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Identification and validation of signal 
recognition particle 14 as a prognostic 
biomarker predicting overall survival in patients 
with acute myeloid leukemia
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Abstract 

Background:  This study aimed to determine and verify the prognostic value and potential functional mechanism 
of signal recognition particle 14 (SRP14) in acute myeloid leukemia (AML) using a genome-wide expression profile 
dataset.

Methods:  We obtained an AML genome-wide expression profile dataset and clinical prognostic data from The Can-
cer Genome Atlas (TCGA) and GSE12417 databases, and explored the prognostic value and functional mechanism of 
SRP14 in AML using survival analysis and various online tools.

Results:  Survival analysis showed that AML patients with high SRP14 expression had poorer overall survival than 
patients with low SRP14 expression. Time-dependent receiver operating characteristic curves indicated that SRP14 
had good accuracy for predicting the prognosis in patients with AML. Genome-wide co-expression analysis sug-
gested that SRP14 may play a role in AML by participating in the regulation of biological processes and signaling 
pathways, such as cell cycle, cell adhesion, mitogen-activated protein kinase, tumor necrosis factor, T cell receptor, 
DNA damage response, and nuclear factor-kappa B (NF-κB) signaling. Gene set enrichment analysis indicated that 
SRP14 was significantly enriched in biological processes and signaling pathways including regulation of hematopoi-
etic progenitor cell differentiation and stem cell differentiation, intrinsic apoptotic signaling pathway by p53 class 
mediator, interleukin-1, T cell mediated cytotoxicity, and NF-κB-inducing kinase/NF-κB signaling. Using the TCGA AML 
dataset, we also identified four drugs (phenazone, benzydamine, cinnarizine, antazoline) that may serve as SRP14-
targeted drugs in AML.

Conclusion:  The current results revealed that high SRP14 expression was significantly related to a poor prognosis 
and may serve as a prognostic biomarker in patients with AML.
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Background
Acute myeloid leukemia (AML) comprises a heteroge-
neous group of diseases characterized by the uncon-
trolled proliferation of myeloid precursor cells, which 
gradually replaces normal bone marrow hematopoie-
sis [1]. The genetic changes in the tumor clones lead 
to a cascade of molecular events, which in turn cause 
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abnormal proliferation and differentiation of malig-
nant cells and inhibit normal hematopoiesis. The iden-
tification of cytogenetic changes plays an increasingly 
important role in the diagnosis of AML, and in its 
prognosis prediction and treatment strategy formu-
lation [2]. Gene expression profiling has been widely 
used in AML, and the resulting gene profiles can assist 
in the typing diagnosis and in assessing the prognos-
tic risk and chemotherapeutic drug resistance. These 
applications require high-throughput sequencing to 
screen and identify AML-related biomarkers. The most 
effective approach involves preliminary screening and 
identification of high-throughput sequencing datasets 
based on the Gene Expression Omnibus (GEO) and The 
Cancer Genome Atlas (TCGA) databases. Using GEO 
database retrieval, we found that the GSE12417 cohort 
dataset contained both an AML bone marrow expres-
sion profile dataset and prognostic data. We therefore 
used the GSE12417 and TCGA AML cohorts for fur-
ther investigation. The expression of signal recognition 
particle 14 (SRP14) has previously been reported to be 
closely related to endometrial cancer [3] and to serve as 
a reference gene for AML when combined with other 
genes [4]. However, the prognostic value of SRP14 in 
AML has not been reported. The main purpose of this 
study was to identify and verify the prognostic value 
and potential functional mechanism of SRP14 in AML 
using a genome-wide expression profile dataset.

Methods
Dataset collection and processing
The genome-wide expression profile chip datasets were 
derived from the TCGA LAML (https://​portal.​gdc.​can-
cer.​gov) and GSE12417 Affymetrix Human Genome 
U133A Array cohorts (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/​query/​acc.​cgi?​acc=​GSE12​417), respectively [5, 6]. 
AML patients from TCGA served as a training cohort, 
while GSE12417 patients served as a validation cohort. 
TCGA cohort RNA-seq dataset were normalized using 
edgeR and GSE12417 expression profile chip data were 
normalized using limma [7, 8]. In the case of multi-
ple probes corresponding to one gene in the GSE12417 
cohort, the average value of the probes was taken to 
represent the expression level of this gene. After exclud-
ing patients without prognostic information or RNA 
sequencing data, we included a total of 130 patients with 
AML in the survival analysis, and 160 AML patients from 
the GSE12417 cohort were used for follow-up survival 
analysis. All the data in this study were sourced from 
open access databases. No experiments involving animals 
or humans were conducted and additional ethics com-
mittee approval was therefore not required.

