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Abstract

Background: Accurately predicting pathogenic human genes has been challenging in recent research. Considering
extensive gene–disease data verified by biological experiments, we can apply computational methods to perform
accurate predictions with reduced time and expenses.

Methods: We propose a probability-based collaborative filtering model (PCFM) to predict pathogenic human
genes. Several kinds of data sets, containing data of humans and data of other nonhuman species, are integrated
in our model. Firstly, on the basis of a typical latent factorization model, we propose model I with an average
heterogeneous regularization. Secondly, we develop modified model II with personal heterogeneous regularization
to enhance the accuracy of aforementioned models. In this model, vector space similarity or Pearson correlation
coefficient metrics and data on related species are also used.

Results: We compared the results of PCFM with the results of four state-of-arts approaches. The results show that
PCFM performs better than other advanced approaches.

Conclusions: PCFM model can be leveraged for predictions of disease genes, especially for new human genes or
diseases with no known relationships.

Keywords: Gene–disease association prediction, Latent factor model, Heterogeneous similarity regularization,
Biological network

Background
It is a material trial in biology that correctly predicting
novel pathogenic genes associated with human diseases.
However, detecting gene–disease relationships can be
challenging [1].
Many strategies have been proposed to predict gene–

disease associations. In general, a prediction method is
based on “guilt by association” (GBA) principle [2]. In
this principle, novel pathogenic genes are determined on
the basis of the associations between such genes and
relevant neighboring genes. Approaches integrating
diverse data sources have been generally exploited for

predictions of pathogenic human genes. For instance,
CIPHER [3], GeneWalker [4], Prince [5], RWRH [6],
Katz and CATAPULT [7], inductive matrix completion
[8]. A number of varieties of evidence continually ex-
ploited for prediction of gene–disease ralationships were
studied by Piro and Di Cunto [9]. With a text-mining
method Driel et al. detected the relationships of human
genes related to diseases determined in the Online
Mendelian Inheritance in Man (OMIM) [10, 11]. In pro-
tein interaction data, Köhler et al. predicted pathogenic
human genes using random walk to regulate similarities.
The random walk is verified to be more precise than
other methods [12]. For analyzing protein interaction, an
approach “network propagation” has also been devel-
oped on the basis of random walk [13, 14].
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The predictions of gene–disease relationships can be con-
sidered as designing a recommender system to commend
the items (genes) of interest to a user (disease) on the basis
of the preference that a gene possibly encodes a disease.
Users related with one another in recommender systems
likely experience mutual tastes or share similar interests in
accordance with homophily principle [15]. Recommender
systems usually rely on collaborative filtering (CF) [16],
which depends on prior disposals to predict relationships
between users and items. CF has been widely applied effect-
ively in many practices [17]. CF has also been adopted in
some remarkable advancements by some renowned com-
panies, including Amazon [18], TiVo, and Netflix, because
of the simplicity and effectiveness of this technique. In CF,
users A and B similarly act on or rate other items if these
users demonstrate a similar behavior or likewise rate n
items [19]. The two main methods of CF are latent factor
models and neighborhood models. In latent factor models,
evidence of both users and items is integrated. In neighbor-
hood models, similarities between users and items are
examined. Regarded as optimum methods to obtain more
accurate consequences in Netflix prize, latent factor
models, such as matrix factorization, have been widely used
in recommender systems [20]. Recommender systems have
also been used in other models [21–24]. Koren et al. sug-
gested a combined model with high prediction accuracy by
leveraging the superiorities of both neighborhood and latent
factor methods. Recent studies [23, 24] integrated a network-
based similarity property between users into advanced
matrix factorization recommendation approaches [25].
In this study, we proposed a probability-based collabora-

tive filtering model (PCFM) for prediction of gene–disease
relationships. As neighborhood models can not cover over-
all demonstrated information, latent factor models were
chosen for our proposed model. On the basis of traditional
latent factor models, we defined an additional probability-
based approach which can detect unknown relationships.
The prediction of gene–disease associations has been con-
sidered a semi-supervised learning problem because of few
certified relationships. In this study, this semi-supervised
learning problem was translated into an acquainted super-
vised learning problem with PCFM. If values in gene–dis-
ease association matrix are 0 or 1, predictions are regarded
as binary classification problems. The collaborative filtering
approach leveraged in the recommender system was de-
signed to rate matrix with precise scores. Hence, the
models cannot be immediately exploited in the predictions
for gene–disease associations. Two models with regul-
arization were developed to modify the basic model.

