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Abstract

Background: Germline mutations in the BRCA1 and BRCA2 genes predispose carriers to breast and ovarian cancer,
and there remains a need to identify the specific genomic mechanisms by which cancer evolves in these patients.
Here we present a systematic genomic analysis of breast tumors with BRCA1 and BRCA2 mutations.

Methods: We analyzed genomic data from breast tumors, with a focus on comparing tumors with BRCA1/BRCA2
gene mutations with common classes of sporadic breast tumors.

Results: We identify differences between BRCA-mutated and sporadic breast tumors in patterns of point mutation,
DNA methylation and structural variation. We show that structural variation disproportionately affects tumor
suppressor genes and identify specific driver gene candidates that are enriched for structural variation.

Conclusions: Compared to sporadic tumors, BRCA-mutated breast tumors show signals of reduced DNA
methylation, more ancestral cell divisions, and elevated rates of structural variation that tend to disrupt highly
expressed protein-coding genes and known tumor suppressors. Our analysis suggests that BRCA-mutated tumors
are more aggressive than sporadic breast cancers because loss of the BRCA pathway causes multiple processes of
mutagenesis and gene dysregulation.
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Background
Breast cancer is the most commonly diagnosed cancer
and the second leading cause of cancer death among
women. Approximately 10–15% of cases are associated
with familial DNA repair-deficiency disorder, among
which the most common forms are related to germline
variants in BRCA1 and BRCA2, two genes involved in
homologous recombination repair [1–3]. A germline mu-
tation in BRCA1 or BRCA2 genes is known to be associ-
ated with a much higher than average lifetime risk (72%
for BRCA1 and 69% for BRCA2 mutation carriers [4]) of
developing breast cancer. In addition, these carriers also
have a high risk of ovarian and other cancers [5, 6].

The reason for this is not entirely clear; however, two
hypotheses are prevalent in the literature. As the BRCA1
and BRCA2 genes are both involved in the machinery
for homologous DNA repair, it is hypothesized that de-
fects in these genes leads to a lack of homologous repair
activity, resulting in incorrectly repaired double-strand
DNA breaks [7]. Incorrect repair of double-strand
breaks can lead to higher rates of structural variation in
the genome; the resulting structural variants may impact
cell death or cell growth genes leading to cancer. In
other words, an impaired BRCA complex could be a
mutagen, analogous to environmental mutagens such as
benzo(a)pyrene in tobacco smoke.
On the other hand, BRCA1/2-mutated tumors show a

propensity to dedifferentiate into a more primitive state
[8], which could result in a higher rate of cell division.
More cell division leads to accumulation of mutations as
a result of DNA replication error, and these mutations
may hit genes involved in cell death or growth leading
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to cancer. Under this hypothesis, lack of BRCA function
is not a distinctive mutagen but an amplifier of normal
mutational mechanisms [9]. Either of these phenotypes
alone could explain the increased risk of cancer in BRCA
mutation carriers but it is also possible for the two pheno-
types to act synergistically. However, despite increasing lit-
erature on the topic, there has been no resolution, and the
mechanisms underlying breast cancers in patients with
BRCA mutations are still not fully comprehended.
Tumors with BRCA gene mutations often display a

basal phenotype and are triple-negative (lacking ER, PR
and HER2 amplifications) [10]. Previous studies have
identified differences in point mutational signatures [11],
copy number profile [12], gene expression signatures
[13] and patterns of structural variation [11] between
BRCA-mutated and sporadic breast tumors, indicating
that tumor evolution follows a distinct path in these
cancers. Moreover, in addition to patients with inherited
germline mutations in the BRCA genes, somatic inacti-
vation of BRCA1 and BRCA2 has also been reported in
breast and ovarian tumors [14, 15]. Recent studies sug-
gest that such tumors may present similar phenotypes to
those with germline BRCA inactivation [16].
In this work we combine newly generated sequencing

data with previous datasets, and perform an in-depth in-
tegrative analysis of genomic and epigenomic data in
order to achieve better insights into the mechanism
underlying tumor formation in individuals with BRCA
gene mutations. Our aim here is to characterize the gen-
omic variation in BRCA-mutated tumors and under-
stand whether and how they are different from common
classes of sporadic breast tumors. We present novel re-
sults on the differences in point mutation, DNA methy-
lation, and structural variation in BRCA1/2 mutated
tumors, and identify specific genes including known
tumor suppressors that are frequently damaged by struc-
tural variation in these tumors.

Results
BRCA1/2-mutated tumors have a high burden of point
mutations
To compare the point mutation profiles of BRCA1/2-
mutated tumors with other breast tumors, we ana-
lyzed a published dataset of 560 breast tumors [11].
This dataset includes 36 tumors with inactivating mu-
tations in BRCA1 (31 germline and 5 somatic muta-
tions) and 39 tumors with inactivating mutations in
BRCA2 (29 germline and 10 somatic mutations), as
well as 118 triple-negative (TN) tumors, 293 ER+
(HER2-) tumors and 71 HER2+ tumors.
Both BRCA1-mutated and BRCA2-mutated tumors

present significantly more genome-wide point mutations
than the sporadic tumors (Wilcoxon test, p = 4.9 × 10− 11

for BRCA1-mutated vs. sporadic tumors, p = 5.5 × 10− 11

for BRCA2-mutated vs. sporadic tumors), with BRCA1-
mutated tumors having a particularly high number of
point mutations (Fig. 1a); this phenomenon has been
previously reported with smaller sample sizes [17].
Among the sporadic tumors, triple-negative (TN) tumors
have higher mutation counts, close to those of BRCA2-
mutated tumors – nevertheless, both BRCA1-mutated
and BRCA2-mutated tumors have significantly higher mu-
tation counts than the triple-negative tumors in this data-
set (Wilcoxon test, p = 0.005 for BRCA1-mutated vs. TN,
p = 0.019 for BRCA2-mutated vs. TN). Tumors with som-
atic BRCA1/2 mutations present similarly high mutation
counts to those with germline inactivation.
We also tested whether BRCA-mutated tumors have