Survival analysis of SRP14 in AML
High and low SRP14 expression groups were defined by a 
cut-off based on the median level of SRP14 expression in 
the cohort. We compared the prognosis of AML patients 
in relation to SRP14 expression levels using Kaplan–
Meier analysis. We also evaluated the accuracy of SRP14 
for AML prognosis prediction using the SurvivalROC 
(https://​cran.r-​proje​ct.​org/​web/​packa​ges/​survi​valROC/​
index.​html) package.

Functional mechanism of SRP14 in AML
We explored the functional mechanism of SRP14 in 
AML by screening SRP14 co-expressed genes for func-
tional enrichment and by gene set enrichment analysis 
(GSEA; http://​softw​are.​broad​insti​tute.​org/​gsea/​index.​
jsp) approaches. Genes co-expressed with SRP14 in 
AML were identified using the cor function and whole 
genome expression profile datasets in the R platform. 
Gene Ontology (GO) terms and Kyoto Encyclopedia of 
Genes and Genomes enrichment were analyzed using the 
Database for Annotation, Visualization, and Integrated 
Discovery v6.8 (DAVID v6.8, https://​david.​ncifc​rf.​gov/​
home.​jsp) tool [9]. The visualized interaction networks of 
SRP14 and its co-expressed genes were generated using 
Cytoscape version 3.6.1 software. GSEA was also used 
for SRP14 functional mechanism mining. The C2 (c2.all.
v7.0.symbols.gmt) and C5 (c5.all.v7.0.symbols.gmt) gene 
sets, from the Explore the Molecular Signatures Database 
(MSigDB, https://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​
index.​jsp), were used as reference sets for GSEA analy-
sis [10]. We considered |normalized enrichment score 
(NES)|> 1, nominal P < 0.05, and a false discovery rate 
(FDR) < 0.25 to be statistically significant.

Targeted drug screening of SRP14 in AML
We screened for SRP14-targeted drugs in AML using 
the Connectivity Map (CMap) online tool for targeted 
drug screening [11]. We defined differentially expressed 
genes (DEGs) according to the criteria |log2 fold change 
(FC)|> 2, P < 0.05, and FDR < 0.05. DEG screening of the 
TCGA and GSE12417 cohorts were carried out using the 
edgeR and limma packages in the R platform, respec-
tively. The chemical structures of the targeting drugs 
were downloaded from PubChem (https://​pubch​em.​ncbi.​
nlm.​nih.​gov), and drug–gene interaction networks were 
generated using STITCH (http://​stitch.​embl.​de/) [12, 13].

Statistical analysis
Multiple testing in GSEA analysis and DEG screening 
were corrected according to the FDR method. Kaplan–
Meier survival curves were compared using log rank 
tests. Hazard ratios (HRs) and 95% confidence interval 
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(CIs) were used to compare the risk ratios of survival 
differences between different subgroups. The ggplot2 
(https://​cran.r-​proje​ct.​org/​web/​packa​ges/​ggplo​t2/​index.​
html) package was used for visualization mapping. Anal-
yses were carried out using R platform version 3.6.2. 
P < 0.05 was considered to be statistically significant.

Results
Survival analysis of SRP14 in AML
Survival analysis showed that AML patients with high 
SRP14 expression had shorter overall survival (OS) 
than patients with low SRP14 expression (log-rank 
P = 0.00024) (Fig. 1a, b). The median survival time (MST) 
in the high-SRP14 expression group was 304 days and the 
MST in the low-SRP14 expression group was 854  days. 
High SRP14 expression was associated with a significantly 
higher risk of death (HR = 2.288, 95%CI = 1.448–3.614). 
The time-dependent receiver operating characteristic 
(ROC) survival curve indicated that SRP14 had the high-
est accuracy for prognostic prediction in the TCGA AML 
cohort at 1 year, with an area under the curve (AUC) of 
0.737 (Fig.  1c), while its accuracy for predicting 5-year 

