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Abstract

Background: Predicting cellular responses to drugs has been a major challenge for personalized drug therapy
regimen. Recent pharmacogenomic studies measured the sensitivities of heterogeneous cell lines to numerous
drugs, and provided valuable data resources to develop and validate computational approaches for the prediction
of drug responses. Most of current approaches predict drug sensitivity by building prediction models with
individual genes, which suffer from low reproducibility due to biologic variability and difficulty to interpret
biological relevance of novel gene-drug associations. As an alternative, pathway activity scores derived from gene
expression could predict drug response of cancer cells.

Method: In this study, pathway-based prediction models were built with four approaches inferring pathway activity
in unsupervised manner, including competitive scoring approaches (DiffRank and GSVA) and self-contained scoring
approaches (PLAGE and Z-score). These unsupervised pathway activity inference approaches were applied to predict
drug responses of cancer cells using data from Cancer Cell Line Encyclopedia (CCLE).

Results: Our analysis on all the 24 drugs from CCLE demonstrated that pathway-based models achieved better
predictions for 14 out of the 24 drugs, while taking fewer features as inputs. Further investigation on indicated that
pathway-based models indeed captured pathways involving drug-related genes (targets, transporters and metabolic
enzymes) for majority of drugs, whereas gene-models failed to identify these drug-related genes, in most cases.
Among the four approaches, competitive scoring (DiffRank and GSVA) provided more accurate predictions and
captured more pathways involving drug-related genes than self-contained scoring (PLAGE and Z-Score). Detailed
interpretation of top pathways from the top method (DiffRank) highlights the merit of pathway-based approaches
to predict drug response by identifying pathways relevant to drug mechanisms.

Conclusion: Taken together, pathway-based modeling with inferred pathway activity is a promising alternative to
predict drug response, with the ability to easily interpret results and provide biological insights into the
mechanisms of drug actions.
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Background

Determining the responses of individual patients to
drugs has become a critical task in the practice of per-
sonalized medicine. Experimental efforts have been
undertaken to directly measure drug response of the
cells extracted from patients’ cancerous tissues, including
in-vitro and in-vivo models [1]. While such experimental
approaches capture biological characteristics of patients’
tumor, the high-cost and time-consuming operations
render them hardly scalable in practice.

With the advance of high-throughput genomic tech-
nologies, pharmacogenomics is becoming a powerful ap-
proach to determine individuals’ responses to drug
therapies [2]. Typically, studies generate molecular profiles
(i.e. SNPs, gene or protein expressions, etc) from cell lines,
measure cellular responses to drugs, and then develop
computational models to predict drug responses [3].
These computational models could be applied to identify
molecular determinants of drug response and further
stratify patient population for given drug therapies, with
the assumption that cell line models yield clinical rele-
vance [4]. For example, earlier efforts on NCI-60 panels
[5] have highlighted specific genetic aberrations as drug
targets or biomarkers informative of drug response. For
instance, BRAF and EGFR mutations are currently used to
predict response to specific kinase inhibitors [6]. Later,
studies like Cancer Cell Line Encyclopedia (CCLE) [7],
Genomic Drug Sensitivity of Cancer (GDSC) [8] and GSK
panel [9] have extended to large-scale collection of cell
lines with drug responses and more molecular data types.
These large cell line datasets provide a more comprehen-
sive representation of the genomics variability observed in
tumors providing new means to identify novel drug tar-
gets or drug response biomarkers. These large datasets
can also be used to develop computational models to pre-
dict drug responses. For instance, CCLE and GDSC have
been used to evaluate the robustness of linear prediction
models [10], develop novel computational approaches
identifying combinatorial biomarkers of drug response
[11] and validate prediction models with genomic and
chemical features [12].

Exploring these data-resources can help uncover new
drug mechanisms and further personalize drug therapies.
Currently, most of the computational models to predict
drug sensitivity of cancer cell lines involve gene-level fea-
tures like gene expression [3]. However, gene level features
have been reported as having limited reproducibility across
independent studies and challenges to biological interpret-
ation [13]. There is growing evidence that drug responses
could be modulated by the concerted behavior of multiple
genes, instead of individual genes [14]. Pathway (or
gene-set) based approaches can help to take into account
such coordination of genes, reduce model complexity and
increase explanatory power of prediction models [15]. In
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fact, pathway approaches have been successfully applied in
disease classifications [16, 17] by aggregating gene expres-
sions into pathway-level activities used for prediction. In
the context of drug sensitivity, such pathway-based ap-
proach may also help improving predictions. While
gene-level models have been validated and compared [10,
18], the performance of pathway-based approach in this
context is yet to be investigated and validated.