more missense mutations. Compared to sporadic tu-
mors, both BRCA1-mutated and BRCA2-mutated tu-
mors show a higher Tumor Mutational Burden (TMB),
calculated as the number of nonsynonymous mutations
per Mb of coding sequence (Fig. 1b; Wilcoxon test, p =
9.9 × 10− 10 for BRCA1-mutated vs. sporadic tumors, p =
5.1 × 10− 8 for BRCA2-mutated vs. sporadic tumors).
However, in this case, the triple-negative tumors in our
dataset are not significantly different from the BRCA2-
mutated tumors.

Differences in mutational signature exposures between
BRCA1/2-mutated and sporadic tumors
Mutational signatures are patterns of point mutations in
the genome created by specific mutagenic processes,
e.g., a chemical mutagen or a defect in a DNA repair en-
zyme [18]. If BRCA1/2-mutated tumors evolve via dis-
tinct point mutation-causing processes, they may
possess unusual mutational signatures. We therefore an-
alyzed whether the BRCA1/2-mutated tumors have a
different pattern of mutational signatures from the spor-
adic breast tumors.
A previous study [11] applied a widely used framework

[18, 19] for extracting mutational signatures from genomic
data to the same dataset of 560 breast tumors, resulting in
12 mutational signatures. Notably, the resulting signatures
are very dense, and many are also very similar to each
other. While some have been linked to known mutational
processes in breast cancers, others still have no known eti-
ology [20]. This may be due to the fact that this framework
extracts as many signatures as required to improve the fit
to the data, without testing whether these signatures per-
form well at fitting unseen data. This can be expected to re-
sult in a high number of signatures that potentially overfit
the data. For these reasons, we wished to use a principled
approach that incorporates biological knowledge, as well as
statistical methods to prevent overfitting.
We recently developed SparseSignatures [21], a

novel framework to identify mutational signatures.
This method incorporates a background model
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representing the pattern of mutations caused in the
normal course of cell division by DNA replication er-
rors - a signature that we assume is present in all tu-
mors. The background signature is fixed and
additional signatures are discovered while incorporat-
ing a LASSO constraint to ensure that the signatures
are sparse, producing a more biologically accurate
and interpretable solution. SparseSignatures also ap-
plies a repeated bi-cross-validation strategy [21] to se-
lect the number of signatures. This allows us to avoid
overfitting by selecting a number of signatures that
not only fit the data used to discover them but are
also capable of predicting unseen data points.
We applied this approach to 555 breast tumors (we re-

moved 5 tumors with < 1000 mutations as previously de-
scribed [21]). We discovered 8 mutational signatures in
addition to the background (Fig. 2a, Additional file 6:
Table S1). These signatures are statistically strongly sup-
ported and most of them are related to known mutagenic
mechanisms. We compared our discovered signatures to
previously proposed signatures in the COSMIC database
based on cosine similarity and visual inspection, and
found that some of our signatures are highly similar to
known signatures in COSMIC (Additional file 7: Table S2
and Additional file 8: Table S3.) Signature 1 is the well-
known signature caused by deamination of methylated cy-
tosines at CpG sites into thymine, and is highly similar to
COSMIC signature 1. Signatures 2 and 5 are associated
with deregulation of APOBEC cytidine deaminases [20]
and correspond to COSMIC signatures 2 and 13 respect-
ively. Signature 3 is similar to COSMIC signature 12 pre-
viously associated with defective DNA mismatch repair
[22]. Signature 4 is a pattern of elevated TT >GT point
mutations, highest in a CTT context, and corresponds to
COSMIC signature 17.

The remaining 3 signatures do not have high similarity
to any of the signatures in COSMIC. Signature 6 may be
associated with defective DNA mismatch repair based
on common features with COSMIC signature 20, while
Signature 4 is moderately similar to COSMIC Signature
18, which has recently been associated with DNA dam-
age caused by reactive oxygen species [19]. Finally, Sig-
nature 8 is a relatively dense pattern characterized by an
elevated rate of C > A, C > G and T > A mutations,
whose etiology is unknown.
SparseSignatures also calculates the exposure values

for each signature, i.e. the number of mutations originat-
ing from each signature in each patient (Additional file 9:
Table S4). On average, the background signature, repre-
senting DNA replication errors, contributes more muta-
tions than any other signature - an average of 1619.5
mutations per tumor, compared to the next highest
value of 1017.6 mutations per tumor for signature 8.
(Wilcoxon test, p = 1.27 × 10− 46, exposure to background
vs. exposure to signature 8). The higher number of point
mutations in the BRCA1/2-mutated tumors, compared
to sporadic tumors, is reflected in a higher exposure to
the background signature (Fig. 2b; Wilcoxon test, p =
2.1 × 10− 17). This suggests that BRCA1/2-mutated tu-
mors have undergone more cell divisions.
We do not find any signature present only in