survival was 0.634 (Fig. 1c). Similar results were observed 
in the GSE12417 cohort, AML patients with high SRP14 
expression had a shorter OS than patients with low 
SRP14 expression (log-rank P = 0.03) (Fig.  2a, b). The 
MST in the high-SRP14 expression group was 256 days, 
compared with 442  days in the low-SRP14 group. AML 
patients with high SRP14 expression had a higher risk 
of death (HR = 1.536, 95%CI = 1.038–2.273). The time-
dependent ROC survival curve indicated that SRP14 had 
the highest accuracy for prognostic prediction in AML 
patients in the GSE12417 cohort at 3 years, with an AUC 
of 0.648 (Fig. 2c), while its accuracy for predicting 5-year 
survival was 0.632 (Fig. 2c).

Screening and functional enrichment of SRP14 
co‑expressed genes
Using the genome-wide expression profiling dataset, we 
screened 955 SRP14 co-expressed genes in the TCGA 
AML cohort, including 724 positively correlated and 231 
negatively correlated genes (Fig.  3a, b, Additional file  2: 
Table  S1). We also screened a total of 776 SRP14 co-
expressed genes in the GSE12417 AML cohort, including 

Fig. 1  Prognostic analysis of SRP14 in the TCGA cohort. a Scatterplot of SRP14 expression and patient survival time distribution; b Kaplan–Meier 
survival curve of SRP14; c time-dependent ROC curve of SRP14

Fig. 2  Prognostic analysis of SRP14 in the GSE12417 cohort. a Scatterplot of SRP14 expression and patient survival time distribution; b Kaplan–
Meier survival curve of SRP14; c time-dependent ROC curve of SRP14
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412 positively correlated and 364 negatively correlated 
genes (Fig. 4a, b, Additional file 2: Table S2). Functional 
enrichment analysis suggested that SRP14 and its co-
expressed genes screened in the TCGA AML cohort 
could be significantly involved in biological processes 
including mitogen-activate protein kinase (MAPK) cas-
cade, cell–cell adhesion, cadherin binding involved in 
cell–cell adhesion, DNA damage response, detection 
of DNA damage, stress-activated MAPK cascade, p38/
MAPK cascade, G2/M transition of mitotic cell cycle and 
nucleotide-excision repair, and DNA damage recognition 
(Fig.  5, Additional file  2: Table  S3), as well as in signal-
ing pathways including NF-κB-inducing kinase (NIK)/
nuclear factor-κB (NF-κB) signaling, Wnt, T cell recep-
tor (TCR), fibroblast growth factor receptor (FGFR), 
epidermal growth factor receptor, and tumor necrosis 
factor (TNF)-mediated signaling (Fig. 5, Additional file 2: 
Table  S3). Functional enrichment analysis suggested 
that SRP14 and its co-expressed genes screened in the 
GSE12417 AML cohort could be significantly involved 

in biological processes including cell–cell adhesion, 
immune response, cadherin binding involved in cell–cell 
adhesion, regulation of angiogenesis, G-protein coupled 
receptor binding, regulation of cytokine secretion, posi-
tive regulation of interleukin (IL)-6 production, leuko-
cyte migration, apoptotic process, MAPK binding, cell 
cycle, positive regulation of NF-κB transcription factor 
activity and DNA damage response, and signal trans-
duction by p53 class mediator resulting in cell cycle 
arrest (Fig. 6, Additional file 2: Table S4), and in signaling 
pathways including vascular endothelial growth factor 
receptor, MyD88-dependent toll-like receptor, Toll-like 
receptor (TLR), immune response-inhibiting cell sur-
face receptor, MyD88-independent TLR, apoptotic, 
cell surface receptor, TLR4, TCR, type I interferon, and 
lipopolysaccharide-mediated and interferon-gamma-
mediated signaling (Fig.  6, Additional file  2: Table  S4). 
We identified 44 SRP14 co-expressed genes selected by 
both cohorts (Fig.  7). Functional enrichment analysis 
suggested that these 44 genes were significantly involved 

Fig. 3  Interaction network and distribution map of SRP14 co-expressed genes in the TCGA cohort. a Volcano plot of SRP14 co-expressed genes; b 
interaction network of SRP14 and its co-expressed genes

