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A meta-analysis of public microarray data
identifies biological regulatory networks in
Parkinson’s disease
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Abstract

Background: Parkinson’s disease (PD) is a long-term degenerative disease that is caused by environmental and
genetic factors. The networks of genes and their regulators that control the progression and development of PD
require further elucidation.

Methods: We examine common differentially expressed genes (DEGs) from several PD blood and substantia nigra
(SN) microarray datasets by meta-analysis. Further we screen the PD-specific genes from common DEGs using GCBI.
Next, we used a series of bioinformatics software to analyze the miRNAs, lncRNAs and SNPs associated with the
common PD-specific genes, and then identify the mTF-miRNA-gene-gTF network.

Result: Our results identified 36 common DEGs in PD blood studies and 17 common DEGs in PD SN studies, and five
of the genes were previously known to be associated with PD. Further study of the regulatory miRNAs associated with
the common PD-specific genes revealed 14 PD-specific miRNAs in our study. Analysis of the mTF-miRNA-gene-gTF
network about PD-specific genes revealed two feed-forward loops: one involving the SPRK2 gene, hsa-miR-19a-3p and
SPI1, and the second involving the SPRK2 gene, hsa-miR-17-3p and SPI. The long non-coding RNA (lncRNA)-mediated
regulatory network identified lncRNAs associated with PD-specific genes and PD-specific miRNAs. Moreover, single
nucleotide polymorphism (SNP) analysis of the PD-specific genes identified two significant SNPs, and SNP analysis of
the neurodegenerative disease-specific genes identified seven significant SNPs. Most of these SNPs are present in the
3′-untranslated region of genes and are controlled by several miRNAs.

Conclusion: Our study identified a total of 53 common DEGs in PD patients compared with healthy controls in blood
and brain datasets and five of these genes were previously linked with PD. Regulatory network analysis identified PD-
specific miRNAs, associated long non-coding RNA and feed-forward loops, which contribute to our understanding of
the mechanisms underlying PD. The SNPs identified in our study can determine whether a genetic variant is associated
with PD. Overall, these findings will help guide our study of the complex molecular mechanism of PD.
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Background
Parkinson’s disease (PD) is one of the most common
neurodegenerative diseases. The main symptoms of
PD include shaking, bradypragia and postural instabil-
ity [1]. PD is characterized by the loss of dopamin-
ergic neurons in the substantia nigra (SN) in brain,

which involves the increase of microglia, and the
presence of Lewy bodies [2].
Many studies have indicated that PD may be the result

of a combination of genetic and environmental factors,
such as exposure to pesticides, metals, solvents, and
other toxicants [3]. Approximately 15% of individuals af-
fected by PD have a family member with the disease [4]
and 5–10% of people with PD are affected by a single
specific gene mutation [5]. Previous studies have indi-
cated that mutations in several specific genes cause PD,
including genes encoding alpha-synuclein (SNCA),
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leucine-rich repeat kinase 2 (LRRK2), glucocerebrosidase
(GBA), parkin (PRKN), PTEN-induced putative kinase 1
(PINK1), parkinson disease protein 7 (PARK7), vacuolar
protein sorting-associated protein 35 (VPS35),
eukaryotic translation initiation factor 4 gamma 1
(EIF4G1), dnaJ heat shock protein family (Hsp40) mem-
ber C13 (DNAJC13) and coiled-coil-helix-coiled-coil-
helix domain containing 2 (CHCHD2) [6]. The SNCA
gene plays an important role in PD, because the encoded
protein is the main component of Lewy bodies, which
accumulate in the brains of people with PD [7]. Muta-
tions in the SNCA gene have been found in different
groups with sporadic (non-familial) PD and familial PD
[5]. Mutations in the LRRK2 gene, which encodes a pro-
tein called dardarin, are associated with many familial
and sporadic PD patients [8]. A recent study showed
that carriers of the G2385R variant in the LRRK2 gene
showed more of a tendency towards fatigue than non-
carriers in PD patients [9]. A mutation in GBA is pro-
posed to be the greatest genetic risk of PD through its
effects in increasing the levels of SNCA [10]. The GBA
variant E326K (rs2230288) was significantly more fre-
quent in PD patients compared with controls, indicating
that this variant is a susceptibility allele for PD [10]. Mu-
tations in PINK1, PRKN, and PARK7 genes may cause
mitochondrial dysfunction, which are observed in PD
[11]. Some evidence has shown that low concentrations
of urate in the blood serum increase the risk of PD [12].
These above studies improve our understanding of the

molecular mechanism in PD. However, discordance
among those studie make the combination of results
from many similar studies difficult. However, meta-
analysis uses statistical techniques to get combining in-
formation from multiple existing studies can increase
the power and generalizability of results in PD [13]. A
limited number of meta studies has been conducted on
gene expression profiles to identify novel biomarkers for
PD. However, different microarray data combination,
different sizes of each individual study combination, and
different statistical methods are among the factors con-
tributed to the different results. For instance, Elisa Mar-
iani et al. [14] used TRAM Software to conduct a meta-
analysis of PD transcriptome data. Chang D et al. [15]
carried out a meta-analysis with a recent study of over
13,000 PD cases and 95,000 controls with estimating the
h2 value for PD, and then identified 17 new PD risk loci.
Wang Q et al. [16] performed a meta-analysis with 9
microarray datasets of PD studies in every brain region
using the RankProd method [17].
Our meta-analysis was conducted on PD patients and

healthy controls microarray datasets obtained from the
SN brain region and blood using Vote counting generic
ways. In this study, five independent SN microarrays
(GSE7621, GSE8397-GPL96, GSE8397-GPL97, GSE20163,

and GSE20141) from PD patients and healthy controls
were integrated and analyzed to screen common differen-
tially expressed genes (DEGs). We also performed a meta-
analysis of three independent blood microarrays
(GSE99039, GSE6613, and GSE72267) from PD patients
and healthy controls to screen common DEGs.
MicroRNAs (miRNAs) are small non-coding RNA

molecules (~ 22 nt long) that are found in plants, ani-
mals and some viruses and have been proven to play
crucial roles in gene expression. Long non-coding
RNAs (lncRNAs), longer than 200 nt, can control
gene expression by interacting with the miRNA path-
ways [18]. LncRNAs binds to miRNAs through
miRNA response elements or binding sites to regulate
miRNA target gene expression [18]. Several studies
have revealed that non-coding RNAs, such as miR-
NAs and lncRNAs, have been implicated in PD
pathogenesis [13].
Finally, we examined the regulatory network involv-

ing genes, miRNAs, transcription factors (TFs) and
lncRNA in PD progression to better understand the
molecular mechanisms involved in this disease. In our
study, we use some same bioinformatics software and
similar methodological workflow as the recently pub-
lished paper [13].

Methods
Our overarching goal was to identify candidate bio-
markers of PD (the focus of this study) using the follow
workflow (Fig. 1).

Data collection
We used “Parkinson’s disease” as keywords to search for
genome-wide expression studies in NCBI-GEO (http://
www.ncbi.nlm.nih.gov/geo/) and EMBL-EBI ArrayEx-
press databases (https://www.ebi.ac.uk/arrayexpress/).
Only original experimental studies that screened for
different genes between PD and healthy humans
were the first choice for inclusion. Additional inclu-
sion criteria included the following: (1) the study
type was expression profiling by array; (2) Studies
which comprised of cell intensity file (CEL) raw files
were available; and (3) studies about blood or brain
SN in PD were used in the analysis. With the inclu-
sion criteria, three datasets from blood and five data-
sets from SN in PD were screened. We then
performed meta-analysis of three datasets from blood
studies (GSE99039, GSE6613, and GSE72267) and
five datasets from SN studies (GSE7621, GSE8397-
GPL96, GSE8397-GPL97, GSE20163, and GSE20141).
Details of the microarray datasets are provided in
Table 1.
Searches were executed up to August 2017.
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Inclusion criteria for DEGs
GEO2R is an interactive web tool that is based on GEO-
query and limma R packages from the Bioconductor
project that is used to identify DEGs by comparing dif-
ferent groups of GEO Series samples [19]. In this study,
each individual dataset was processed using the GEO2R
online software to compare healthy control samples and
PD patient samples to screen DEGs. The t test and Ben-
jamini and Hochberg method were used to calculate the
P values and FDR, respectively [20]. Genes that were dif-
ferentially expressed between PD and healthy controls
were screened with the threshold value of P < 0.05 and
|log fold change| > 0.1. The probes with no gene annota-
tion or matched multiple gene symbols were removed,
and when multiple probes matched to the same gene
symbol, we selected the probe with the highest |log fold
change| value.