BRCA1/2-mutated tumors. However, compared to
sporadic tumors, BRCA1/2 mutated tumors have more
mutations (Fig. 2b; Wilcoxon test p = 2.1 × 10− 20) and a
higher fraction of mutations (Fig. 2c; Wilcoxon test,
p = 5.4 × 10− 18) attributed to Signature 8. While the eti-
ology of this signature is uncertain, it is not simply in-
dicative of BRCA mutation as many sporadic triple-
negative tumors also have a similarly high contribution
by signature 8. In general, the mutational signature

a b

Fig. 1 a) Boxplots showing the number of single nucleotide variants in the whole genomes of different classes of breast tumors, based on data
from 560 breast tumors [11]. b) Boxplots showing the Tumor Mutational Burden (number of nonsynonymous mutations per Mb of coding
sequence) in the whole genomes of different classes of breast tumors, based on data from 560 breast tumors [11]. TN = Triple-negative; ER =
Estrogen receptor
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Fig. 2 a) 9 signatures (including background) discovered by applying SparseSignatures to the whole genomes of 555 breast tumors. For
signatures 1–5, the corresponding COSMIC signature is listed in red along with its cosine similarity to the discovered signature. b) Boxplots
showing the number of mutations attributed to each signature in different classes of breast tumors. c) Boxplots showing the fraction of
mutations attributed to each signature in each sample, for different classes of breast tumors. d) Average beta-value (representing the extent of
cytosine methylation) of CpG sites, in different classes of breast tumors, based on data from TCGA [22]
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profiles of sporadic triple-negative tumors are very
close to those of BRCA1/2-mutated tumors. This sug-
gests that these tumors have similar underlying muta-
genic processes, including a high contribution of the
background signature indicating a high rate of cell
division.

BRCA1/2-mutated tumors have lower levels of CpG
methylation
Signature 1 is underrepresented in BRCA1/2-mutated tu-
mors; it contributes an average of 6.0% of the total muta-
tions in BRCA1-mutated tumors and 6.6% in BRCA2-
mutated tumors, as opposed to 16.0% of mutations in
sporadic tumors (Fig. 2c; Wilcoxon test, p = 7.6 × 10− 14

for BRCA1 vs. sporadic, p = 2.1 × 10− 13 for BRCA2 vs.
sporadic). This signature is caused by DNA CpG methyla-
tion and subsequent deamination of methylated cytosine
to thymine leading to C > T mutation. The ratio of Signa-
ture 1 exposure to background signature exposure is sig-
nificantly lower in both BRCA1 and BRCA2-mutated
tumors compared to sporadic tumors (Wilcoxon test, p =
9.2 × 10− 15 for BRCA1 vs. sporadic and 8.6 × 10− 9 for
BRCA2 vs. sporadic; Additional file 1: Figure S1). Taking
the background signature exposure as an indicator of cell
division, this suggests that BRCA1/2-mutated tumors may
have lower CpG methylation than sporadic tumors.
As DNA methylation data is not available for this

dataset, we tested whether DNA methylation is lower in
BRCA1/2-mutated tumors in a cohort of 674 breast can-
cers and 97 normal breast tissue samples from The Can-
cer Genome Atlas [23]. This dataset included 20 tumors
with inactivating germline or somatic mutations in
BRCA1 and 13 with inactivating germline or somatic
mutations in BRCA2, as well as 114 HER2+ tumors, 417
ER+ (HER2-) tumors, and 110 triple-negative tumors
(Additional file 10: Table S5). We found that global CpG
methylation levels are indeed significantly reduced in
BRCA1-mutated tumors compared to sporadic tumors
(Fig. 2d; Wilcoxon test, p = 3.1 × 10− 4) and compared to
normal tissue samples (Wilcoxon test, p = 3.3 × 10− 5).
On the other hand, there was no significant difference
between BRCA1-mutated and sporadic tumors in the
methylation level of the 3081 CpA sites measured on the
same platform (Additional file 2: Figure S2).
We did not observe a significant difference in methyla-

tion levels between BRCA2-mutated and sporadic tu-
mors. However, we note the low number of BRCA2-
mutated samples in this analysis, which may limit our
power. In order to test this, we performed a power ana-
lysis given the considered sample sizes. We first esti-
mated the parameters of normal distributions that best
fit the different groups from our data and then per-
formed 10,000 simulations by drawing samples from
these distributions. For each simulation, we tested

whether we could correctly assess that the data were
drawn from different distributions and estimated the
power of the test as the fraction of simulations in which
the results were correct. This analysis resulted in an esti-
mated power of 0.27 when comparing BRCA2 tumours
to normal tissues and of 0.16 when comparing BRCA2
tumours to sporadic ones.

BRCA1-mutated tumors have elevated tandem
duplications and interchromosomal translocations
We obtained whole-genome sequencing data for 67 of
the 560 tumor samples [11] along with their matched
normal samples, for which BAM files were available for
download from ICGC. In addition, we sequenced whole
genomes from 14 additional breast tumors and matched
normal samples [24] from patients carrying germline
BRCA1/2 mutations, resulting in a dataset of 81 tumor
genomes: 27 with germline BRCA1 mutations, 19 with
BRCA2 mutations (17 germline and 2 somatic), and 35
sporadic breast tumors without BRCA inactivation, of
which 19 were triple-negative and 16 were ER+. Add-
itional file 11: Table S6 describes the selected samples.
We used SvABA [25] to identify somatic indels and

structural variants in these tumor genomes. SvABA is a
newly developed indel and structural variant caller that
uses genome-wide local assembly and has been shown
to possess superior sensitivity and specificity to previous
methods [25]. After filtering the variant calls (see
Methods), we identified a total of 7234 high-confidence
somatic indels and 19,684 high-confidence somatic
structural variants in the 81 tumor genomes. We then
compared BRCA1/2-mutated tumors against sporadic
tumors. We included the 2 tumors with somatic BRCA2
inactivation along with those showing germline BRCA2
inactivation. We found that both BRCA1 and BRCA2-
mutated tumors had significantly more indels (Wilcoxon
test, p = 1.6 × 10− 5 for BRCA1 and p = 1.4 × 10− 3 for
BRCA2) and structural variants (Wilcoxon test, p =
5.1 × 10− 7 for BRCA1 and p = 0.029 for BRCA2) per
tumor than the sporadic tumors.
We next examined specific types of variation. Both