Methods
Datasets
Three types of data sets are shown in Fig. 1. We
obtained gene–gene relationships from HumanNet [26],

which includes 12,331 human genes. HumanNet with
733,836 linkages is a genome-scale human genes net-
work, constructed based on 21 diverse proteomics and
genomics evidences, including four species: protein–
protein interactions, human mRNA coexpression, com-
parative genomics data sets, and protein complex data
sets. Different data sets were fused into a functional gene-
gene relationship network.
The gene–disease relationships were downloaded from

Online Mendelian Inheritance in Man (OMMI), the
standard dataset to appraise predictions of pathogenic
human genes. OMIM is a authoritative and comprehen-
sive compendium of human genes and genetic diseases
which is updated daily and freely available on the web-
site. The full-text, referenced overviews in OMIM con-
tain information on all known mendelian disorders. This
standard dataset contains numerous linkages with other
genetics resources. OMIM has been developing since it
was initiated in the early 1960s, while it was made gener-
ally available on the internet starting in 1987. Nowadays,
OMIM was developed for the World Wide Web by the
National Center for Biotechnology Information (NCBI).
With 3209 diseases connecting at least one known gene
and 3954 demonstrated linkages, this network is fre-
quently leveraged in researches of genes. In our experi-
ment, given the existence of orthologous genes in
humans and other species [27], we append the gene-
disease linkages between orthologous genes and eight
nonhuman species diseases. The description of associa-
tions between orthologous genes and diseases of eight
other nonhuman species can be found in [28].
And the disease–disease similarity associations was

downloaded from [28]. This dataset provides similarities
between human diseases, which show pertinence

Fig. 1 Heterogeneous network of genes and diseases
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between genes with similar interactive function. The
disease-disease association network has a positive
influence on prediction for gene–disease associations.
This network contains 3209 diseases and 3,165,225
entries. In this network, values of edges measure the
degree of similarity.

Latent factor models
Recommender systems involve various input data,
including items and users, which often correspond to a
matrix. In a rating matrix Rm× n, m represents the num-
ber of users, and n represents the number of items. The
basic latent factor models manage to characterize users
and items by using vectors of factors inferred from item-
rating patterns. A high accordance exists between user
and item factor issues in a recommendation. Latent fac-
tor models map items and users to a corporate latent
factor space of dimensionality D, in which users are re-
lated to matrix U ∈ℝm ×D, and items are related to
matrix V ∈ℝn ×D. The approximate rating matrix ac-
quires the overall interest of users in the characteristics
of items and is denoted by

R ≈ UVT ð1Þ
where U represents the training feature matrix of users
in the latent factor space, in which the ith row corre-
sponds to the user feature vector ui; and V represents
the training feature matrix of items, in which the ith
row corresponds to the item feature vector vi.
The user–item matrix is a very sparse matrix with a

large number of undiscovered scores in general. To avoid
insignificant calculations, the least square optimization al-
gorithm is exploited for recommender systems to settle
the problem, and the specific optimization equation is