Fig. 4  Interaction network and distribution map of SRP14 co-expressed genes in the GSE12417 cohort. a Volcano plot of SRP14 co-expressed 
genes; b interaction network of SRP14 and its co-expressed genes
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in SRP-dependent co-translational protein targeting to 
the membrane, mitochondrial proton-transporting ATP 
synthase complex, ATP synthesis-coupled proton trans-
port, cytochrome-c oxidase activity, extracellular matrix, 
ATPase activity, mRNA splicing, via spliceosome, focal 

adhesion, mitochondrial respiratory chain complex IV, 
mitochondrial electron transport, cytochrome c to oxy-
gen, oxidative phosphorylation, catalytic step 2 spli-
ceosome, nuclear-transcribed mRNA catabolic process, 
nonsense-mediated decay, methylosome, and erythro-
cyte homeostasis (Additional file 2: Table S5).

GSEA
We further explored the functional mechanisms of 
SRP14 in AML using GSEA. Using the C5 reference gene 
set in TCGA, we found that high SRP14 expression phe-
notype was significantly involved in pathways including 
hematopoietic stem cell differentiation, noncanonical 
Wnt signaling, TNF-mediated signaling, regulation of 
hematopoietic progenitor cell differentiation, IL-1-me-
diated signaling, regulation of stem cell differentiation, 
response to TNF, NIK/NF-κB signaling, intrinsic apop-
totic signaling by p53 class mediator, TCR signaling, cell 
cycle G2/M phase transition, nucleotide excision repair, 

Fig. 5  Functional enrichment analysis results of SRP14 and its co-expressed genes in TCGA cohort

Fig. 6  Functional enrichment analysis results of SRP14 and its co-expressed genes in GSE12417 cohort

Fig. 7  Venn plot of the intersection of SRP14 co-expressed genes 
between the TCGA and GSE12417 cohorts. a Venn plot of the 
intersection of SRP14 negative co-expressed genes; b Venn plot of 
the intersection of SRP14 positive co-expressed genes
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regulation of autophagy of mitochondria, regulation of 
cell cycle phase transition, T cell mediated cytotoxic-
ity, and myeloid cell apoptotic (Fig.  8a–p, Additional 
file  2: Table  S6). Using the C2 reference gene set, we 
found significant differences in the following signaling 
pathways between the high- and low-SRP14 expressing 

phenotypes: TNF receptor-2 non-canonical NF-kB path-
way, β-catenin-independent Wnt signaling, regulation 
of mitotic cell cycle, cyclin A/cyclin-dependent kinase 
2-associated events at S phase entry, regulation of apop-
tosis, MAPK6/MAPK4 signaling, stabilization of p53, 
metastasis-up, signaling by the B cell receptor signaling 

Fig. 8  GSEA analysis between low and high SRP14 phenotypes in the TCGA cohort using the C5 reference gene set. a Hematopoietic stem 
cell differentiation; b non-canonical Wnt signaling pathway; c TNF-mediated signaling pathway; d regulation of hematopoietic progenitor cell 
differentiation; e IL-1-mediated signaling pathway; f regulation of stem cell differentiation; g response to TNF; h NIK/NF-κB signaling; i intrinsic 
apoptotic signaling pathway by p53 class mediator; j TCR signaling pathway; k cell cycle G2/M phase transition; l nucleotide excision repair; m 
regulation of autophagy of mitochondria; n regulation of cell cycle phase transition; o T cell-mediated cytotoxicity and myeloid cell apoptotic 
process; and p myeloid cell apoptotic process
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(BCR), downstream TCR signaling, TCR signaling, 
mTOR signaling, autophagy, KRAS oncogenic signature, 
MAPK family signaling cascades and DNA replication 
(Fig. 9a–p, Additional file 2: Table S7).

