4, the
sub-matrix containing all the entries between Trnr and
Trnd in the association matrix A are labelled as the
training part, only the submatrix containing the entries
between Tstr and Tstd are labelled as the testing part,
and the entries between Tstr and Trnd as well as those
entries between Trnr and Tstd attend in neither training
nor testing phases. Thus, T4 requires 10×10 cross valid-
ation. In addition, the results of predicting binary, discrete

Fig. 3 The comparison with three state-of-the-art approaches in the
traditional scenario T1

Table 1 The comparison with three state-of-the-art models in
Scenario T2 and T3

Scenario Measure MLKNN RLS GRUF

T2 AUC 0.8334 0.8510 0.8482

AUPR 0.1064 0.1443 0.1479

T3 AUC 0.8377 0.5915 0.8451

AUPR 0.1742 0.0971 0.2442

The best values are bold
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and continued association in T1 are listed for the compre-
hensive comparison.
Based on the predicted confidence scores that indicate

how likely the testing lncRNA-disease pairs are potential
LDA, we performed two investigations. The former ex-
amines how well GRUF separates LDA from non-LDA
for binary, discrete, continued LDAs respectively (Table 2).
The latter explores how beneficial both discrete LDA and
continued LDA entries are to the prediction (Table 3).
In the first investigation, the values of AUC show that:

(1) T1 is the easiest task while T4 is the hardest task
across the other three kinds of associations; (2) GRUF
shows similar results in binary, discrete and continued
prediction over four predicting scenarios.
In the second investigation, the correlation between

the predicted confidence scores and the number of RBPs
involved in LDAs shows that: (1) continued prediction
achieves the best, discrete prediction obtains the moder-
ate, and binary prediction generates the worst results;
(2) GRUF usually achieves the best performance in T1
and the worst performance in T4.
Consequently, we may draw the following conclusions:

(1) T1 is the easiest task of LDA prediction T2 and T3
are the moderate tasks, and T4 is the hardest task over
binary, discrete and continued LDAs in terms of both
AUC and Correlation; (2) when utilizing discrete predic-
tion and continued prediction, GRUF has the similar
ability to separate LDA from non-LDA; (3) More im-
portantly, GRUF shows its power to capture the cues to
the underlying mechanisms of LDA because their correl-
ation between the number of RBPs and the predicted
confidence scores of being potential LDAs are higher
than that of binary prediction. The last two points en-
able GRUF to reveal the implications between lncRNA
and pathology.
In addition, considering GRUF achieves the most

confident prediction in T1, we performed a novel predic-
tion for it to find potential LDAs among DB3 (Table 4).
The predicted lncRNA-disease pairs having high confi-
dence scores of being potential associations are ranked.
Top-5 out of them were selected to be validated by check-
ing medical literature and LncRNADisease [30] and three
among top-5 were validated. The result shows that our
approach is able to dig out novel lncRNA-disease
associations.

Conclusions
Existing computational approaches only focus on pre-
dicting associations between lncRNAs with known dis-
ease association and diseases with known association
with some lncRNAs. An open question is whether we
can predict association for lncRNAs without known dis-
ease association and/or diseases with no known association
with any lncRNAs. In addition, current computational ap-
proaches only work in the case of binary lncRNA-disease
associations (LDA), which cannot reflect and reveal many
biological facts or knowledge, such as the number of pro-
teins involved in lncRNA-disease associations and how
strong LDAs are. To address abovementioned issues, we
have proposed a unified inference approach based on
graph regression, GRUF. This proposed GRUF is able
to work for four distinct predicting tasks, in particular,
for lncRNAs and diseases without any known associ-
ation. More importantly, it is able to not only perform
the prediction of binary LDA but also for both discrete
and continued LDAs, which helps revealing the impli-
cations between lncRNA and pathology. Experiments
on real datasets demonstrate the superiority and effective-
ness of our approach. As a remark, we want to emphasize
that the results of our approach may be affected by the
quality of the dataset and also the expression level of a
particular lncRNA. For example, for those lncRNAs with
low expression level, it may be difficult for our method or
any existing methods to accurately predict its association.
For further research, how to tackle these difficult cases
would be a challenging problem. Also, we plan to include
more disease-related knowledge to improve the accuracy
of prediction.

Table 2 Performance of GRUF in comprehensive scenarios in
terms of AUC

Scenario Binary Discrete Continued

T1 (10CV) 0.8916 0.8900 0.9148

T2 (10CV) 0.7505 0.7412 0.8176

T3 (10CV) 0.8487 0.8361 0.8060

T4 (10×10 CV) 0.6080 0.6070 0.6078

Table 3 Performance of GRUF in comprehensive scenarios in
terms of Correlation

Scenario Binary Discrete Continued

T1 (10CV) 0.1525 0.4012 0.5709

T2 (10CV) 0.1498 0.1774 0.2230

T3 (10CV) 0.1206 0.1515 0.3151

T4 (10×10 CV) 0.1463 0.1541 0.1583

The italic entries denote the best

Table 4 The validation of potential lncRNA-disease associations
in novel prediction

Rank lncRNA Disease Validation

1 DLX6-AS1 breast neoplasms, male N/A

2 H19 breast neoplasms, male [32], DB

3 CDKN2B-AS1 breast neoplasms, male DB

4 DLX6-AS1 musculoskeletal abnormalities N/A

5 7SK liver neoplasms, experimental [33]

DB- LncRNADisease;
N/A- no finding in medical literatures or LncRNADisease
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