minU;V
1
2

Xm

i¼1

Xn

j¼1
Iij Rij−UiV

T
j

� �2
þ λ1

2
Uk k2 þ λ2

2
Vk k2

ð2Þ
where λ1, λ2 > 0, and Iij is an indicator function, for
which if Rij is known, Iij = 1, otherwise, Iij = 0. Two dif-
ferent approaches are leveraged ordinarily to minimize
the objective function: alternating least squares method
and stochastic gradient descent method. Alternating
least squares rotate by calculating the partial derivatives
for factor vectors of users and items, and then the
method sets them both equal to zero. Multiple repeti-
tions of this process assure that each step decreases the
equation until convergence [29]. The stochastic gradient
descent method randomly defines an initial value and
calculates the related prediction error. The parameters
are then modified in the opposite direction of the gradi-
ent. This method is popular and successful in many
cases [21, 30, 31]. Although the alternating least squares

method is favorable in systems using parallelization [32]
and systems centered on implicit data [33], this method
is generally more complex and slower than the stochas-
tic gradient descent. Therefore, the latter is exploited in
this study.

Semi-supervised learning method
The main difficulty of predicting gene–disease associa-
tions can be ascribed to the lack of negative samples in
the training process. For the imperfection of gene–disease
data, we can obtain two pivotal specialties of our experi-
mental data: (1) for every disease, few known genes are re-
lated to it; we may know the relevant genes for the
disease, but we are unaware of the irrelevant ones; (2)
many unlabeled gene–disease pairs exist with the prior in-
formation, but most of them are negative associations [7].
We can utilize the semi-supervised learning method

for our experiments. Liu et al. searched different var-
ieties of approaches to select negative samples [34].
Given that recent studies showed few positive samples
in the gene–disease dataset, if we select a sample from
the gene–disease matrix, the sample is likely to be a
positive one; as a consequence, negative samples can be
selected randomly from the training dataset. Mordelet et
al. proposed a ProDiGe method to select negative sam-
ples by adopting the PU learning framework [35].
In our experiment, we chose the random walk method

to select negative samples. If Pgd denotes the probability
that gene g walks to human disease d, Pgd is formulated by

Pgd ¼ SgIGDSd= Sg
�� �� Sdj j� � ð3Þ

where Sg and Sd represent the human gene similarity
matrix and disease similarity matrix, respectively, and
IGD is an adjacent matrix showing the known associa-
tions between human genes and diseases in OMMI. If
NS denotes a negative sample set, and θ is assigned to
be the threshold value, then NS = {NS≤θ,NS>θ}. The
negative samples indicating NS≤θ are selected from the
samples with probabilities are less than θ in Pgd, and
NS>θ is selected from the samples with probabilities of
more than θ in Pgd; the number of NS>θ negative sam-
ples is small. We choose negative samples with probabil-
ities of more than θ in Pgd because as the prior
information shows, most samples in the gene–disease
association matrix are negative samples; therefore, to en-
hance the generalizability of this model, few NS>θ nega-
tive samples are joined.

Basic model: probability-based collaborative filtering
model
In recommender systems, the latent factor models de-
signing for the rating matrix with precise scores cannot
be used in the gene–disease association matrix with
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binary scores of 0 or 1. Similarly, alternating least
squares cannot work in this experiment.
The basic model is shown in Fig. 2. Let P(Y = 1|Ui,Vj)

denote the probability that human gene i is related to dis-
ease j, and let P(Y = 0|Ui,Vj) denote the probability that
this gene is irrelevant to that disease. We define matrix
U ∈ℝm ×D and V ∈ℝn ×D as the feature matrixes of human
genes and diseases in the latent factor space of dimension-
ality D. We define P(Y = 1|Ui,Vj) and P(Y = 0|Ui,Vj) as

P Y ij ¼ 1jUi;V j
� � ¼ 1

exp f Ui;V j
� �� � ð4Þ

P Y ij ¼ 0jUi;V j
� � ¼ exp f Ui;V j

� �� �
−1

exp f Ui;V j
� �� � ð5Þ

In Eq. (5), f ðUi;V jÞ ¼ Ui−VT
jk k2

2 þ ϑ , and ϑ is a tiny
positive number; in this experiment, ϑ is set as 0.0001.
We can see that, if f(Ui,Vj)→ 0, P(Yij = 1|Ui,Vj)→ 1; if
f(Ui,Vj)→ ∞ , P(Yij = 0|Ui,Vj)→ 1.
Ui and Vj is obtained by using the maximum likeli-

hood estimate. We define that P(Yij = 1|Ui,Vj) = π(Ui,Vj)
and P(Yij = 0|Ui,Vj) = 1 − π(Ui,Vj), the likelihood func-
tion is