Meta-analysis of DEGs of gene expression microarray
datasets
Here, Meta-analysis was performed on the three datasets
from blood studies and five datasets from brain SN inde-
pendently using Vote counting generic ways of combin-
ing information [21]. The results were visualized using a
Venn diagram that were plotted using the OmicShare
tools, a free online platform for data analysis (http://
www.omicshare.com/tools).
Next, we mainly used GCBI online software to identify

common DEGs associated with PD as PD-specific genes,
and to identify other neurodegenerative diseases as other
neurodegenerative diseases related genes.

Functional enrichment analysis
BiNGO is a tool to determine the Gene Ontology (GO)
categories that are statistically overrepresented in a set
of genes or a subgraph of a biological network [22].
BiNGO was used to analyze GO enrichment of DEGs in
blood tissues and in brain SN of PD. GO enrichment
with p < 0.05 and false discovery rate (FDR) < 0.05 was
regarded as statistically significant.

Protein-protein interaction (PPI) network construction for
common DEGs
The selected common genes from SN tissue and blood
were subjected to STRING v.10.5 database [23] analysis
to construct PPI networks. The threshold value was a
score of 0.4. PPI networks were visualized by Cytoscape
software v. 3.4.0 [24] and analyzed using the Network
Analyzer tool based on degree. The degree indicates the
number of interactions of a particular protein. The size
of the node is proportional to the degree in the inter-
action network. The more the nodes connected to the
node, the larger the node will be. Large nodes indicate
bigger degrees. In this network, we selected some genes
that are with a high node degree. At last, the top three
nodes with degree values above the average network de-
gree value were identified.

Biological regulatory interaction and networks for
common PD-specific genes from our study
Experimentally validated miRNA and common PD-
specific gene interactions were analyzed using
DIANA-Tarbase [25]. We also examined lncRNA and

Fig. 1 Workflow of the methodology used in our study
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miRNA interactions using DIANA-LncBase Experi-
mental v.2 [26]. This database contains more than
70,000 low and high-throughput, (in)direct miRNA:
lncRNA experimentally supported interactions, de-
rived from manually curated publications and the
analysis of 153 AGO CLIP-Seq libraries [26]. Experi-
mentally validated (prediction score ≥ 0.90) lncRNAs
were selected in our study.
To study molecular regulator interactions, we built a

regulatory network comprising common PD-specific
genes, TFs associated with the genes, miRNAs associated
with the genes and TFs associated with the miRNAs. In-
formation on TFs binding site that were associated with
the genes was obtained from TRANSFAC [27] based on
the Match™ algorithm. The TRANSFAC database con-
tains data from a wide variety of eukaryotic organisms,
ranging from human to yeast and comprising data on
transcription factors, their target genes and regulatory
binding sites [27]. In our study, the search algorithm
uses two score values, the matrix similarity score (MSS)
and the core similarity score (CSS), to estimate the re-
sult. Finally, the inclusion criteria was score = 1 for the
MSS and CSS. The gene-miRNA interaction information
was analyzed using DIANA-Tarbase [25]. Regulatory in-
formation on the TFs associated with these miRNAs was
obtained from the TransmiR database [28]. We then gen-
erated the network using Cytoscape software v. 3.4.0 [24].
PD-specific and other neurodegenerative diseases re-

lated miRNAs identified from miRNAs associated with
the PD-specific genes were filtered from miRdSNP v.11.
03 online database [29].

The analysis of lncRNAs and mTFs associated with these
PD-specific miRNAs related to the PD-specific genes
To identify possible lncRNA-mediated regulation of the
PD-specific miRNAs associated with common PD-
specific genes of our study, we collected regulatory in-
formation in the lncbase module of DIANA-LncBase v.2
[26]. The experimentally validated lncRNAs (score ≥ 0.90)

were selected in our study. Regulatory information on the
TFs that were associated with these miRNAs was obtained
from the TransmiR v.1.2 database [26]. We then got a
regulatory pattern involving the TFs, lncRNAs and com-
mon PD-specific genes associated with the PD-specific
miRNAs.

Regulatory analysis of the common non-PD-specific genes
To study the molecular regulator interactions with the
common non-PD-specific genes, we perform regulatory
analysis including TFs associated with the genes, miR-
NAs associated with the genes and TFs associated with
the miRNAs. Information on the TFs that were associ-
ated with the genes was obtained from TRANSFAC [27]
and the inclusion criteria was score = 1for the MSS and
CSS. The gene-miRNA interaction information was ana-
lyzed using DIANA-Tarbase v.7.0 [25], miRWalk data-
base v.3.0 [20] and TargetScan human v.7.1 [30].
Regulatory information on the TFs that were associated
with these miRNAs was obtained from the TransmiR v.
1.2 database [28].
PD-specific miRNAs identified from miRNAs associ-

ated with the common non-PD-specific genes were fil-
tered from miRdSNP v.11.03 online database [29].

SNP analysis of the common PD-specific and other
neurodegenerative disease-specific genes
To identify PD-associated SNPs, the common genes in
our study were subjected to SNP analysis. SNPs corre-
sponding to these genes were identified from the
MirSNP online database (http://bioinfo.bjmu.edu.cn/
mirsnp/search/) [31]. We obtained a large number of
SNPs related to the genes. To identify the PD-specific or
neurodegenerative disease-specific SNPs from this large
number of SNPs, we screened the SNPs in miRdSNP v.
11.03 [29] and LincSNP v.2.0 [32]. Chromosome locus
and allele gene information corresponding to each of the
SNPs were searched using the dbSNP database(https://
www.ncbi.nlm.nih.gov/snp/?term=).

Table 1 Datasets used in the meta-analysis

Tissue GEO Accession Sample Size(control/PD) Platform PMID

Blood GSE99039 PD = 205; HC = 233 GPL570: Affymetrix Human Genome U133 Plus 2.0 Array 28,916,538 [90]

GSE6613 PD = 50; HC = 22 GPL96: Affymetrix Human Genome U133A Array 17,215,369 [91]

GSE72267 PD = 40; HC = 19 GPL571: Affymetrix Human Genome U133A 2.0 Array 26,510,930 [92]

SN GSE7621 PD = 16; HC = 9 GPL570: Affymetrix Human Genome U133 Plus 2.0 Array 17,571,925 [93]

GSE8397-GPL96 PD = 24; HC = 15 GPL96: Affymetrix Human Genome U133A Array; 16,344,956 [94]

GSE8397-GPL97 PD = 24; HC = 15 GPL97: Affymetrix Human Genome U133B Array

GSE20141 PD = 10; HC = 8 GPL570: Affymetrix Human Genome U133 Plus 2.0 Array 20,926,834 [95]

GSE20163 PD = 8; HC = 9 GPL96: Affymetrix Human Genome U133A Array 20,926,834 [95]

PD Parkinson’s disease, HC healthy control
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Results
Meta-analysis of DEGs and PD-specific or other
neurodegenerative diseases related DEGs identification
To identify DEGs between PD and healthy controls, we
used three datasets from blood and five datasets from
the brain SN region to perform meta-analyses and de-
tected common genes across these datasets. The ana-
lyses revealed that 28 downregulated genes and 8
upregulated genes were differentially expressed in the
three blood studies (Fig. 2a, b and Table 2). Out of the
total 36 DEGs in the blood studies, 19 were previously
known to be associated with several other neurodegener-
ative diseases, such as Alzheimer’s disease and four com-
mon genes (HSPA6, MAP2K6, SRPK2 and NOL7) were
also previously associated with PD (named PD-specific
genes)(identified using GCBI online software). We also
identified 11 downregulated and 6 upregulated genes as
differentially expressed in the five brain SN studies (Fig.
2c, d and Table 3). Among the 17 total DEGs in the
brain SN studies, nine genes have been previously asso-
ciated with neurodegenerative diseases, and one gene

(SNCA) was identified as PD-specific genes(identified
using GCBI online software). Overall, the number of
downregulated genes was greater than the number of
upregulated genes.