In this study, we investigate four representative ap-
proaches to score pathway activities solely based on gene
expression data alone. Specifically, these four approaches
were compared based on 24 drugs from CCLE dataset
[4], in term of their performance to predict drug re-
sponse and the ability to recapitulate target-related path-
ways. For each approach, sample-wise pathway activity
scores were first calculated for cell lines, and then were
used as inputs in Elastic net [19] models to predict drug
responses.

Methods
Data sets
Raw gene expression and drug response data (ICso) were
collected from the CCLE for 24 drugs. Specifically, raw
gene expression data (Affymetrix cel files) was first ex-
tracted and normalized with Bioconductor Affy package
(MAS5 algorithm) and then log-transformed. For genes
with multiple probesets, the optimal probeset was then
determined using R package jetset [20]. For each drug,
ICs values are log-transformed for downstream analysis.
Only the cell lines with both gene expression and response
data are used to build prediction for each drug. Note that,
the number of cell lines varies with drugs, because some
cell lines may not have response data for all drugs.
Canonical pathways are collected from MetaCore
pathway knowledge database, including pathways de-
fined for specific diseases, biological process or certain
stimulus. Our analysis is restricted to the 1410 pathways
consisting of [5, 200] member genes.

Modeling workflow

Pathway-based models integrate gene expression with
pre-defined pathways to predict drug response and iden-
tify associated mechanistic biomarkers. The modelling
process consists of two major steps (Fig. 1): (1) scoring
pathway activities based on gene expression profiles from
individual cell lines; (2) building prediction models of drug
response with pathway activity scores as input features.

Pathway activity scoring approaches

First step in our model workflow is to score pathway activ-
ities for cell lines based on their gene expression profiles.
Four unsupervised pathway scoring approaches were
looked at in our study. For a given pathway, PLAGE
method [21] decomposes expression data of member genes
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and extracts meta-feature by singular vector decomposition
(SVD). Z-Score approach [17] first standardizes gene ex-
pression data and aggregates z-scores of member genes into
a combined Z-score as pathway activity. GSVA [22] first
uses non-parameter kernel estimation to calculate
gene-level statistics (evaluating whether a gene is lowly or
highly expressed in individual samples) and then aggregates
gene statistics into pathway activity in a similar manner
with GSEA. Here we introduce a new ranking-based ap-
proach (called DiffRank) to score pathway activities in indi-
vidual samples. For a given sample, genes are first ranked in
the descent order of their expression levels, and then the
rankings of member genes are aggregated into a single
score for each pathway. DiffRank is straightforward to be
calculated on one single sample and do not require mul-
tiple samples or phenotype information. For one given
pathway, DiffRank looks at the difference of average rank-
ing between member and non-member genes in a pathway,
and is defined as below:

m

1 1 & .
Diff Rank = — fa—— r/
ﬁ ny Z 175) ]:ZI
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Where 7n; and n2 are the numbers of member and
non-member genes of a given pathway, respectively.
Likewise, ' and 7 represent the rankings of individual
member and non-member genes based on their expres-
sion levels in samples.

Note that these four pathway scoring approaches could
be grouped into two categories. Specifically, both DiffRank
and GSVA score the pathway activity as a function of
genes inside and outside pathways, analogue to the com-
petitive gene-set analysis. In contrast, PLAGE and Z-Score
consider only the genes inside pathways, analogue to the
self-contained gene-set analysis. DiffRank is implemented

from scratch and all the other three approaches are
adopted from the gsva package in Bioconductor.

Building prediction model of drug response

Once pathway activity scores are generated for cell lines,
various machine learning models could be applied to pre-
dict drug response. We noticed that most individual
pathway-level or gene-level features were modestly corre-
lated to drug response for most drugs (data not shown).
For such datasets, machine learning models with
regularization (i.e. Elastic net) have proven promising to
achieve better predictions, as demonstrated by model
choices in previous studies [7, 8] and the recommenda-
tions from a recent effort assessing models for drug
sensitivity prediction [18]. As such, Elastic net algorithm
(from R package “glmnet”) is used to build the prediction
models, and other machine learning algorithms are not
considered in this study. The optimal parameters of pre-
dictive model are determined through 10-fold cross vali-
dations. In particular, a grid of 2500 settings of elastic net
parameters (a: 10 settings in [0.2, 1]; A: 250 settings in
[exp™©, exp’] was searched in cross validations.