Ym;n

i;j
πðUi;V j
� �ÞY ij 1−πðUi;V j

� �Þ1−Y ij ð6Þ

The log-likelihood function is

L1ðUi;V jÞ ¼
Pm; n

i; j Y ij log πðUi;V jÞ þ 1−Y ij
� �

log 1−πðUi;V jÞ
�� ��

¼ Pm; n
i; j 1−Y ij

� �
log 1−e−f ðUi;V jÞÞ−Y ijf ðUi;V j

�� ��

ð7Þ

The maximum value of L1(Ui,Vj) is calculated, and
then we obtain the estimated value of L1(Ui,Vj). Subse-
quently, the stochastic gradient descent method is used
to solve this problem. The formulas updating the gradi-
ents of Ui and Vj are

∂L1
∂Ui

¼
Xn

j
V T

j −Ui

� �
Y ij þ 1−Y ij

� �
1−

1

1−e−f Ui;V jð Þ� �
0
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1
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2
4

3
5 ð8Þ
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i
Ui−VT

j

� �
Y ij þ 1−Y ij

� �
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1

1−e−f Ui;V jð Þ� �
0
@

1
A

2
4

3
5 ð9Þ

Computation of gene–gene similarities
We utilize the relationships between orthologous genes
and diseases of nonhuman species to calculate the gene–
gene similarities. Vector space similarity (VSS) and Pear-
son correlation coefficient (PCC) [36] is exploited to
evaluate the gene–gene similarities. The formula of VSS is

Sig ¼
P

j∈I ið Þ∩I gð Þ Rij⋅RgjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j∈I ið Þ∩I gð Þ

q
R2
ij⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j∈I ið Þ∩I gð Þ

q
R2
f j

ð10Þ

I(g)Z denote the diseases of eight other species related
to orthologous gene g, let I(i) represent the diseases of
eight other species related to orthologous gene i, and we
define j as the vertexes that I(i) and I(g) have in com-
mon. Sig ranges from 0 to 1, measuring the level of similar-
ity between gene i and gene g. Rij is defined as the linkage
between gene i and disease j of other nonhuman species,
where value 1 shows correlation and value 0 shows irrele-

vance. The definition of Sig is Sig ¼ jI ið Þj
maxj∈m I jð Þj j ⋅Sig .

However, in VSS, some genes in I(i) and I(g) which
make a larger contribution to predictions are taken into
consideration. Thus, a formula using PCC is defined to
deal with this deficiency:

Sig ¼
P

j∈I ið Þ∩I gð Þ Rij−Ri
� �

⋅ Rgj−Rg
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j∈I ið Þ∩I gð Þ

q
Rij−Ri
� �2

⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i∈I ið Þ∩I gð Þ
q

Rgj−Rg
� �2

ð11Þ
Where Ri represents the average value of similarities

between gene i and overall nonhuman diseases. We map
the value of PCC to [0,1] by using the mapping function

Fig. 2 Description of three models
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f(x) = (x + 1)/2. Approximately, let the definition of Sig be

Sig ¼ jI ið Þj
maxj∈m I jð Þj j ⋅Sig .

Let S′g denote similarities between human genes and

diseases of eight other species, and we acquire S″g from

HumanNet. With mapping function, we map S″g to [0,1].

Ultimately, the definition of gene–gene similarities is

Sg ¼ S′g þ ω⋅normal S″g
n o

, and weight ω is determined

by the significances of S′g and S″g . In our work, ω is

larger than 1, for HumanNet is widely believed to be
more reliable on account of using prior information.