GO functional enrichment analysis of all common DEGs
The common DEGs from blood and brain SN were then
subjected to enrichment analysis in BiNGO. The com-
mon DEGs in blood were enriched in biological pro-
cesses (BP) of protein phosphorylation, DNA damage-
induced protein phosphorylation, phosphorylation, re-
sponse to gamma radiation and B cell lineage commit-
ment, among other processes (Additional file 1: Table S1
and Fig. 3). DEGs from brain SN were enriched in BP in-
cluding cellular nitrogen compound biosynthetic
process, negative regulation of G-protein coupled recep-
tor protein signaling pathway, pigment biosynthetic
process, regulation of acyl-CoA biosynthetic process,
negative regulation of neurotransmitter uptake and
negative regulation of catecholamine uptake involved in
synaptic transmission (Additional file 1: Table S2 and

Fig. 2 The number of common genes obtained from blood and substantia nigra (SN) expression profiling datasets visualized by a Venn diagram.
a The number of downregulated genes in expression profiling datasets from blood; b The number of upregulated genes in expression profiling
datasets from blood; c The number of downregulated genes in expression profiling datasets from SN; and d The number of upregulated genes
in expression profiling datasets from SN

Su et al. BMC Medical Genomics  (2018) 11:40 Page 5 of 22



Fig. 4). In blood, these processes such as protein amino
acid phosphorylation (9 genes), regulation of neuron
maturation (1 gene), positive regulation of neuron

maturation (1 gene) are highly related to neuron. SRPK2
and MAP2K6 are found to be involved in PD [33, 34].
BCL2 was reported in Alzheimer’s Disease [35]. In brain

Table 2 Common differentially expressed genes identified from blood in PD patients and healthy controls and that PD-specific and
other neurodegenerative diseases related genes identification

Expression Gene symbol Gene name Corresponding neurodegenerative
disease other than PD

Down-regulated ABCA1a ATP binding cassette subfamily A member 1 Alzheimer’s disease

ABHD5 abhydrolase domain containing 5

ADGRG3 adhesion G protein-coupled receptor G3

AKAP13a A-kinase anchoring protein 13 Alzheimer’s disease

APMAPa adipocyte plasma membrane associated protein Multiple sclerosis; Alzheimer’s
disease

ARG1 arginase 1

BAZ1Aa bromodomain adjacent to zinc finger domain 1A Huntington disease

BMXa BMX non-receptor tyrosine kinase Alzheimer’s disease

CDKL5a cyclin dependent kinase like 5

CEBPDa CCAAT/enhancer binding protein delta Alzheimer’s disease

CSF2RAa colony stimulating factor 2 receptor alpha subunit Alzheimer’s disease

CTBP2a C-terminal binding protein 2 Alzheimer’s disease

FAM120Aa family with sequence similarity 120A Multiple sclerosis

HLA-Ca major histocompatibility complex, class I, C Multiple sclerosis

HSPA6b heat shock protein family A (Hsp70) member 6

IRS2 insulin receptor substrate 2

LILRB1 leukocyte immunoglobulin like receptor B1

LRRFIP1a LRR binding FLII interacting protein 1 Multiple sclerosis; Huntington
disease

MAP2K6b mitogen-activated protein kinase kinase 6

MAP2K7 mitogen-activated protein kinase kinase 7

MGAM maltase-glucoamylase

NCAM1 neural cell adhesion molecule 1

NCOA3 nuclear receptor coactivator 3

PMLa promyelocytic leukemia Polyglutamine diseases

SRPK2b SRSF protein kinase 2

SUPT20Ha SPT20 homolog, SAGA complex component Cerebellar Purkinje cell
degeneration

THOC2a THO complex 2 Multiple sclerosis

TMX4a thioredoxin related transmembrane protein 4 Motor neuron disease

Up-regulated ATM ATM serine/threonine kinase

BCL2a BCL2, apoptosis regulator Alzheimer’s disease

FAM102Aa family with sequence similarity 102 member A Neurodegenerative disease

LRRN3 leucine rich repeat neuronal 3

NOL7b nucleolar protein 7

TCF3 transcription factor 3

TP73-AS1 TP73 antisense RNA 1

YME1L1a YME1 like 1 ATPase Alzheimer’s disease
aPreviously associated with several neurodegenerative diseases (identified using GCBI online software), but not PD
bPreviously associated with PD (identified using GCBI online software)
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SN, negative regulation of neurotransmitter uptake (1
gene) and negative regulation of catecholamine uptake
involved in synaptic transmission (1 gene) are highly re-
lated to neuron. SNCA is reported to be in PD [36]. All
these information validate our finding regarding the as-
sociation of these genes in PD.

PPI network construction for common DEGs
PPI networks were constructed using STRING v.10.5
database and then visualized and analyzed by Cytoscape
software v.3.4.0. The PPI information obtained from
STRING online software for common DEGs in blood is
demonstrated in Additional file 1: Table S3 and the PPI
network is shown in Fig. 5a. Here, the 29 genes exhib-
ited a wide degree distribution with the highest degree
of 18 and lowest degree of 1.The average degree value
was found to be 6.14. Finally, the top three hub genes(i.
e. top 10% of the total nodes) with higher degree were
chosen, including ATM, MGAM and BCL2 genes. Out
of the three hubs, one hub (BCL2) was already found to
be related to Alzheimer’s Disease [35], which was further
studied for their association in human PD. The PPI in-
formation obtained from STRING online software for
common DEGs in brain SN is exhibited in Additional
file 1: Table S4 and the PPI network is shown in Fig. 5b.

We found that highest degree value was 3 and the low-
est was 1 with an average of 1.69. In this analysis, the
top three hub genes with higher degree included GART,
SNCA and NIN genes. SNCA hub node was already
found to be associated with human PD [36], and GART
hub node has been verified in other neurodegenerative
diseases such as Alzheimer’s Disease [37], but not in PD.

Regulatory miRNAs associated with the common PD-
specific genes and the analysis of lncRNAs associated
with these miRNAs
To investigate the regulation of the PD-specific genes
identified in our study by non-coding RNAs, miRNA as-
sociated with these genes were first retrieved from
DIANA-Tarbase v.7.0 database, and then lncRNAs asso-
ciated with these miRNAs were selected from DIANA-
LncBase Experimentally v.2 (prediction score ≥ 0.90).
The biological regulatory interaction of PD-specific
genes identified in blood is exhibited in Table 4, which
shows that four PD-specific genes were associated with
several non-coding RNAs. Out of the miRNAs, 13 were
previously known to be associated with several other
neurodegenerative diseases, such as Alzheimer’s disease
and nine were also previously associated with PD. The
biological regulatory interaction of PD-specific genes

Table 3 Common differentially expressed genes identified from substantia nigra in PD patients and healthy controls, and PD-
specific and other neurodegenerative diseases related genes identification

Expression Gene symbol Gene name Corresponding neurodegenerative
disease other than PD

Down-regulated CARHSP1a calcium regulated heat stable protein 1 Multiple sclerosis

GARTa phosphoribosylglycinamide formyltransferase
phosphoribosylglycinamide synthetase,
phosphoribosylaminoimidazole synthetase

Alzheimer’s disease

MUC4 mucin 4, cell surface associated

NIN ninein

NRF1a nuclear respiratory factor 1 Alzheimer’s disease

PRELPa proline and arginine rich end leucine rich
repeat protein

Nervous system disease;
Neurodegenerative disease

RGS12 regulator of G-protein signaling 12

RNF130a ring finger protein 130 Motor neuron disease

SNAP23a synaptosome associated protein 23 Nervous system disease

SNTB2 syntrophin beta 2

TBX1 T-box 1

Up-regulated ACSL6a acyl-CoA synthetase long-chain family member 6 Nervous system disease

ATP5Sa ATP synthase, H+ transporting, mitochondrial
Fo complex subunit s (factor B)

Alzheimer’s disease

CADPS calcium dependent secretion activator

DCLK1a doublecortin like kinase 1 Alzheimer’s disease

PPFIA2 PTPRF interacting protein alpha 2

SNCAb synuclein alpha
aPreviously associated with several neurodegenerative diseases, other than PD (identified using GCBI online software)
bPreviously associated with PD (PD-specific) (identified using GCBI online software)
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identified in brain SN is showed in Table 5, which dem-
onstrates that one PD-specific gene was associated with
several non-coding RNAs. Out of the miRNAs, one was
previously known to be associated with other neurode-
generative diseases and five were also previously associ-
ated with PD. Out of these five, four PD-specific genes
(HSPA6, SRPK2, NOL7 and SNCA) were associated with
miRNAs that were previously associated with PD. More-
over, most of these miRNAs associated with PD-specific
genes were in turn regulated by lncRNAs. Among the
miRNAs, 14 has been previously associated with neuro-
degenerative diseases, and 14 were previously associated
with PD.

mTF-miRNA-gene-gTF regulatory network construction of
PD-specific genes
To further study the regulatory mechanism of these
common PD-specific genes (the genes from Tables 2 and
3 that were defined as PD-specific by authors) in PD
pathogenesis, we constructed a regulatory network com-
prising common PD-specific genes, the TFs associated
with these genes (gTFs), miRNAs associated with these
genes and the TFs associated with these miRNAs
(mTFs). Additional file 1: Table S5 and Fig. 6 show the

mTF-miRNA-gene-gTF regulatory networks identified
in blood. Additional file 1: Table S6 and Fig. 7 show the
mTF-miRNA-gene-gTF regulatory networks identified
in brain SN.