BRCA1 and BRCA2-mutated tumors have more dele-
tions than sporadic tumors (Fig. 3a; Wilcoxon test, p =
1.4 × 10− 6 for BRCA1 and p = 1.5 × 10− 4 for BRCA2).
While most deletions in sporadic tumors are either < 5
bp or > 10 kb long, BRCA1/2-mutated tumors have a
large number of deletions of intermediate size; the size
distribution of these deletions is bimodal, with one peak
between 5 and 100 bp and the other between 100 bp-10
kb (Fig. 3b). While the 5–100 bp long deletions mostly
lack microhomology at the breakpoints, the majority of
the BRCA1/2-mutated samples have short regions of
microhomology (1–10 bp) at the breakpoints in > 50% of
the deletions in the 100 bp-10 kb size range (Fig. 3c).
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On the other hand, we observed that BRCA1-mutated
tumors have an elevated number of tandem duplications
[26] (Fig. 3a; Wilcoxon test, p(BRCA1 vs. others) = 5.9 ×
10− 7), predominantly ranging in size from 1 to 100 kb
(Fig. 3b). Most of the tandem duplications in this size
range have short regions of microhomology at the break-
points (Fig. 3c).
In addition, we observed that the BRCA1-mutated tu-

mors have more interchromosomal translocations than
the BRCA2-mutated or sporadic tumors (Fig. 3a; Wil-
coxon test, p = 4.2 × 10− 4). To our knowledge this
phenomenon has not been described previously. Like
the tandem duplications described above, these translo-
cations also tend to have microhomology of 1–10 bp at
the breakpoints (Fig. 3c).
Large copy number alterations in the genome can sig-

nificantly change genome size. To test whether the ele-
vated numbers of point mutations and structural variants
in BRCA1/2-mutated samples are due to biological differ-
ences or are accounted for by the availability of more
DNA, we identified copy number variants in the genomes

of these 81 tumor samples using Control-FREEC [27].
After correcting the size of the genome in each tumor to
account for copy number alterations, we find that the
BRCA1-mutated samples have larger genomes than
BRCA2-mutated or sporadic tumors (Additional file 3:
Figure S3, Wilcoxon test p = 3.2 × 10− 3). However, nor-
malizing the number of mutations for the actual size of
the genome does not affect our results. BRCA1 and
BRCA2-mutated tumors still have significantly higher
numbers of point mutations and deletions than sporadic
tumors, and BRCA1-mutated tumors have significantly
higher numbers of tandem duplications and interchromo-
somal translocations than all other classes of tumors.
BRCA2-mutated tumors are not significantly different
from sporadic tumors in the number of tandem duplica-
tions or interchromosomal translocations.

Functional regions hit by breakpoints in BRCA-mutated
tumors
Since BRCA1/2-mutated tumors have an elevated num-
ber of structural variants, we tested whether these

a

c d

b

Fig. 3 a) Boxplots showing the number of deletions, tandem duplications, and interchromosomal translocations, in the genomes of 81 breast
tumors. b) Probability distributions of the sizes of deletions and tandem duplications in the genomes of 81 breast tumors. c) Boxplots showing
the fraction of structural variants in a tumor genome that contain regions of microhomology at the breakpoint, divided into deletions, tandem
duplications and interchromosomal translocations, for 46 BRCA1/2-mutated tumors. The x-axis shows size of the structural variants. d) Manhattan
plot with the y-axis showing the bonferroni-corrected p-value for enrichment of structural variants in 10-Mb long genomic bins, for 46 BRCA1/2-
mutated tumors. The y-axis shows the position of the bin. Chromosomes are ordered from 1 to 22 followed by X
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structural variants tend to disrupt functional and regula-
tory regions of the genome. We found that in BRCA1/2-
mutated tumors, the breakpoints for interchromosomal
translocations, 1–100 kb duplications and 100 bp-10 kb
deletions are all enriched in regions of open chromatin
(Hypergeometric test, p = 3.9 × 10− 6 for interchromo-
somal translocations, p = 6.6 × 10− 6 for 1–100 kb dupli-
cations and p = 0.034 for 100 bp-10 kb deletions).
Since BRCA1-mutated tumors have elevated numbers

of tandem duplications and interchromosomal transloca-
tions, we examined these breakpoints specifically. The
breakpoints for both 1–100 kb tandem duplications and
interchromosomal translocations in BRCA1-mutated tu-
mors are enriched in protein-coding genes (Hypergeo-
metric test, p = 1.7 × 10− 14 and p = 0.014 respectively).
The breakpoints for 1-100 kb tandem duplication break-
points in BRCA1 tumors are also specifically enriched in
exons (Hypergeometric test, p = 1.2 × 10− 3). We also
found that interchromosomal translocation breakpoints
in BRCA1 tumors are enriched in TAD boundaries
(Hypergeometric test, p = 2.9 × 10− 4). Disruption of TAD
boundaries has previously been shown to alter gene ex-
pression in tumors by modifying 3D contact domains on
the chromosome [28].
We also tested whether the indels and structural

variant breakpoints in BRCA1/2-mutated tumors are
associated with the local replication timing. The
breakpoints for 5–100 bp long deletions and small (<
5 bp) indels are both enriched in late replicating re-
gions (Hypergeometric test, p = 4.3 × 10− 4 and p =
9.6 × 10− 16 respectively). On the other hand, the
breakpoints for 1–100 kb tandem duplications and in-
terchromosomal translocations, both of which are ele-
vated in BRCA1-mutated tumors, are enriched in early
replicating regions (Hypergeometric test, p = 4.6 × 10−
19 and p = 3.2 × 10− 11 respectively).