ModelI: Probability-based collaborative filtering model
with integral regularization
We add more prior information in model I, containing
gene–gene relationships and disease–disease similarities.
The model I is defined as

maxUi;V jL2ðUi;V jÞ ¼ L1ðUi;V jÞ− α1
2

Xm

i
Ui−

P
g∈G ið ÞSig �UgP

g∈G ið ÞSig














2

−
β1
2

Xn

j
V j−

P
d∈D jð ÞSjd � VdP

d∈D jð ÞSjd














2

ð12Þ

In this equation, the neighbor genes of gene i is de-
noted as G(i), the neighbor genes of disease j is denoted
as D(j), and α1, β1 > 0. Sig ∈ [0, 1] and Sjd ∈ [0, 1] repre-
sents the similarities between human genes and their
neighbor genes.
We add two integral regularizations of human genes

and diseases in model I:

α1
2

Xm

i
Ui−

P
g∈G ið ÞSig � UgP

g∈G ið ÞSig














2

ð13Þ

β1
2

Xn

j
V j−

P
p∈P jð ÞSjp � VpP

p∈P jð ÞSjp














2

ð14Þ

We can see that in Fig. 2, we should minimize the two
regularizations to make L2(Ui,Vj) maximal. As such, we
should make gene i and disease j close to the center of
the Euclidean distance between gene i and its neighbors
G(i), as well as between disease j and its neighbors D(j)
and Sjd can be gotten from the published dataset, and
the computation of Sig will be specified hereinbelow.

Model II: Probability-based collaborative filtering model
with personal regularization
However, while there are big differences between
similarities of genes and diseases respectively, model I
may give a erroneous result.

A Probability-based collaborative filtering model with
personal regularization called model II is defined to cope
with this circumstance, and we define model II as

maxUi;V jL3ðUi;V jÞ ¼ L1ðUi;V jÞ− α2
2

Xm

i

X
g∈G ið ÞSig Ui−Ug



 

2

−
β2
2

Xn

j

X
d∈P jð ÞSdt V j−Vd



 

2

ð15Þ

As shown in Fig. 2. α2, β2 > 0, and other parameters
can be explained similarly Eq. (10).
Model II can adjust the distance between genes or dis-

eases in the latent factor space indirectly. Briefly, if gene
g is a neighbor of gene i, and gene f is a neighbor of gene
g in model II, the distance between Ui and Uf in a latent
factor space will be minimized indirectly as follows:

Sig Ui−Ug



 

2; Sgf Ug−Uf



 

2

This formula will finally realize the convergence,
reaching a steady status of the transmission process.
And the formulas updating the gradient for the sto-

chastic gradient descent approach are

∂L3
∂Ui

¼
Xn

j
VT

j −Ui

� �
Y ij þ 1−Y ij

� �
1−

1

1−e−f Ui;V jð Þ� �
0
@

1
A

2
4

3
5

−α2
X

g∈G ið ÞSgt Ui−Ug
� �

ð16Þ
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@
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−β2
X

p∈P jð ÞSpt V j−Vp
� �

ð17Þ

Results and discussion
Comparing with state-of-arts methods
As a semi-supervised learning problem, prediction for
pathogenic genes meets with a “cold start” problem, and
we propose PCFM to solve it. For that gene–disease re-
lationship network is very sparse, some human diseases
exist with no known associated genes. A threefold cross
validation is performed to compare the result of our
PCFM approach with other state-of-arts methods: Katz
[7] and Catapult [7] that are based on numbers of differ-
ent paths, Prince [14] that involves global networks, and
ProDiGe [35] that integrate numerous biological datasets.
Katz is a graph-based approach for detecting vertexes

related to a given one. This method has performed well
for recommending human genes for a given diseases. In
this method, the similarity between two vertexes
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depends on the number of walks of different lengths
from one vertex to another. The formula of Katz is