IncRNAs and mTFs associated with these PD-specific
miRNAs related to the PD-specific genes
The 14 PD-specific miRNAs shown in Tables 4 and 5
(hsa-miR-204-3p, hsa-miR-17-3p, hsa-miR-181a-5p, hsa-
miR-181b-5p, hsa-miR-181c-5p, hsa-miR-181d, hsa-miR-
19a-3p, hsa-miR-19b-3p, hsa-miR-93-3p, hsa-miR-153,
hsa-miR-23b-3p, hsa-miR-34a-5p, hsa-miR-9-5p and
hsa-miR-7-5p) were further analyzed in the DIANA-
LncBase Experimental v.2 database to examine the regu-
latory information of miRNAs-lncRNAs (Table 6) and in
the TransmiR v.1.2 database to examine the regulatory
information of miRNAs-mTFs. The 14 miRNAs were
found to be associated with 45 lncRNAs. These 14 miR-
NAs control four PD-specific genes in our study, and
these miRNAs are in turn regulated by 31mTFs (Table
6). By combining all the regulatory information obtained
from our results, we constructed a regulatory pattern in-
volving the PD-specific miRNAs, lncRNAs, PD-specific
genes and mTFs.

Fig. 3 GO biological processes network of diferentially expressed genes in blood of Parkinson’s Disease from BiNGO software. Large nodes
indicate more genes involved in. Yellow nodes: P-value < 0.05 and FDR < 0.05
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mTF-miRNA-gene-gTF regulatory analysis of the common
non-PD-specific genes
To study the regulatory interaction of the common non-
PD-specific genes, we got mTF-miRNA-gene-gTF regu-
latory patterns from blood (Additional file 1: Table S7)
and brain SN (Additional file 1: Table S8) respectively.
We obtained 359 gTFs (score = 1) that were related to
26 common DEGs from blood datasets. The TCF3,
BAZ1A and THOC2 genes were regulated by the highest
numbers of gTFs (105, 95 and 95 gTFs, respectively).
Previous reports showed TCF3 involvement in PD [38].
TCF3, a transcriptional repressor [39], is counteracted at
multiple levels by Wnt signaling [40]. Alteration in nor-
mal Wnt signaling pathway has been already found in
gene expression studies of blood of PD patients [40]. It
was found that BAZ1A depletion influence the expres-
sion of genes important for nervous system development
and function [41]. THOC2, an abundant protein in the
developing and mature human [42, 43] and adult mouse
brains [44]. THOC2 depletion has been already reported

to stimulate neurite outgrowth in primary rat hippocam-
pal neurons [44]. It has been identified also to be in-
volved in neoplasms and multiple sclerosis [45, 46].
The common non-PD-specific genes were associated

with 100 experimentally validated miRNAs. Out of these
miRNAs, 25 were previously known to be associated
with PD (Table 7). The NCOA3, AKAP13 and BCL2
genes were regulated by the highest numbers of miRNAs
(21, 19 and 14 miRNAs, respectively). NCOA3, a nuclear
receptor coactivator, has been reported to play an im-
portant role in some biological processes, such as cell
proliferation and apoptosis [47]. Previous study indicate
that high expression of NCOA3 can suppress cells apop-
tosis induced by histone deacetylase inhibitor in breast
cancer [47]. BCL2, an anti-apoptotic gene, regulate cell
death (apoptosis), by either inducing or inhibiting apop-
tosis. The observed upregulation of BCL2 by GDNF sug-
gests that BCL2 protects neurons, possibly by regulating
cell apoptosis. Previous studys have shown its alteration
in Alzheimer’s Disease [35]. AKAP13 protein functions

Fig. 4 GO biological processes network of diferentially expressed genes in substantia nigra of Parkinson’s Disease from BiNGO software. Large
nodes indicate more genes involved in. Yellow nodes: P-value < 0.05 and FDR < 0.05
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as an anchor protein for the regulatory subunit of pro-
tein kinase A which is reported to increase tau phos-
phorylation. AKAP13 are likely more specifically
involved in tau phosphorylation pathways that is highly
related to Alzheimer’s disease [48, 49]. Out of these
three genes, NCOA3 was associated with hsa-let-7 g-5p,
hsa-miR-106b-5p, hsa-miR-17-5p, hsa-miR-181c-5p, hsa-
miR-20a-5p, hsa-miR-25-3p and hsa-miR-27b-3p that
were reported to be previously known to be associated
with PD (Table 7). AKAP13 was associated with hsa-
miR-34a-5p, and hsa-miR-34c-5p that were reported to
be previously known to be associated with PD (Table 7).
BCL2 was associated with hsa-miR-132–5p, hsa-miR-
182–5p, hsa-miR-23b-3p and hsa-miR-34a-5p that were
reported to be previously known to be associated with
PD (Table 7). Overall, the 100 miRNAs were identified
to be associated with 98 mTFs.
In brain SN, 333 gTFs were associated with 14 com-

mon genes. The NIN, PPFIA2 and ATP5S genes were
regulated by the highest numbers of gTFs (139, 102 and
93 gTFs, respectively). NIN, a large coiled-coil protein, is
essential for neurogenesis, angiogenesis and stem cell
fate [50]. Previous study showed that alternative splicing
in NIN gene appears sufficient for neural stem cells dif-
ferentiation into neurons [50]. PPFIA2 is a member of
the leukocyte common antigen-related PTP interacting
protein family liprin [47]. It is known to be downregu-
lated by androgens in prostate cancer cell lines [47] and is
found to play crucial functions in the pathophysiology of
schizophrenia and bipolar disorder [51]. ATP5S gene en-
codes a subunit of mitochondrial ATP synthase which

utilizes the electro chemical gradient to synthetize ATP
from ADP in inner mitochondrial membrane by oxidative
phosphorylation [52]. Mitochondrial dysfunction is re-
ported to be a pathological pathway associated with PD
[53]. But little is known about the involvement of ATP5S
in PD.
The common non-PD-specific genes were associated

with 50 experimentally validated miRNAs. Out of these
miRNAs, 16 were previously known to be associated
with PD (Table 7). It was found that NIN and SNTB2
were regulated by the highest numbers of miRNAs (18
and 25 miRNAs, respectively), and that NIN and SNTB2
were associated with 16 miRNAs (such as miR-9-5p)
(Table 7) that were previously associated with PD. For
example, in study, miR-9-5p increased by more than
three times in treated PD patients compared with those
of controls [54]. Moreover, miR-9-5p were in turn regu-
lated by mTFs of interleukin 1 beta (IL1B) and nuclear
factor kappa B subunit 1 (NFKB1). Genetic variation in
the proinflammatory cytokine gene IL1B can contribute
to risk of developing PD. These finding supported that
miR-9-5p may contributes to the pathogenesis of spor-
adic PD. Previous finding reported SNTB2 involved in
atherosclerosis [55], and that its risk factors in athero-
sclerosis include higher plasma urate level [56] which
has linked to lower risk of PD in men [57]. Overall, the
50 miRNAs were identified to be associated with 63
mTFs.
These data support the finding that these genes may

be significant factors in PD, but furture studys are
needed.

Fig. 5 PPI networks obtained from Cytoscape software. a PPI network for common genes from blood; b PPI network for common genes from
the brain substantia nigra region. Red nodes represent upregulated genes, and green nodes represent downregulated genes. Large nodes
indicate bigger degrees
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Table 4 Regulatory miRNAs associated with the common PD-specific genes identified in blood and the analysis of lncRNAs associ-
ated with these miRNAs
PD specific genes miRNAs associated with genes lncRNAs associated with the miRNAs