Structural variants disrupt tumor suppressor genes
We examined the genes that are disrupted by indel and
structural variation breakpoints in BRCA1/2-mutated tu-
mors. The genes disrupted by both indels and (structural
variants) SVs have significantly (Wilcoxon test, p < 10− 15

for both) higher levels of expression in normal breast tis-
sue, according to RNA-Seq data from GTEx [29] (Add-
itional file 4: Figure S4). Further, the set of genes disrupted
by indels and structural variation are both significantly
enriched for tumor suppressor genes (Hypergeometric
test, p = 1.4 × 10− 5 and p = 4.9 × 10− 10 respectively).
We next searched for specific genes enriched for

indels or structural variant breakpoints in the BRCA1/
2-mutated tumors, using a poisson test. The null model
here is that breakpoints are randomly distributed
throughout the genome, and we identify protein-coding
genes that have significantly more breakpoints than

expected from their length. We identified 11 genes
enriched for indels/structural variant breakpoints:
NME7, KLHL8, EFNA5, PTEN, DHX32, ETV6, RB1,
ARGLU1, TP53, P4HB, and RUNX1 (Table 1). After
correcting the length of each gene to take into account
its copy number in each tumor, 10 of these genes
(KLHL8, EFNA5, PTEN, DHX32, ETV6, RB1,
ARGLU1, TP53, P4HB, RUNX1) remained significant.
Moreover, 4 of these genes (RB1, PTEN, KLHL8, and
EFNA5) are also spanned by long deletions in multiple
BRCA1/2-mutated samples, representing another mode
of inactivation.
Aside from enrichment of breakpoints in genes and

exons, we also wanted to test whether there are larger
regions of the genome, including non-coding regions,
that are enriched for indel or SV breakpoints in our set
of 46 BRCA1/2-mutated tumor samples. These would
include breakpoints for variants that span across whole
genes, as well as those that affect gene expression by dis-
rupting regulatory regions of the genome.
We divided the genome into 10-Mb long bins, over-

lapping by 5Mb. We then combined all the high-
confidence indels and structural variants collected from
all the BRCA1/2-mutated tumors. We tested whether
these tumors are enriched for indel/structural variant
breakpoints in each bin using a poisson test, with the
null model being that breakpoints are distributed uni-
formly across the genome. We found 48 bins that had a
Bonferroni-corrected p-value of less than 0.05 (Fig. 3d).
All of these regions were disrupted by at least one indel
or structural variant in at least 50% of BRCA1/2-mu-
tated tumors. After correcting the number of bases in
each bin to account for copy number changes, 28 bins
remained significantly enriched (Bonferroni-corrected
p < 0.05). These bins are located on chromosomes 3, 5,
6, 8, 10, 11, 12, and 18, and several of them overlap with
each other. Their coordinates are listed in Add-
itional file 12 Table S7.

Identification of large-scale structural variants on the
basis of 10X genomics data
Our analysis above, as well as previous studies [11,
26], highlight the importance of structural variation in
the evolution of BRCA-mutated cancers. However,
short-read sequencing is not ideal for accurate detec-
tion of large structural variants due to the limited
read length. 10X Genomics is a linked-read technol-
ogy, which uses barcodes to identify short fragments
that originate from the same large molecules. Thus, it
provides long-range information that offers improved
resolution and detection of structural variants [30].
We sequenced additional DNA prepared with 10X
technology from 3 tumors with BRCA1 germline mu-
tations. In addition, we sequenced genomic DNA
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from 1 BRCA2-mutated tumor and 12 sporadic triple-
negative tumors from the same study [23]. We used
GROC-SVs [30] to identify structural variants in these
genomes and were able to confirm several transloca-
tions in the 3 BRCA1-mutated samples. Further, al-
though the sample size is too small for a statistical
test, we observed that these BRCA1-mutated samples
had more translocations on average than the sporadic
tumors (Additional file 13: Table S8).
Although structural variants are normally classified

into simple categories (such as duplications, deletions,
and translocations), recent studies have revealed that
some tumor genomes also contain a large number of
complex structural variants (CSVs) that cannot be ex-
plained by a simple end-joining or recombination event
[31]. In our short-read data, we observe that 16% of
structural variants are accompanied by a short insertion
event at the breakpoint; the occurrence of such inser-
tions is not significantly different in BRCA1/2-mutated
tumors. However, larger CSVs composed of multiple re-
arrangements cannot be detected by short reads. Using
GROC-SVs on the 10X data, we detected two complex
structural variants in the sample T65 which has a germ-
line BRCA1 mutation: a complex rearrangement on
chromosome 11 (Additional file 5: Figure S5a) and a re-
arrangement involving a translocation between chro-
mosomes 1 and 2 (Additional file 5: Figure S5b). The
mechanisms that give rise to such complex variants are
still uncertain, but our observations suggest that these
may play a role in the evolution of BRCA-mutated tu-
mors. Further studies are required to ascertain whether
BRCA-mutated tumors differ from sporadic breast tumors
in the number and type of complex structural variants, as
has been characterized for simple structural variants.