Results

Overview of overlaps and correlations among pathway
member genes

The overlaps of member genes were first explored for all
1410 pathways. Specifically, Jaccard Index was calculated to
measure the overlap between two pathways. The value of
Jaccard index ranges from zero (for pathways without over-
lapping genes) to one (for identical pathways). Figure 2
(panel A) shows the heatmap of Jaccard index values for all
pathway pairs. As shown, most pathway pairs have small
Jaccard index, indicating the slight overlaps among these
pathways. There are handful blocks of pathways with
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relatively bigger overlaps, though their Jaccard index values
are fairly modest (less than 0.4). This suggests that the
Metacore pathways are generally specific and do not have
much redundancy to other pathways, which would help
ease the concerns caused by overlapping genes in pathway
analysis.

We further explored the correlations of member genes
within individual pathways. For each pathway, Pearson cor-
relation coefficients were calculated for all pairs of member
genes. The median of absolute correlation coefficients
(MACC) was taken as an overall measure of pathway mem-
ber gene correlations. Then permutation test was performed
to determine if member genes within one pathway have
higher correlations than by chance. Specifically, gene expres-
sions of cell lines were randomly shuffled for 1000 times to
generate a vector of random median correlations (MACC).
For each pathway, the statistical significance of real MACC
is then determined by comparing to random MACCs. For
example, the p-value would be zero if all random MACCs
are smaller than real MACC. The results (Additional file 1)
shows that ~40% pathways (565 out of 1410) have p-value
less than 0.1 as shown in Fig. 2 (panel B). Interestingly, many
of the most significant pathways are indeed relevant to can-
cer mechanisms, such as cell cycle, DNA damage, apoptosis,
P53 activation, and translational process with CFTR etc. In
contrast, many least significant pathways tend to be defined
for other conditions (i.e. asthma, diabetes, cardiovascular) or
biological processes (i.e. nicotine regulation, neurophysio-
logical process). This observation is concordant to the nota-
tion that pathways are generally condition-specific, since
only cancer cell lines are used to generate the CCLE dataset.

Prediction performance of pathway-based models
Pathway approaches have been applied to identify disease
biomarkers and patient stratification. Critical to these ap-
proaches is to characterize pathway activity with a quanti-
tative score aggregated from gene expression data. Four
unsupervised pathway scoring approaches are compared
in our study, including PLAGE, Z-Score, GSVA and Dif-
fRank. All four pathway score metrics were first calculated
for all cell lines with gene expression data in CCLE. For
each drug, cell lines with both response data (IC50) and
pathway activity scores were used to build the prediction
models. In particular, elastic net model was trained for
pathway activity scores with 10-fold cross validation to de-
termine optimal parameters yielding minimal mean
square error (MSE). As a comparison, elastic net models
were also trained with gene level expression data for all 24
drugs. Figure 3 provides the prediction performance
(MSE) from cross validation for pathway-based models
and gene-level models on all the 24 drugs in CCLE.

As shown in Fig. 3, DiffRank performs the best for 9
drugs and the second best for 8 drugs, whereas GSVA has
best prediction for 7 drugs and the second best prediction
for 5 drugs. Z-Score and PLAGE have best prediction per-
formance for the rest 8 drugs, but poorest performance
for 16 drugs. The superior performance of competitive
scoring over self-contained score suggested that incorpor-
ating both member and non-member genes may better
capture the variations of pathway activities among individ-
ual samples. Comparing to gene-level models, at least one
pathway-based model perform better for 14 of the 24
drugs. Take DiffRank as an example, it outperforms
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Fig. 3 Prediction performance of pathway-based models for 24 CCLE drugs

Figure 4 provides the number of pathways (involving at
least one drug-related gene) from each approach for these
drugs. We can see that all pathway approaches identify rele-
vant pathways for many drugs. In particular, DiffRank,
GSVA, Z-Score and PLAGE identified pathways involving

gene-level models for 11 drugs. Meanwhile, gene-level
models perform the poorest for three drugs (Nutlin-3,
PD-032991 and ZD-6474). For these drugs,
pathway-based models could be promising alternatives for
predicting their sensitivity on cancer cells.