HSPA6 hsa-miR-204-3pb LINC00999

hsa-miR-548o-3p CASC7, GABPB1-AS1, NEAT1, XIST

MAP2K6 hsa-miR-33a-5pa KCNQ1OT1, MCF2L-AS1

hsa-miR-590-3pa CASC7, CTA-292E10.9, CTB-89H12.4, HCG11,
LINC00657, LOC100507577, NEAT1,
OIP5-AS1, OTUD6B-AS1, RP11-834C11.4, XIST

hsa-miR-145-5pa KCNQ1OT1,TUG1

hsa-miR-425-5p C1orf132, CTD-3025 N20.3, KCNQ1OT1,
RP11-15H20.7, SNHG14, TTTY15, ZNRD1-AS1

hsa-miR-1306-5p KCNQ1OT1, SENP3-EIF4A1

hsa-miR-148a-3pa CASC7, KCNQ1OT1, OIP5-AS1, SNHG14

hsa-miR-130a-3pa CASC7, H19, SNHG14

hsa-miR-148b-3pa CASC7, OIP5-AS1, SLMO2-ATP5E, SNHG14

SRPK2 hsa-miR-3200-3p BLOC1S5-TXNDC5, KCNQ1OT1, XIST

hsa-miR-1292

hsa-miR-155-5p CTD-2561 J22.5, RP11-175O19.4, XIST

hsa-miR-15b-3pa

hsa-miR-17-3pb RP3-323A16.1, XIST

hsa-miR-181a-5pb AC000403.4, CASC7, CTB-89H12.4, KCNQ1OT1,
LINC00506, N4BP2L2-IT2, RP11-10E18.7, RP11-1134I14.8,
RP11-147 L13.14, RP11-314B1.2, RP11-361F15.2,
RP11-707A18.1, RP1-309I22.2, ZNF883, ZNRD1-AS1

hsa-miR-181b-5pb CASC7, CTB-89H12.4, KCNQ1OT1, RP11-1134I14.8, XIST

hsa-miR-181c-5pb CTB-89H12.4, KCNIP4-IT1, KCNQ1OT1, RP11-1134I14.8

hsa-miR-181db

hsa-miR-183-3pa

hsa-miR-1976 HNRNPUL2-BSCL2, KCNQ1OT1, LOC100129917, NEAT1, TSIX

hsa-miR-19a-3pb FAM201A, H19, KCNA3, KCNQ1OT1, LINC00094, RP11-337C18.8,
RP11-523G9.3, SNHG14

hsa-miR-19b-3pb CASC7, FAM201A, H19, KCNA3, KCNQ1OT1, LINC00094,
RP11-337C18.8, RP11-523G9.3, SNHG14

hsa-miR-21-5pa

hsa-miR-320a ALMS1-IT1, CASC7, CTB-36H16.2, CTB-89H12.4, KCNIP4-IT1,
LINC00663, LMCD1-AS1, MALAT1, NEAT1, RP11-145P16.3, XIST

hsa-miR-3685 KCNQ1OT1

hsa-miR-3689a-3p TTTY15

hsa-miR-4518

hsa-miR-944

NOL7 hsa-miR-199b-3pa CTB-89H12.4, ERVK3–1, XIST

hsa-miR-199a-3pb CTB-89H12.4, ERVK3–1, XIST

hsa-miR-328

hsa-miR-129-5pa CASC7, ERVK3–1, KCNQ1OT1, MALAT1, NEAT1,

hsa-miR-374a-5pa CTC-444 N24.11, CTD-2561 J22.5, RP11-613D13.5, TRG-AS1,
XIST, ZNRD1-AS1

hsa-miR-744-5p FLJ16779,

hsa-miR-374b-5pa CTA-292E10.9, CTC-444 N24.11, OIP5-AS1, RP11-221 J22.1,
RP11-38P22.2, XIST,

hsa-miR-548o-3p CASC7, GABPB1-AS1, NEAT1, XIST,
aPreviously associated with several neurodegenerative diseases, but not PD
bPreviously associated with PD
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SNP analysis of the common PD-specific and other
neurodegenerative disease-specific genes
We next obtained SNPs corresponding to the com-
mon DEGs (both the PD-specific and the neurode-
generative disease-specific genes) of our study from
the online databases MirSNP, miRdSNP and LincSNP
2.0. Six miRNAs were found to be associated with
two PD-specific SNPs corresponding to the PD-
specific gene SNCA (Table 8). Two SNPs were associ-
ated with these six miRNAs (Table 8). The chromo-
some locus and allele gene for these two SNPs were
then searched using the dbSNP database. These two
SNPs were located on chromosome 4.
Twenty-three miRNAs were found to be associated

with seven neurodegenerative disease-specific SNPs cor-
responding to four neurodegenerative disease-specific
genes (Table 9). Seven SNPs were associated with these
23 miRNAs. The chromosome locus and allele gene for
these seven SNPs were then searched using the dbSNP
database. The chromosome loci of these SNPs include 6,
14, 16 and 18.

Discussion
Meta-analysis of common genes
In the past decades, microarray has been widely used to
identify DEGs and pathways underlying PD pathogen-
esis. In these studies, most microarray datas are mainly
from the brain regions or blood in PD. The analysis of
this brain regions from PD may only highlight genes as-
sociated with changes in cellular composition [58], How-
ever, brain tissues are not easily obtained. In recent
years, there is evidence to prove that low concentrations
of urate in the blood serum increased the risk of PD
[12], and that there is a growing interest in the discovery
of blood biomarkers for PD. Some genes have been

proved to take part in important neurodegeneration
molecular pathways in PD patients.
A large number of microarray gene expression studies

on PD have been performed, but some of the results
showed low consistency among involved genes and path-
ways. Meta-analysis has suggested new biological in-
sights, as well as identification of greater consistent
genes and pathways potential in PD pathogenesis [13,
15, 16]. Numbers of meta-analysis on PD have been con-
ducted, with few focused on understanding the regula-
tory network involving genes, miRNAs, transcription
factors (TFs) and lncRNA in PD progression. Moreover,
few meta-analysis on PD is focused on comparative ana-
lysis of microarray datases profiles from brain and blood
samples.
In our study, meta-analysis merges several datasets

from PD brain SN or blood into a single analysis to ob-
tain more meaningful set of DEGs and these DEGs are
analyzed in various biogenetic databases to get related
non-coding RNAs and gTFs, among others. In this study
of DEGs in PD patients compared with healthy controls,
we identified 36 common DEGs in blood studies and 17
common DEGs in five brain SN studies using meta-
analysis technique-Vote counting generic ways. Of the
total common genes, 28 genes were previously reported
as associated with other neurodegenerative diseases (see
Tables 2 and 3), but not previously known to be associ-
ated with PD, and five genes were previously shown to
be associated with PD. Among the 28 genes associated
with other neurodegenerative diseases, 22 were down-
regulated and six were upregulated in PD compared with
controls. We further studied these 28 genes for their as-
sociation with PD. Out of the five genes previously asso-
ciated with PD, three genes (HSPA6, MAP2K6 and
SRPK2 genes) were downregulated and two genes

Table 5 Regulatory miRNAs associated with the common PD-specific genes identified in substantia nigra and the analysis of
lncRNAs associated with these miRNAs

Genes associated with PD miRNAs associated with genes lncRNAs associated with the miRNAs

SNCA hsa-miR-93-3pb AC012065.7,KCNQ1OT1, LINC00342

hsa-miR-153b

hsa-miR-23b-3pb CASC7,CTC-459F4.3, KCNQ1OT1, RP11-215G15.5,
SNHG14, TOB1-AS1, XIST, ZNRD1-AS1

hsa-miR-500a-5p SNHG22

hsa-miR-34a-5pb AC004951.6, AC092535.3, KCNQ1OT1, LINC00662,
PCBP2-OT1, RP11-693 J15.5

hsa-miR-29a-3pa AC005154.6, H19, KCNQ1OT1, LINC00674, MIR4697HG,
NEAT1, RP11-314B1.2, RP11-582E3.6, RP4-630A11.3,
THUMPD3-AS1, TTTY15, TUG1

hsa-miR-7-5pb AC005154.6, DLX6-AS1, KCNQ1OT1, LINC01233,
LINC01314, RP11-679B19.1, XIST

hsa-miR-181a-2-3p KCNQ1OT1, NEAT1
aPreviously associated with several neurodegenerative diseases, but not PD
bPreviously associated with PD
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(NOL7 and SNCA genes) were upregulated in PD com-
pared with controls. A recent study reported the role of
HSPA6 in SH-SY5Y neuronal cells which are used as a
model system for neurodegenerative diseases such as
Alzheimer’s disease and PD [59]. HSPA6, aslo known as
Hsp70B’, is a member of heat shock proteins (Hsps) 70
family and the Hsp70 family of heat shock proteins has
been well known for its roles in cytoprotective effects
against cell death and implicated in neuroprotection
[59]. It was also found that HSPA6 has previously been
examined in human neurodegenerative diseases and was
proposed as a potential treatment strategy to counter
PD [60]. Studies have found that MAP2K6 binds to and

regulates the expression of the PD-related protein
LRRK2, which is a prevalent cause of sporadic PD [33].
SRPK2, a serine/arginine protein-specific kinase, is
highly expressed in the brain. Increased amounts of
SRPK2 can lead to the hyperphosphorylation of serine-
arginine-rich proteins, which in turn induces changes in
alternative pre-mRNA splicing observed in PD [34].
NOL7 is a candidate cancer suppressor that localizes to
6p23, a segment with frequent loss of heterozygosity
(LOH) in many tumors [61]. NOL7 interacts with amyl-
oid precursor protein (APP) protein which accumulates
in mitochondrial membrane in PD, and that APP inter-
acts with LRRK2 and then is phosphorylated at Thr668

Fig. 6 The mTF-miRNA-gene-gTF regulatory network of PD-specific genes identified in blood datasets obtained from Cytoscape software. The
diamond-shaped magenta nodes represent miRNAs, the triangle-shaped magenta nodes represent transcription factors (TFs) associated with
these miRNAs (mTFs), and the round rectangle-shaped red nodes represent the PD-specific genes. The V-shaped red nodes represent the TFs
associated with these genes (gTFs)
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within its intracellular domain to promote neurotoxicity
in PD [62]. SNCA was reported to be associated with
PD, and different SNPs in the SNCA gene had a correl-
ation with increased or decreased risk of PD [63]. All
these data help validate our results showing an associ-
ation of these genes in PD.
Moreover, our study screen the overlapped genes

among common DEGs obtained from two different
tissues (brain SN and blood), but did not get any
common genes. And It was found that the common
DEGs from blood and brain SN are enriched in dif-
ferent BP.