Discussion
Tumors carrying mutations in the BRCA1 and BRCA2
genes, particularly in BRCA1, have more point muta-
tions than sporadic breast tumors, which is not ex-
plained by their larger genome size owing to copy
number alterations. Mutational signature analysis gives
us insight into the number and type of mutational pro-
cesses acting upon tumor genomes. Here we have used a
newly developed method, SparseSignatures, to identify
mutational signatures in a previously generated dataset
[11] of 560 breast cancer whole genomes.
SparseSignatures fits a fixed ‘background’ signature

representing DNA replication errors, and then discovers
additional signatures representing cancer-specific muta-
tional processes. In this dataset, we discover 8 muta-
tional signatures in addition to the background. It is
notable that despite finding fewer signatures, our solu-
tion still provides a better fit to the data (MSE =
364.345) than the previous solution [11] with 12 signa-
tures (MSE = 1118.703). Along with providing a better fit
to the data, our discovered signatures are also sparser,
more clearly differentiated from each other, and lack
background noise (Additional file 14: Table S9).
The previous study on the same dataset [11] proposed

two dense, flat signatures (COSMIC Signatures 3 and 8)
to be associated with BRCA1/2 mutated tumors, with a
stronger association for signature 3. We do not find ei-
ther of these signatures in our analysis. While our Signa-
ture 8 bears some similarities to the previous ‘Signature
3’, it is considerably sparser and shows stronger nucleo-
tide preferences, which may be due to our explicit separ-
ation of the background signature, thus preventing its
being confounded with other signatures. We also do not
find a signature similar to the previous ‘Signature 30’.

Table 1 11 protein-coding genes show enrichment for indels/structural variant breakpoints in BRCA1/2-mutated tumors

Gene Chromosome Length
(bp)

Number of
indels/SV
breakpoints

Adjusted
p-value

Adjusted p-value (cor-
rected for copy
number)

Adjusted p-value (corrected
for copy number) BRCA1
only

Adjusted p-value (corrected
for copy number) BRCA2
only

1 RB1 13 176,159 17 1.31 ×
10−9

1.69 × 10− 10 4.60 × 10− 9 1.00

2 TP53 17 6986 5 5.48 ×
10− 5

2.13 × 10− 5 6.17 × 10− 4 1.00

3 PTEN 10 101,523 10 1.45 ×
10−4

7.53 × 10−5 1.66 × 10−2 1.00

4 ETV6 12 240,919 13 0.00102 0.00243 4.17 × 10−5 1.00

5 RUNX1 21 256,765 13 0.00210 0.00275 4.73 × 10−5 1.00

6 KLHL8 4 32,021 6 0.00372 0.00293 3.73 × 10−4 1.00

7 P4HB 17 16,460 5 0.00380 0.00592 5.62 × 10−2 1.00

8 NME7 1 234,926 12 0.00581 0.0695 1.83 × 10−3 1.00

9 EFNA5 5 289,359 13 0.0080 0.00193 3.28 × 10−5 1.00

10 ARGLU1 13 23,924 5 0.0233 0.0234 4.17 × 10−3 1.00

11 DHX32 10 44,138 6 0.0236 0.0168 1.00 1.00
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Both this previous study and ours attempted to dis-
cover mutational signatures in a dataset of only breast
cancers, with the aim of increasing sensitivity to rare sig-
natures which may be present in only a fraction of
breast tumors. Another strategy is to discover signatures
in a large pan-cancer dataset; this has the advantage of
greater accuracy in deciphering signatures if they are
present across cancers. Accordingly, we also used a set
of 10 signatures that we obtained using SparseSignatures
on a pan-cancer dataset of 2827 tumors [21], and fitted
them to the dataset of 560 breast tumors (Add-
itional file 15: Table S10).
There are two major hypotheses that explain the

high risk of cancer in BRCA1/2 mutation carriers;
first, homologous repair deficiency leading to elevated
and distinct structural variation, and second, cellular
dedifferentiation leading to rapid cell division and ac-
cumulation of mutations through normal mutagenic
processes. If the increased number of mutations in
BRCA1/2-mutated tumors was a function of more cell
divisions, we would expect this to be explained by
higher exposure to the background signature. In fact,
we do see higher exposure to the background signa-
ture in these tumors, which indicates that they have
passed through more cell divisions. However, we also
see more mutations attributed to other mutagenic
processes, particularly Signature 5 (APOBEC dysregu-
lation leading to C > G mutations) and Signature 8,
whose etiology is unknown. This indicates that more
cell division may not be the only factor contributing
to the higher mutational burden of BRCA1/2-mutated
tumors, and that other mutagenic processes are also
elevated in these tumors.
Although BRCA1/2-mutated tumors have a higher ex-

posure to the background signature, they do not have a
higher exposure to Signature 1, which represents de-
amination of methylated cytosines at CpG sites. Under
conditions of constant DNA methylation, we would ex-
pect the exposure values for these two signatures to be
proportional to each other. The disproportionately low
contribution of Signature 1 to BRCA1/2-mutated tumors
suggests a global reduction in methylation levels, which
is confirmed by an analysis of TCGA data for BRCA1-
mutated tumors. If true, the reduced methylation could
cause dysregulation of gene expression and altered bind-
ing of gene regulatory proteins. An altered methylation
state is also indicative of tumor dedifferentiation, and
combined with the indication that these tumors have
undergone more cell divisions, further supports the cel-
lular dedifferentiation hypothesis.
It is notable that BRCA1/2-mutated mutated tumors

do not appear to possess any unique mutational signa-
tures, suggesting an absence of unique point mutational
processes that arise from the BRCA gene mutations.