Identification of pathways involving drug-related genes
Elastic net identifies the features with non-zero weights as
important features predictive of cellular response to drugs.
In order to evaluate the biological relevance of important
features identified from elastic net models, we have col-
lected the drug-related genes (targets, transporters and
metabolic enzymes) from commercial and public resources
(i.e. MetaCore, DrugBank and original CCLE publication)
for all drugs (Additional file 2). We further investigated
whether pathways involving these drug-related genes could
be captured by pathway-based models.

drug-related genes for 18, 16, 12 and 15 drugs, respectively.
Consistent with the observations of model prediction per-
formances, competitive scoring approaches (DiffRank and
GSVA) tend to identify drug-related pathways for more
drugs than self-contained approaches (Z-score and PLAGE).
However, none of these approaches identify drug-related
pathways for three drugs, including PD-0332991,TAE684
and TKI258.

We also looked into the genes identified by the gene-level
models described earlier, against the drug-related genes. It
turns out that these gene-level models identified only one
target gene for three drugs (Lapatinib, RAF265 and
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Fig. 4 Number of pathways involving drug-related genes for 24 drugs
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TAE684), one enzyme gene for Sorafenib, but could not
capture any drug-related genes for all the other 15 drugs.
This indicates gene expression alone can barely identify
drug-related genes in majority of cases, which corroborates
the notion that the activities of many targeted proteins are
not necessarily reflected by their gene expressions.

Pathways recapitulating known drug mechanisms

Among the four pathway scoring approaches, DiffRank
tends to achieve better predictions for more drugs and is
more capable of capturing pathways involving drug-related
genes. For the 24 CCLE drugs, DiffRank performed either
best or second best for 17 drugs, and identified pathways
with drug-related genes for 18 drugs, with 14 drugs in com-
mon. We then investigated biological relevance of import-
ant pathways (with non-zero coefficients in models)
identified by DiffRank for these 14 drugs. In Fig. 5, all iden-
tified pathways are ranked based on their coefficients and
the ones involving drug-related genes are highlighted with
colors as following: (1) Blue for pathways with target genes
and at least one transporter or metabolic enzyme; (2) Red
for pathways involving target genes only; (3) Orange for
pathways involving metabolic enzymes only; (4) Green for
pathways involving transporter genes only. Please see
Additional file 3 for the data used to generate Fig. 5.

As demonstrated, DiffRank identified top pathways in-
volving drug-related genes (particularly drug targets) for
several drugs, including 17-AAG, AEW541, Irinotecan,
Topotecan, Lapatinib, Sorafenib, Paclitaxel and ZD6474.
Because of space limitation, we would not discuss each
pathway, but rather summarize and highlight a few advan-
tages of pathway models with concrete examples. First,
pathway models could identify pathways involving mul-
tiple targets. Taking Lapatinib as an example, this drug is
a dual inhibitor of EGFR and ERBB2 (or HER2) [23], and
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was initially approved for treating breast cancer with
over-expression of HER2. Gene-level model only identi-
fied ERBB2 but not EGFR (see Lapatinib in
Additional file 4). In contrast, pathway models trained
with CCLE data successfully identified a few top pathways
involving both ERBB2 and EGFR, including “anti-apopto-
tic action of ErbB2 in breast cancer” (see Additional file 5),
“ERBB family signaling”, “mitogenic action of ErbB2 in
breast cancer” and “EGEFR signalling via small GTPase”.

We also found that pathway models could capture simul-
taneously both targets and biomarkers. For instance, the
pathway “Mitomycin action” is ranked at top one for
17-AAG (see Additional file 3). As shown in pathway map
(see Additional file 6), this pathway involves not only one
target (CHEK1) of 17-AAG, but also one more gene
(NQO1) recently identified as a biomarker for this drug in
other studies [7, 10]. Indeed, NQO1 was also ranked at 1st
by gene-level models (see 17-AAG in Additional file 4).
Studies showed that NQO1 activates 17-AAG [24] and also
sensitizes the response of malignant melanoma cells to
17-AAG [25]. This is consistent with the pathway activity
of “Mitomycin action” observed on CCLE cell lines, namely
this pathway has higher activity scores in cell lines sensitive
to 17-AAG (left panel in Fig. 6).