The analysis of lncRNAs and mTFs associated with these
PD-specific miRNAs related to the PD-specific genes
The biological regulations of the common PD-specific
genes are shown in Tables 4 and 5. We examined the
relevance of experimentally validated miRNAs and
lncRNAs with these five PD genes. Our analysis showed
that four out of the five PD-specific genes (HSPA6,
SRPK2, NOL7 and SNCA) are regulated by 14 PD-
specific miRNAs (Tables 4 and 5). Interestingly, SRPK2
(obtained from blood) was regulated by the highest
number of PD-specific miRNAs (hsa-miR-17-3p, hsa-
miR-181a-5p, hsa-miR-181b-5p, hsa-miR-181c-5p, hsa-
miR-181d, hsa-miR-19a-3p and hsa-miR-19b-3p) and
these seven PD-specific miRNAs are regulated by 25
lncRNAs and 16 mTFs (Table 6).

mTF-miRNA-gene-gTF regulatory network analysis
In this study, we screened the overlapped gTFs of PD-
specific and non-PD-specific genes mTF-miRNA-gene-
gTF regulatory network obtained from blood studies. Re-
sult showed that 135 gTFs are found to be involved in
these two networks. It was found that core promoter
element-binding protein (CPBP), Spi-B transcription fac-
tor (SPIB) and KID3 are the gTFs, which regulated a
maximum number of genes, 28, 27 and 24 genes re-
spectively. The CPBP was associated with four PD-
specific genes (HSPA6, MAP2K6, SRPK2 and NOL7)
and 24 non-PD-specific genes as obtained from TRANS-
FAC database [27]. SPIB was found to be associated with
four PD-specific genes(HSPA6, MAP2K6, SRPK2 and
NOL7) and 23 non-PD-specific genes. KID3 was found
to be associated with four PD-specific genes(HSPA6,
MAP2K6, SRPK2 and NOL7) and 20 non-PD-specific
genes in GeneCards database (http://www.genecards.
org/). CPBP is reported to be with lung cancer [64] and
SPIB is found to be associated with leukemia cells [65].
Previous study reported that KID3 was to be highly
expressed in adult brain [66]. These three gTFs are not
reported previously to be associated with PD. But they
regulate the four PD-specific genes and many non-PD-
specific genes from blood.
In PD-specific and non-PD-specific genes mTF-

miRNA-gene-gTF regulatory network obtained from
brain SN studies, 59 overlapped gTFs is found to be

Fig. 7 The mTF-miRNA-gene-gTF regulatory network of PD-specific genes identified in substantia nigra datasets obtained from Cytoscape
software. The diamond-shaped magenta nodes represent miRNAs, the triangle-shaped magenta nodes represent transcription factors (TFs)
associated with these miRNAs (mTFs), and the round rectangle-shaped red nodes represent the PD-specific genes. The V-shaped red nodes
represent the TFs associated with these genes (gTFs)
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involved in these two networks. CPBP, caudal type
homeobox 1(CDX1) and SPIB are the gTFs, which regu-
lated maximum genes i.e. 13, 12 and 12 genes, respect-
ively. All three gTFs were found to regulate the PD-
specific gene SNCA and 12, 11, and 11 non-PD-specific
genes respectively.
The overlapped gTFs were filtered out in PD-specific

regulatory patterns from blood and brain SN and 42
gTFs were screened. CPBP and SPIB are the gTFs, which
regulated a maximum number of genes, 5 PD-specific
genes(HSPA6, MAP2K6, SRPK2, NOL7 and SNCA)
respectively.
Finally, we screened the overlapped gTFs in non-PD-

specific regulatory patterns from blood and brain SN,
236 gTFs were identified. CPBP, KID3 and SPIB are the

gTFs, which regulated maximum genes i.e. 36, 34 and 34
genes.
Combination of above results, we supposed that CPBP

and SPIB may play significant roles in PD. But there is
no verification of experiments. So further researches are
needed.
Next, analysis of these miRNAs associated with PD-

specific genes and non-PD-specific genes resulted in the
identification of common PD-specific miRNAs (hsa-
miR-181c-5p, hsa-miR-23b-3p and hsa-miR-34a-5p).
Hsa-miR-181c-5p was shown to regulate PD-specific
gene SRPK2 from blood (shown in Table 4) and regulate
non-PD-specific gene NCOA3 from blood (Table 7).
Hsa-miR-23b-3p is found to regulate PD-specific gene
SNCA from brain SN (shown in Table 4), and regulate

Table 6 The lncRNA-mediated PD-specific miRNAs associated the PD-specific mRNAs identified in our study regulatory network

Tissue PD-specific
miRNA

lncRNAs associated the miRNAs the PD-specific
mRNAs associated
the miRNA

TFs associated with the miRNAs

Blood hsa-miR-204-3p LINC00999 HSPA6

hsa-miR-17-3p RP3-323A16.1, XIST SRPK2 Activation:CCND1,E2F1,MYC, MYCN,
NKX2–5, TLX1, TLX3, TNF, ERS1, STAT5;
Repression: NFKB1, SPI1; Neutral: MAPK14

hsa-miR-181a-
5p

AC000403.4, CASC7, CTB-89H12.4,
KCNQ1OT1, LINC00506, N4BP2L2-IT2,
RP11-10E18.7, RP11-1134I14.8,
RP11-147 L13.14, RP11-314B1.2,
RP11-361F15.2, RP11-707A18.1,
RP1-309I22.2, ZNF883, ZNRD1-AS1

SRPK2 Neutral: TP63

hsa-miR-181b-
5p

CASC7, CTB-89H12.4, KCNQ1OT1,
RP11-1134I14.8, XIST

SRPK2

hsa-miR-181c-
5p

CTB-89H12.4, KCNIP4-IT1, KCNQ1OT1,
RP11-1134I14.8

SRPK2 Activation: AKT1

hsa-miR-181d SRPK2

hsa-miR-19a-3p FAM201A, H19, KCNA3, KCNQ1OT1,
LINC00094, RP11-337C18.8, RP11-523G9.3,
SNHG14

SRPK2 Activation: E2F1, MYC, MYCN, NKX2–5,
TLX1, TLX3, ERS1, STAT5; Repression:SPI1;
Neutral:PTEN, MAPK14

hsa-miR-19b-3p CASC7, FAM201A, H19, KCNA3, KCNQ1OT1,
LINC00094, RP11-337C18.8, RP11-523G9.3,
SNHG14

SRPK2 Activation: E2F1, MYC, MYCN, NKX2–5,
TLX1, TLX3, ERS1;
Neutral: MAPK14

hsa-miR-199a-
3p

CTB-89H12.4, ERVK3–1, XIST NOL7 Neutral: TWIST1

Substantia
nigra

hsa-miR-93-3p AC012065.7,KCNQ1OT1, LINC00342 SNCA Repression: MYC;
Neutral: E2F1

hsa-miR-153 SNCA

hsa-miR-23b-3p CASC7,CTC-459F4.3, KCNQ1OT1,
RP11-215G15.5, SNHG14, TOB1-AS1,
XIST, ZNRD1-AS1

SNCA Repression: MYC;
Neutral: ESR2

hsa-miR-34a-5p AC005154.6, H19, KCNQ1OT1, LINC00674,
MIR4697HG, NEAT1, RP11-314B1.2,
RP11-582E3.6, RP4-630A11.3, THUMPD3-AS1,
TTTY15, TUG1