Even Signature 8, which is elevated in BRCA1/2-mutated
tumors, also has a high contribution to triple-negative
tumors in general. Instead, BRCA1/2-mutated tumors
are distinct from all classes of sporadic tumors, includ-
ing triple-negative tumors, in terms of structural vari-
ation. BRCA1/2-mutated tumors have a large number of
indels and structural variants, and also present a clearly
distinct profile of structural variants. Our analysis con-
firms a previous finding [26] that both BRCA1 and
BRCA2-mutated tumors have an elevated rate of dele-
tions while BRCA1-mutated tumors specifically have a
high rate of tandem duplications. Another previous ana-
lysis [11] sought to identify signatures of structural vari-
ation using the same statistical methods as for point
mutations. This analysis identified two signatures: ‘re-
arrangement signature 3’ consisting of tandem duplica-
tions 1–100 kb, associated with BRCA1 mutations, and
‘rearrangement signature 5’ consisting of deletions 1–100
kb, associated with both BRCA1 and BRCA2 mutations.
Our results are consistent with both of these findings. We
also find here that BRCA1-mutated tumors are associated
with a higher number of interchromosomal translocations
compared to both BRCA2-mutated and sporadic tumors,
which to our knowledge has not been shown before.
The functional relevance of structural variants in

BRCA1/2 mutated tumors is shown by their enrich-
ment in protein-coding genes, particularly genes with
high expression in breast tissue. We identified 11
genes that are enriched for indels and structural vari-
ant breakpoints in BRCA1/2-mutated tumors. 4 of
these genes (PTEN, RB1, TP53 and RUNX1) are
known tumor suppressors and have also been identi-
fied as potential point mutation driver genes [23],
showing that in BRCA1/2-mutated tumors, structural
variants often inactivate the same drivers that are
normally damaged by point mutations in sporadic tu-
mors. Moreover, PTEN, RB1, and TP53 are associated
with poor prognosis when inactivated in breast cancer
[32–34] and are candidates for targeted therapy [35–
37]. This suggests that the prevalence of structural
mutations in these genes may contribute to the ag-
gressive nature and poor prognosis of BRCA-mutated
tumors, and highlights the importance of incorporat-
ing structural variant detection into clinical genetic
testing [38]. The remaining 6 genes are not known to
be enriched for point mutations in breast cancer, and
may therefore represent specific indel/structural vari-
ant driver genes; of these, ETV6 is known to act as a
tumor suppressor in leukemias [39].
The presence of structural variants disrupting tumor

suppressor genes supports the hypothesis that BRCA1/2
tumors may arise due to DNA repair deficiency leading
to structural variation. Thus, our study supports both
hypotheses and suggests that both of these processes
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contribute to development of cancer in BRCA mutation
carriers.

Conclusions
Overall, our study suggests that BRCA1/2-mutated tu-
mors are comparatively more aggressive than sporadic
breast cancers because loss of the BRCA pathway(s)
causes a perfect storm of mutagenic processes and
gene dysregulation: less DNA methylation is consist-
ent with the propensity to deregulate and dedifferenti-
ate, and the resulting larger numbers of cell divisions
cause a greater point mutational burden; other point-
mutagenic processes that may be linked to the tissue
of origin and occur in sporadic breast tumors are also
active (e.g., APOBEC dysregulation); and crucially,
loss of double-strand break repair elevates structural
variation rates such that there is a greater chance that
driver genes that are hard to functionally affect with
point mutations are disrupted at a higher rate than in
sporadic tumors.
Given the relatively low number of observed tu-

mours carrying mutations in BRCA1/2 genes, some of
the statistical analyses performed through the paper
may benefit from future assessments on larger co-
horts. As an example, we do not observe significant
differences in CpG methylation between BRCA2-
mutated tumours vs sporadic ones, but, at the same
time, power analysis reveals reduced statistical power
for this comparison, and we may be led to different
conclusions with larger datasets. The same limitations
affect our analysis of structural variants with 10x
data. Structural variants may play an important role
in characterizing BRCA1/2-mutated tumours and we
advocate that future efforts in this direction may shed
light on the unique features of these tumours.

Methods
Preprocessing data for mutational signature extraction
Point mutations occurring in a genome can be divided into
96 categories based on the base being mutated, the base it
is mutated into and its two flanking bases. We therefore
represent the dataset of 560 patients from Nik-Zainal et al.
[11] as a mutation count matrix M of size 560 × 96, where
element Mi, j is the number of mutations belonging to cat-
egory j in patient i. As discussed in SparseSignatures [21],
we removed 5 patients with less than 1000 total mutations,
giving a final matrix M of size 555 × 96.

Modeling mutational signatures
A mutational signature can be represented by a vector s
of length 96; s = [s1… s96] where each element sj repre-
sents the probability that this mutagenic process gener-
ates a mutation of category j. Since these are
probabilities, they sum to 1.

Alexandrov et al. [18] proposed to represent the muta-
tion count matrix M as follows:

M ≈ αβ;

where αn × K is the exposure matrix (giving the number
of mutations contributed by each signature to each pa-
tient). αij is the exposure for the jth signature in the ith

patient. βK × J is the signature matrix, where each row
represents a signature. βij is the proportion of mutations
in the ith signature that fall into the jth category.
SparseSignatures [21] incorporates a null model based

on mutation rates in the germline. This is the pattern of
mutations that would be expected in the course of nor-
mal cell division, and is denoted by a vector β0 of length,
leading to the following representation:

M ≈ α0β0 þ αβ;

where α0 is a vector of exposures, representing the num-
ber of mutations contributed by the null (‘background’)
signature to each patient.
SparseSignatures also includes two other conceptual im-

provements: [1] a sparsity constraint based on the LASSO
on the matrix β in order to reduce noise and enhance
sparsity and separation of the discovered signatures; and
[2] a bi-cross-validation approach to choose the number
of signatures and avoid overfitting. For details we refer to
the paper describing SparseSignatures [21].

Implementation of SparseSignatures
In our analysis, we repeated the bi-cross-validation pro-
cedure 300 times and we considered values of K ranging
from 3 to 10 and λ ranging from 0.05 to 0.15. In cross-
validation, the configuration with 8 signatures in
addition to the background, and λ = 0.15, gave the lowest
mean squared error on held-out data points. We used
the Bioconductor implementation of SparseSignatures
(version 1.0.2) in R version 3.3.3.