SKatzHs Cð Þ ¼ βPHs þ β2 GPHs þ PHsQHsð Þ
þβ3 PPTPHs þ G2PHs þ GPHsQHs þ PHsQ

2
Hs

� �

ð18Þ
In this equation, PHs and QHs represent the gene–gene

matrix and disease–disease matrix, and β is a constant
which can punish long walks. In this way, gene–disease
score can be calculated by Katz method.
Catapult is a method which can learn different weights

for paths of different lengths. It try to find out a score
for each gene–disease pair, which can be treated as
learning coefficients for Katz. As a result of lack of
known negative examples, Positive-Unlabeled learning
(PU learning) approaches is utilized in this method, to
establish a negative set, and gene–disease pairs are clas-
sified leveraging a biased support vector machine.
ProDiGe is a novel approach based on support vector

machine. It learns from positive and unlabeled examples.
In order to get more precise prediction, 21 diverse evi-
dences of genes and diseases were used for computing
gene–gene similarities.
Prince is a comprehensive approach which based on

usage of prior information and formulating constraints
on the prioritization function that relate to its smooth-
ness over the network.
We can see that in Fig. 3, we compare the results of

model I and model II with the results of above four
state-of-arts approaches. The vertical axis shows the
probability that a true gene association is retrieved in
the top-k (shown on the horizontal axis) predictions for
given disease. In training set, human diseases on the
dataset are divided into two parts. One part is associated

with at least one human gene (many known genes), the
other part is related to no known genes (single known
gene). The dimensionality of latent factor vector is set as
D = 10 and the parameters are set as α1 = α2 = 0.5,
β1 = β2 = 0.001 for diseases with many known genes. In
Fig. 3, we show the results of two kinds of diseases. The
results of Model I (dashed black and dashed red) and
model II (solid black and solid red) in PCFM is much
better than other advanced approaches.
In Fig. 3, the result of model II is better than the result

of Model I, this is likely caused by the lack of distinct
groups in genes and diseases. Thus, G. Model II:
Probability-based collaborative filtering model with per-
sonal regularization can perform better. For the two
types of diseases, our method is 4% and 5% more
efficient than above advanced methods.

Effect of a and
In the PCFM approach, α and β control the significances of
gene–gene network and disease–disease network respect-
ively. We set diverse α and β for two types of diseases by
using model II. The dimensionality of latent factor vector is
set as D = 5 for diseases with single known gene, and is set
as D = 30 for diseases with many genes known.
We can see that in Table 1, model II performed better

for diseases with many genes known than diseases with
single gene known when α is bigger than β. And the re-
sult is opposite when β is smaller than α. If a disease p is
related to certain genes gs(|gs| ≥ 1), the neighbor genes
of gs, which are called Target in Fig. 4, are more likely to
be related to disease p. Under the circumstances,
disease–disease relationship network is less important
than gene–gene relationship network, so bigger α cause
better performance. Inversely, for diseases without any
associations with human genes, it is tough to detect

Fig. 3 Comparison with state-of-art methods
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related genes. Thus, genes related to neighbor diseases
of p is likely to build a association with p, and bigger
will lead to a more outstanding performance.
It is assumed that the accuracy of PCFM would be

enhanced if a human disease is related to more
known genes. Thus, the dimensionality of latent fac-
tor vector is set as D = 60, and other parameters are
set as α1 = α2 = 0.01, β1 = β2 = 0.5. We exploit Model II
with VSS for prediction of diseases with many known
genes. In Fig. 5, we show the performances of diseases
with different numbers of several known genes. We can

conclude that more associated known genes would gener-
ate a better performance. Particularly, when three or four
genes are known to be related to a disease, the predicting
accuracy rises extremely fast in the top 10 genes.