SNCA Activation: HMGA1, AP-1;
Repression: MYC, NFKB1, YY1, IL-4, PDGF-B,
TGFB1;
Neutral: CEBPA

hsa-miR-7-5p CTB-89H12.4, KCNQ1OT1, RP11-273G15.2,
RP11-314B1.2, RP11-793H13.8, SNHG14,
TSNAX-DISC1, TUG1

SNCA Activation: NFKB1, IL1B, TLR2, TLR4, TLR7,
TLR8, TNF, MYC, NFKB1;
Repression: TLX
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non-PD-specific gene BCL2 from blood and NIN and
SNTB2 from brain SN (Table 7). It was found that hsa-
miR-34a-5p regulate PD-specific gene SNCA from brain
SN (shown in Table 4), and regulate non-PD-specific
gene AKAP13, ATM and BCL2 from blood and SNTB2
from brain SN (Table 7). Maybe, these three common
miRNAs play an important role in PD, but further study
is needed.
The biological regulations of the common PD-specific

genes are shown in Tables 4 and 5. We examined the
relevance of experimentally validated miRNAs and
lncRNAs with these five PD genes. Our analysis showed
that four out of the five PD-specific genes (HSPA6,
SRPK2, NOL7 and SNCA) are regulated by 14 PD-
specific miRNAs (Tables 4 and 5). Interestingly, SRPK2
was regulated by the highest number of PD-specific
miRNAs (hsa-miR-17-3p, hsa-miR-181a-5p, hsa-miR-
181b-5p, hsa-miR-181c-5p, hsa-miR-181d, hsa-miR-19a-
3p and hsa-miR-19b-3p) and these seven PD-specific
miRNAs are regulated by 25 lncRNAs and 16 mTFs
(Table 6).

Identification of feed forward loops from mTF-miRNA-
gene-gTF regulatory networks
Analysis of the regulatory network of PD-specific genes
identified in blood datasets revealed the presence of two
interesting feed-forward loops (FFLs), in which a TF reg-
ulates a miRNA and in turn they both regulate a target
gene. One FFL was detected among the SPRK2 gene,
hsa-miR-19a-3p and Spi-1 proto-oncogene (SPI1). The
TransmiR information indicated that hsa-miR-19a-3p is
inhibited by the SPI1 TF. By combing the TransmiR and
DIANA-Tarbase data, we found that SPI1 and hsa-miR-
19a-3p both regulate the expression of its target gene
SPRK2. Studies have found that SPI1 plays an important
role in the regulation of genes related to the function of
microglia, which accumulate in PD [67]. Another study
revealed that lower SPI1 expression reduces risk for AD
by regulating myeloid gene expression and cell function
[68]. Another study revealed a function of miR-19a in
multiple system atrophy, which is a sporadic neurode-
generative disease, identifying lower expression of this
miRNA in multiple system atrophy patients than

Table 7 miRNAs that are previously known to be associated with PD associated with non-PD-specific genes identified in our study

miRNAs from blood mRNA targets associated
with the miRNAs

miRNAs from substantia nigra mRNA targets associated
with the miRNAs

hsa-let-7 g-5p NCOA3 hsa-let-7a-5p SNAP23

hsa-let-7i-5p IRS2 hsa-let-7e-5p SNAP23

hsa-miR-101-5p TMX4 hsa-miR-106a-5p NIN

hsa-miR-106a-5p NCOA3 hsa-miR-106b-5p NIN

hsa-miR-106b-5p ABHD5, NCOA3 hsa-miR-125a-5p NIN

hsa-miR-125a-5p MAP2K7 hsa-miR-17-5p SNTB2

hsa-miR-132-3p ATM hsa-miR-182–5p SNTB2

hsa-miR-132–5p BCL2 hsa-miR-20a-5p NIN

hsa-miR-143-3p FAM102A hsa-miR-23b-3p NIN, SNTB2

hsa-miR-17-5p ABHD5, NCOA3 hsa-miR-25-3p SNTB2

hsa-miR-181c-5p NCOA3 hsa-miR-302d-5p SNTB2

hsa-miR-182–5p BCL2 hsa-miR-30a-5p SNTB2

hsa-miR-18a-5p ATM hsa-miR-30e-5p SNTB2

hsa-miR-20a-5p ABHD5, NCOA3 hsa-miR-93-5p SNTB2

hsa-miR-212-3p LRRFIP1 hsa-miR-9-5p SNTB2

hsa-miR-214-3p FAM120A

hsa-miR-23b-3p BCL2

hsa-miR-25-3p NCOA3

hsa-miR-27a-3p ABCA1, FAM102A, FAM120A

hsa-miR-27b-3p NCOA3

hsa-miR-30e-5p IRS2

hsa-miR-34a-5p AKAP13, ATM, BCL2

hsa-miR-34c-5p AKAP13

hsa-miR-363-3p IRS2

hsa-miR-93-5p ABCA1, ABHD5
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controls [69]. Moreover, previous study reported the as-
sociation of downregulated levels of miR-19a in idio-
pathic Parkinson’s disease (IPD) [70]. This information
provides functional insights into the finding of downreg-
ulation of hsa-miR-19a-3p by SPI1. However, the FFL
gene SPRK2 was identified downregulated in our study.
The other FFL is among the SPRK2 gene, hsa-miR-17-

3p and SPI1. The TransmiR information indicated that
hsa-miR-17-3p is inhibited by the SPI1 TF. By combing
the TransmiR and DIANA-Tarbase data, we found that
SPI1 and hsa-miR-17-3p both regulate the expression of
its target gene SPRK2. Another study showed that miR-
17 is upregulated in multiple system atrophy [71] and
reduced during neurogenesis [72]. By combining this in-
formation, we elucidated possible relationships among
the genes, miRNAs and TFs in FFLs in neurodegenera-
tive disease by using Cytoscape software v. 3.4.0 (Fig. 8).
Further study on these FFLs may help us understand the
molecular biology of PD.

Significance of IncRNAs and mTFs associated with these
PD-specific miRNAs related to the PD-specific genes
The network showed the relationship among the PD-
specific miRNAs, mTFs and lncRNAs. In this regulatory
network, we identified 45 lncRNAs associated with these
PD-specific miRNAs. The regulations of 31mTFs associ-
ated with 14 PD-specific miRNAs showed that most of
these interactions had an activating effect (Table 6). The
regulation of hsa-miR-204-3p of this network is note-
worthy. It is associated with one lncRNAs but has no
mTFs associated with it (Table 6). This miRNA represses
HSPA6 which is known to be involved in PD [59]. In
contrast to the above findings, hsa-miR-181a-5p has a
maximum number of lncRNAs (15 lncRNAs) associated
with it (Table 6). This miRNA is in turn repress one
gene namely SRPK2. This gene is known to be involved
in PD [34]. However, the miRNA is associated with only
one mTFs (TP63) (Table 6). In order to find out the

functional role of these 45 lncRNAs, we further analyzed
them in EVLncRNAs database (http://biophy.dzu.edu.
cn/EVLncRNAs/) [73]. Two lncRNAs (NEAT1 and
TUG1) were found to be associated with neurodegenera-
tive disease. Nuclear paraspeckle assembly transcript 1
(NEAT1) is known to be involved in neurological disor-
ders including amyotrophic lateral sclerosis [74] and
Huntington’s disease [75]. Taurine up-regulated 1
(TUG1) is known to be involved in neurological disor-
ders including Huntington’s disease [76]. But their func-
tions in PD were not identified by previous studies.Since
these two lncRNAs of this regulatory network are associ-
ated with PD-specific miRNAs of our study, they might
play an important role in PD.