Short read sequencing
Total genomic DNA was extracted from 14 BRCA+
tumor samples from 13 patients (DNA was extracted
from both breasts for one patient) using AllPrep DNA/
RNA Mini Kit (Qiagen, Cat. No 80204). The matched
control DNA was also isolated from blood of the same
patients using Gentra Puregene Blood Kit (Qiagen, Cat.
No 158467). To generate short-fragment DNA libraries,
1 μg of total genomic DNA for each sample was sheared
to 350 bp. The PCR-free libraries were then constructed
from the sheared DNA using Illumina’s TruSeq DNA
PCR-Free Sample Preparation Kit. Each library was se-
quenced with one lane of 2x150bp Illumina HiSeqX se-
quencing run to 40x genomic coverage.
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10X genomics sequencing
We selected 6 BRCA1/2-mutated tumor samples and 12
sporadic triple-negative tumor samples for 10X genomic
sequencing. The long genomic DNA was isolated from 5
to 10 mg tumor core using Gentra Puregene Tissue Kit
following the manufacturer’s instructions (Qiagen, Cat.
No 158667). Briefly, the small tumor tissue was ground
in liquid nitrogen, lysed in Cell Lysis Solution and Pro-
teinase K, and RNA was digested with RNase A. Protein
was pelleted and removed by the addition of Protein
Precipitation Solution followed by centrifugation. Gen-
omic DNA was precipitated with isopropanol and resus-
pended in buffer EB. 1.2 ng DNA molecules of long
fragment were partitioned and barcoded using 10X Gen-
omics Chromium. Each partition had a unique barcode.
The barcoded DNA fragments were produced in parallel
through emulsion isothermal amplification such that all
fragments generated within a partition shared the same
barcode. The resulting DNA fragments (Post GEM
DNA) from all partitions of the same sample were
pooled and recovered. Libraries were constructed follow-
ing the manufacturer’s protocol through End Repairing,
A-tailing, Adaptor Ligation and PCR Amplification.
Each library was then sequenced on one lane with a
paired-end 150 bp run using the Illumina HiSeqX plat-
form to obtain 30x genomic coverage.

Sequencing data analysis
BWA [40] v0.7.12 was used to align short-read sequen-
cing data to the human genome. The Long Ranger v1.3
software was used to align 10X genomics data.

Structural variant calling
BAM files were generated as described above, and for the
publicly available data, we downloaded BAM files from
the ICGC data portal (https://dcc.icgc.org). We ran
SvABA on all BAM files using the default parameters [18].
Variants with length > =50 bp, as well as interchromo-

somal translocations, were defined as Structural Variants
(SVs) while smaller variants were defined as indels.
High-confidence SVs and indels were obtained by select-
ing variants with [1] both breakpoints in chromosomes
1–22 or X [2] 0 supporting reads in the matched normal
sample [3] > = 10 supporting reads in the tumor sample,
at least 2 of which are split reads in the case of SVs [4]
QUAL > = 30 and MAPQ of supporting reads > = 30 [5]
neither breakpoint in a gap region [6] Both junctions as-
sembled. We also removed variants that were found in
more than one tumor sample or unmatched normal
sample, as well as variants found in DGV [41].
For structural variant detection from 10X genomics

prepared samples we used GROC-SVs [30] with de-
fault settings.

Copy number calling
We used Control-FREEC [27] to call genome-wide copy
number for the samples in our cohort. We used the de-
fault parameters for the tool.

Statistical tests
Numbers of point mutations and structural variants
in various groups of samples were compared using
the Wilcoxon test. Enrichment of breakpoints in
functional regions of the genome was tested using a
poisson test, with the null model being that break-
points are distributed uniformly across the genome
(excluding gap regions). To calculate enrichment of
indels/SV breakpoints in 10-Mb genomic bins, all the
indels and SVs discovered in 46 BRCA-deficient sam-
ples were combined and the density of breakpoints
across the genome (excluding gap regions) was calcu-
lated as 7.36 × 10− 6/bp. The genome was divided into
574 10-Mb bins overlapping by 5Mb each. Bins with
> 25% overlap with gap regions were removed, leaving
516 bins. For each bin, a p-value for enrichment of
breakpoints was calculated using a poisson test and
bins with a Bonferroni-corrected p-value less than
0.05 were selected. The same procedure was carried
out using gene bodies instead of genomic bins to
identify genes enriched for breakpoints.

External data
DNA methylation data, along with clinical data for
breast tumor and normal samples, were obtained from
The Cancer Genome Atlas. Methylation was measured
using the Infinium Human Methylation 450 K BeadChip
Array from Illumina. The extent of cytosine methylation
was represented by a beta value ranging from 0 (fully
unmethylated) to 1 (fully methylated), for 482,421 CpG
and 3081 CpA sites across the genome. Somatic BRCA1
and BRCA2 mutation calls for the same samples were
downloaded from cBioPortal (www.cbioportal.org).
Germline BRCA1 and BRCA2 mutation calls were ob-
tained with permission from TCGA.
The hg19 human genome was used for all analyses. Po-

sitions of genes, exons, open chromatin regions and gap
regions were obtained from the UCSC genome browser.
Positions of TAD boundaries in MCF-10a cell lines were
obtained from Barutcu et al. [42]. Lists of oncogenes and
tumor suppressor genes were obtained from the Cancer
Gene Census (https://cancer.sanger.ac.uk/census).
Data on replication timing was obtained from Chen et

al. [43]. Genomic regions were divided into early-
replicating, mid-replicating and late-replicating categor-
ies such that a third of the genome for which data was
provided was included in each category.
Expression levels in normal human breast tissue was

obtained from GTex [29].
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