Effect of dimensionality D of latent factor vector
The value of dimensionality of the latent factor vector
can largely influence the accuracy of the experiment. If
the dimensionality is very small, notwithstanding the
complexity of calculation is reduced, the model may be
underfitting. Thus, poor findings are obtained. By con-
trast, if the dimensionality is very large, more time will
be spent for calculation, and overfitting of the model
may result in poor performance. In our experiment,
VSS is used to compute gene–gene similarities. For dis-
eases with many known genes, we set α1 = α2 = 0.5 and
β1 = β2 = 0.001; for diseases with single known gene we set
α1 = α2 = 0.05 and β1 = β2 = 0.5. The experimental results
are show in Fig. 6. Lower dimensionality is better than
higher dimensionality for diseases with single known gene
because of insufficient available training data. As such, the
model is overfitting and the generalizability is reduced. For
diseases with many known genes, the result improves
when the dimensionality increases. At D = 80, PCFM is 7%
better than Catapult in the top 100 genes. Nevertheless,
more time is spent for calculation when dimensionality
increases, whereas the accuracy improves gradually. Thus,
we should set a suitable value of D to balance the time
spent and precision.

Discussion
With the research datasets related to genes and diseases
increasing rapidly, a number of calculating strategies,
like RWRH and CIPHER, have been developed for pre-
diction of gene–disease relationships. Consequently, this

Fig. 4 Training process of diseases with single gene known and with many genes known

Table 1 Effect of α and β
α 0.0001 0.001 0.005 0.01 0.05 0.1 0.5 1
β

0.0001 S 0.043 0.048 0.029 0.035 0.035 0.023 0.027 0.027

M 0.149 0.172 0.195 0.19 0.265 0.265 0.31 0.328

0.001 S 0.048 0.037 0.025 0.027 0.029 0.021 0.017 0.039

M 0.186 0.154 0.197 0.183 0.308 0.344 0.376 0.369

0.005 S 0.037 0.033 0.023 0.029 0.014 0.014 0.01 0.027

M 0.106 0.102 0.147 0.147 0.235 0.26 0.276 0.278

0.01 S 0.052 0.07 0.052 0.041 0.037 0.029 0.012 0.017

M 0.093 0.077 0.07 0.054 0.136 0.197 0.133 0.163

0.05 S 0.089 0.118 0.107 0.083 0.066 0.052 0.068 0.045

M 0.023 0.011 0.023 0.036 0.048 0.075 0.079 0.061

0.1 S 0.11 0.099 0.118 0.114 0.081 0.072 0.054 0.064

M 0.063 0.045 0.023 0.059 0.029 0.045 0.027 0.032

0.5 S 0.145 0.107 0.128 0.076 0.099 0.091 0.072 0.066

M 0.05 0.054 0.048 0.043 0.038 0.027 0.043 0.018

1 S 0.107 0.107 0.11 0.083 0.081 0.089 0.066 0.05

M 0.068 0.068 0.059 0.045 0.045 0.052 0.063 0.048

The italicized value indicates the local optimal
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proposed method should be further built up through
research on theoretical prediction.
Our study is based on collaborative filtering model, and

a probability conversion is defined. Utilizing PCFM, we
detected gene–disease relationships, and it is regarded as
a semi-supervised learning problem.

Conclusion
Finding out gene–disease relationships is essential for
understanding human disease mechanisms. As a result
of the lack of negative samples, predicting gene–disease
relationships is often regarded as a semi-supervised
learning problem, which. Our PCFM approach was pro-
posed for prediction of pathogenic human genes and for

getting more precise consequence than other state-of-
arts strategies. The problem is changed into a binary
classification problem, with consideration that two
vertexes would be alike if the Euclidean distance be-
tween these vertexes is short in a latent factor space.
To leverage comprehensive prior information and get
more accurate result, probability conversion is defined
in this approach. In this experiment, it is proved that
the proposed model is feasible. Accordingly, we can
apply PCFM to enhance the efficiency of prediction
markedly. In future research, more data resources
including gene expression data may be utilized to
establish the human gene network and to enhance
the precision of prediction.

Fig. 6 Accuracies of different dimensionalities of latent factor vector

Fig. 5 Accuracies of different numbers of genes known
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