Significance of SNP analysis of the common PD-specific
and other neurodegenerative disease-specific genes
Two SNPs were identified to be associated with the
SNCA gene (shown in Table 8), which is in turn con-
trolled by miRNAs including the PD-specific miRNA
hsa-miR-153. The dbSNP database showed that SNCA is
located on chromosome 4. SNPs rs17016074 and
rs356165 are location in the SNCA gene, which is re-
lated to PD [77, 78]. Table 8 shows that these two SNPs
are identified to be associated with SNCA gene which is
in turn controlled by PD-specific miRNA hsa-miR-153
and this finding was experimentally validated [77, 78].
This strengthens the association of these two SNPs in
PD. In addition, SNPs rs17016074 and rs356165 in
SNCA gene associated with hsa-miR-7 is involved in PD
and it was experimentally validated. However, hsa-miR-7
was not previously linked with PD. Therefore, hsa-miR-7
may be a significant PD epigenetic biomarker that re-
quires further study.
We also analyzed SNPs associated with several neuro-

degenerative disease-specific genes that are in turn con-
trolled by several miRNAs(shown in Table 9). Twenty-
three SNPs were identified from four neurodegenerative

Table 8 SNPs in PD with associated PD-specific genes and miRNAs

MicroRNAs SNPs Allele Chromosome Gene MinorAlleleCount Experimentally_confirmed

hsa-miR-141 rs17016074 A/G 4:89726127 SNCA A = 0.0503/252

hsa-miR-153 rs17016074 A/G SNCA Yes

hsa-miR-223 rs17016074 A/G SNCA

hsa-miR-499-3p rs17016074 A/G SNCA

hsa-miR-504 rs17016074 A/G SNCA

hsa-miR-7 rs17016074 A/G SNCA Yes

hsa-miR-141 rs356165 A/G 4:89725735 SNCA A = 0.4842/2425

hsa-miR-153 rs356165 A/G SNCA Yes

hsa-miR-223 rs356165 A/G SNCA

hsa-miR-504 rs356165 A/G SNCA

hsa-miR-7 rs356165 A/G SNCA Yes
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disease-specific genes. HLA-C was found to be located
on chromosome 6 and several previous studies have
found the function of HLA-C in multiple sclerosis that
was activated by killer cell immunoglobulin like receptor,
two Ig domains and long cytoplasmic tail 2(KIR2DL2)
[79]. The SNP rs1049853 in HLA-C was identified in

multiple sclerosis patients and was controlled by the
miRNA hsa-miR-4428. BCL2 is located on chromosome
18; SNP rs1016860 is located in the BCL2 gene, and the
two possible nucleotide variations (A or G) are consid-
ered alleles for this base position. This SNP is regulated
by several miRNAs: hsa-miR-27a-5p, hsa-miR-3127-5p,
hsa-miR-3158-3p, hsa-miR-4720-3p, hsa-miR-4789-5p
and hsa-miR-629-5p. MiR-27a was previously shown to
be involved in neurodegenerative diseases, such as Hun-
tington’s disease and Alzheimer disease [80, 81]. MiR-
3127 and miR-629 were shown to play a role in cancer
[82, 83]. CARHSP1 is located on chromosome 16 and
there are four SNPs (rs1058929, rs9953, rs1058967 and
rs2447924) at this specific base position; three possible
nucleotide variations (A, G or T) are considered alleles
for the rs1058929 base position, two possible nucleotide
variations (G or T) are considered alleles for rs9953 and
rs2447924 base positions, and two possible nucleotide
variations (G or A) are considered alleles for the
rs1058967 base position. These four SNPs may be regu-
lated by several miRNAs: hsa-miR-1224-5p, hsa-miR-
1265, hsa-miR-3605-5p, hsa-miR-3915, hsa-miR-4710,

Table 9 SNPs with their associated miRNAs and genes in neurodegenerative diseases other than PD

MicroRNAs SNPs Allele Chromosome Gene MinorAlleleCount Region SNPs related diseases by
experimentally_confirmed

hsa-miR-4428 rs1049853 C/T 6:31269123 HLA-C A = 0.0903/452 3’UTR Alzheimer’s disease, Rheumatoid
arthritis

hsa-miR-27a-5p rs1016860 A/G 18:63127841 BCL2 T = 0.1166/584 3’UTR Multiple sclerosis

hsa-miR-3127-5p rs1016860 A/G 18:63127841 BCL2 T = 0.1166/584 3’UTR

hsa-miR-3158-3p rs1016860 A/G 18:63127841 BCL2 T = 0.1166/584 3’UTR

hsa-miR-4720-3p rs1016860 A/G 18:63127841 BCL2 T = 0.1166/584 3’UTR

hsa-miR-4789-5p rs1016860 A/G 18:63127841 BCL2 T = 0.1166/584 3’UTR

hsa-miR-629-5p rs1016860 A/G 18:63127841 BCL2 T = 0.1166/584 3’UTR

hsa-miR-1224-5p rs1058929 A/G/T 16:8853394 CARHSP1 C = 0.4740/2374 3’UTR Alzheimer’s disease

hsa-miR-1265 rs1058929 A/G/T 16:8853394 CARHSP1 C = 0.4740/2374 3’UTR

hsa-miR-3605-5p rs1058929 A/G/T 16:8853394 CARHSP1 C = 0.4740/2374 3’UTR

hsa-miR-3915 rs1058929 A/G/T 16:8853394 CARHSP1 C = 0.4740/2374 3’UTR

hsa-miR-4710 rs1058929 A/G/T 16:8853394 CARHSP1 C = 0.4740/2374 3’UTR

hsa-miR-5585-5p rs1058929 A/G/T 16:8853394 CARHSP1 C = 0.4740/2374 3’UTR

hsa-miR-193a-5p rs9953 G/T 16:8853271 CARHSP1 G = 0.4507/2257 3’UTR Alzheimer’s disease,
glioblastoma

hsa-miR-3190-3p rs9953 G/T 16:8853271 CARHSP1 G = 0.4507/2257 3’UTR

hsa-miR-3615 rs9953 G/T 16:8853271 CARHSP1 G = 0.4507/2257 3’UTR

hsa-miR-335-5p rs1058967 A/G 16:8853179 CARHSP1 C = 0.4744/2376 3’UTR Alzheimer’s disease

hsa-miR-451b rs1058967 A/G 16:8853179 CARHSP1 C = 0.4744/2376 3’UTR

hsa-miR-4533 rs1058967 A/G 16:8853179 CARHSP1 C = 0.4744/2376 3’UTR

hsa-miR-4797-5p rs1058967 A/G 16:8853179 CARHSP1 C = 0.4744/2376 3’UTR

hsa-miR-3679-3p rs2447924 G/T 16:8854616 CARHSP1 C = 0.4754/2381 3’UTR Alzheimer’s disease

hsa-miR-4286 rs2447924 G/T 16:8854616 CARHSP1 C = 0.4754/2381 3’UTR

hsa-miR-4517 rs8017316 C/G 14:50322860 ATP5S G = 0.4511/2259 Intron Alzheimer’s disease

Fig. 8 The feed forward loop from mTF-miRNAgene-gTF regulatory
networks obtained from Cytoscape software. In this network, the dia-
mond shaped magenta nodes represent miRNAs, the triangle-shaped
magenta nodes represent TFs, and the round rectangle-shaped red
nodes represent the PD-specific genes
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hsa-miR-5585-5p, hsa-miR-193a-5p, hsa-miR-3190-3p,
hsa-miR-3615, hsa-miR-335-5p, hsa-miR-451b, hsa-miR-
4533, hsa-miR-4797-5p, hsa-miR-3679-3p and hsa-miR-
4286. MiR-1224 was found the fountion in PD targeting
LRRK2 [84]. MiR-1265, miR-193a, miR-3615, miR-335
and miR-4286 were shown to play a role in cancer [85–
88]. Two SNPs, rs6430498 and rs12512664, in miR-3679
were significantly associated with femoral neck bone
mineral density [89]. Therefore, future studies should
pursue the function of these SNPs and associated miR-
NAs in PD disease.

Conclusion
In this study, we performed a meta-analysis with three
microarray datasets from PD blood studies and five from
PD SN studies to study DEGs, gene regulatory networks
and lncRNA-mediated regulatory networks. The meta-
analysis identified 36 common DEGs in PD blood stud-
ies and 17 common DEGs in PD SN studies. Further, we
identified five PD-specific genes in our study: HSPA6,
MAP2K6, SRPK2, NOL7 and SNCA genes. Analysis of
the regulatory miRNAs associated with the common
PD-specific genes resulted in the identification of PD-
specific miRNAs (hsa-miR-204-3p, hsa-miR-17-3p, hsa-
miR-181a-5p, hsa-miR-181b-5p, hsa-miR-181c-5p, hsa-
miR-181d, hsa-miR-19a-3p, hsa-miR-19b-3p, hsa-miR-
93-3p, hsa-miR-153, hsa-miR-23b-3p, hsa-miR-34a-5p,
hsa-miR-9-5p and hsa-miR-7-5p). Analysis of the mTF-
miRNA-gene-gTF network also led to the identification
of two FFLs: one FFL between the SPRK2 gene, hsa-
miR-19a-3p and SPI1 and the other between the SPRK2
gene, hsa-miR-17-3p and SPI. In the lncRNA-mediated
regulatory network, 45 lncRNAs were associated with
known PD-specific miRNAs in our study. Notably, these
were not identified in previous studies and warrant fur-
ther investigation as they might be important epigenetic
regulators in PD. Moreover, SNP analysis identified two
significant SNPs associated with PD-specific genes and
six regulatory miRNAs, and seven significant SNPs asso-
ciated with other neurodegenerative disease-specific
genes and 23 regulatory miRNAs. These SNPs could be
considered as latent risk factors for further validation.
Thus, the findings of our study should be explored in
further investigation of PD.
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