In the meanwhile, pathway models also captured relevant
mechanisms for drugs with similar mechanisms. For ex-
ample, both Irinotecan and Topotecan are toxic chemo-
therapies and share same mechanism through inhibiting
topoisomerase I (TOP1). Pathway models identified one
common pathway “Cell Cycle- Chromosome Condensa-
tion” involving TOP1 for both drugs. Specifically, this path-
way ranked 2nd for Topotecan and 6th for Irinotecan (see
these two drugs in Additional file 3). siRNA knockdown of
one chromosome condensation regulator reduced cell pro-
liferation, caused cell-cycle arrest, and increased apoptosis

-

numbers of identified pathways are given after drug names
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Fig. 5 Waterfall plots for the important pathways identified by DiffRank models. Pathways are ranked based on the coefficients in models and the
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[26]. Other studies also showed that drugs targeting topoi-
somerases inhibit chromosome condensations [27], sug-
gesting the inhibition of chromosome condensation is
potentially part of underlying mechanisms of Irinotecan
and Topotecan.

Pathway models also identified some pathways without
drug targets, but known to be relevant to drug responses.
For example, the pathway “Normal and pathological
TGF-beta-mediated regulation of cell proliferation” ranked
at 2nd for PF2341066 (Crizotinib). Researcher has found
that activation of TGF-beta receptor signaling confers to
the resistance to PF2341066 [28]. Interestingly, this was
confirmed with the elevated activity in CCLE cell lines re-
sistant to this drug (middle panel of Fig. 6). Another ex-
ample came from the pathway “Role of CDK5 in cell
adhension” ranking at 7th for Sorafenib. The activity of this
pathway is significantly lower in sensitive CCLE cell lines as
shown in the right panel of Fig. 6. A recent study discov-
ered that knockdown of CDKS5 can inhibit tumor growth in
mouse model [29]. Indeed, a more recent study showed
that inhibiting CDK5 improved the sensitivity to
Sorafenib-induced tumor suppression in xenografts of he-
patocellular carcinoma cells [30].

Discussion

In this study, we evaluated different unsupervised pathway
activity inference approaches for predicting drug sensitiv-
ity of cancer cell lines. Our study highlighted the ability of
pathway-based models to reveal drug mechanisms, along
with prediction performance comparable to gene-based
models. Also, pathway-based approach could help gener-
ate testable hypotheses by looking at the difference of

pathway activity scores between sensitive and resistance
cell lines, as demonstrated by the cases in Fig. 6.

A crucial step in pathway-based modelling is to convert
gene expression profile to pathway activity scores for indi-
vidual samples. Our analysis showed that DiffRank and
GSVA generally perform better than PLAGE and Z-Score.
This suggests that incorporating expression of
non-member genes could help better characterize path-
way activities than approaches using member genes alone.
In addition, both DiffRank and GSVA adopt a
ranking-based strategy to calculate pathway activity for in-
dividual samples. Such ranking-based pathway activity is
computable for single sample with gene expression profile,
which makes it very straightforward to perform prediction
on new samples, i.e. the N-of-1 situations in precision
medicine. However, other approaches to compute pathway
activity could be used as well. For example, pathways top-
ology have been used to improve pathway enrichment
analysis [31]. In our context, pathway structures could also
be utilized to help define the importance of genes to im-
prove the pathway activity scoring.

In this study, Elastic net was used to build the predictive
models of drug response. We recognize that other machine
learning algorithms (ie. random forest, neural networks)
could also be tested in an attempt to improve the prediction
of some of the drugs that display poor correlations with
IC50 values (data not shown). Prediction performance could
also be improved by including additional -omics data types,
such as copy number, methylation, etc. Finally, this study
was based on canonical pathways, which involve only genes
curated in pathway databases. More gene-sets could be as-
sembled or derived from molecular interaction network,
such as densely connected sub-networks or downstream
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target genes of regulators (i.e. transcription factors) etc. Such
molecular networks could cover more genes that are in-
volved in drug responses to improve the accuracy of the pre-
dictive models.

Conclusion

We developed a pathway-based modelling strategy to
predict drug response of cancer cells. The results show
that pathway-based models achieve comparable or even
better drug response prediction than gene-based models.
Moreover, we have shown that pathway-based models
recapitulate known drug response mechanisms for ma-
jority of drugs. Pathway-based models could serve as an
effective alternative to gene-based models for predicting
drug sensitivities of cancer cells.
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