We verified the above findings using the GSE12417 
dataset as a validation cohort. Using the C5 reference 

gene set, regulation of the following biological pro-
cesses differed significantly between the high and low 
SRP14 expression phenotypes: hematopoietic pro-
genitor cell differentiation, regulation of acid receptor 
signaling pathway, regulation of stem cell differentia-
tion, hematopoietic stem cell differentiation, intrinsic 

Fig. 9  GSEA analysis between low and high SRP14 phenotypes in TCGA cohort using the C2 reference gene set. a TNFR2 noncanonical NF-kB 
pathway; b β-catenin-independent Wnt signaling; c regulation of mitotic cell cycle; d cyclin A/cyclin-dependent kinase 2-associated events at S 
phase entry; e regulation of apoptosis; f MAPK6/MAPK4 signaling; g stabilization of p53; h metastasis-up; i B cell receptor signaling; j downstream 
TCR signaling; k TCR signaling; l mTOR signaling; m autophagy; n KRAS oncogenic signature; o MAPK family signaling cascades; and p DNA 
replication
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apoptotic signaling pathway by p53 class mediator, 
regulation of T cell mediated cytotoxicity, integrin-
mediated signaling, regulation of T cell-mediated 
immunity, leukocyte-mediated cytotoxicity, regulation 
of B cell-mediated immunity, phosphatidylinositol 3 
kinase (PI3K) binding, T cell-mediated immunity, Erk1 

and Erk2 cascade, regulation of leukocyte apoptotic 
process, regulation of NIK/NF-κB signaling, and IL-1 
production (Fig.  10a–p, Additional file  2: Table  S8). 
GSEA results using the C5 reference gene set identified 
signaling by FGFR in disease, signaling by Robo recep-
tors, signaling by FGFR2 in disease, FGFR2 alternative 

Fig. 10  GSEA analysis between low and high SRP14 phenotypes in GSE12417 cohort using the C5 reference gene set. a Regulation of 
hematopoietic progenitor cell differentiation; b regulation of acid receptor signaling pathway; c regulation of stem cell differentiation; d 
hematopoietic stem cell differentiation; e intrinsic apoptotic signaling pathway by p53 class mediator; f regulation of T cell mediated cytotoxicity; g 
integrin-mediated signaling pathway; h regulation of T cell-mediated immunity; i leukocyte-mediated cytotoxicity; j regulation of B cell-mediated 
immunity; k phosphatidylinositol 3 kinase binding; l T cell-mediated immunity; m Erk1 and Erk2 cascade; n regulation of leukocyte apoptotic 
process; o regulation of NIK/NF-κB signaling; and p IL-1 production
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splicing, FGFR2 mutant receptor activation, and tumor 
differentiated well vs poorly up (Fig. 11A-F, Additional 
file 2: Table S9).

Targeted drug screening of SRP14 in AML
Using the AML cohort in the TCGA genome-wide data-
set, we identified170 DEGs between the high and low 
SRP14 expression groups (Additional file  2: Table  S10, 
Fig. 12, Additional file 1: Figure S1). CMap was then used 
for targeted drug screening, and four drugs were identi-
fied as potential SRP14-targeted drugs for AML. The 
chemical structures and CMap results for the four drugs 
are summarized in Fig.  13a–e. The subsequent drug–
gene interaction networks showed that cinnarizine could 
participate in the targeted therapy of SRP14 in AML by 
regulating hyperpolarization-activated cyclic nucleotide 
gated potassium channel 1 (HCN1), potassium voltage-
gated channel subfamily H member 6 (KCNH6), and 
solute carrier family 6 member 2 (SLC6A2), all of which 
genes were differentially expressed between the two 
SRP14 expression phenotypes. (Fig. 14). Phenazone could 
act by regulating the DEG for gamma-butyrobetaine 
hydroxylase 1 (BBOX1). We aimed to verify these results 
found in TCGA cohort using the GSE12417 validation 

cohort. Unfortunately, however, no DEGs meeting our 
criteria were detected in the GSE12417 cohort (Addi-
tional file 2: Table S11).

Fig. 11  GSEA analysis between low and high SRP14 phenotypes in GSE12417 cohort using the C2 reference gene set. a FGFR in disease; b 
signaling by ROBO receptors; c signaling by FGFR2 in disease; d FGFR2 alternative splicing; e FGFR2 mutant receptor activation; and f Tumor 
differentiated well vs poorly up

Fig. 12  Volcano plot of DEGs between low and high SRP14 
phenotypes in TCGA cohort
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Discussion
A search of the literature found no previous studies 
reporting the role of SRP14 expression in the progno-
sis of AML. We therefore explored the prognostic value 
of SRP14 in AML using two independent cohorts, and 
screened for and identified the biological functional 
mechanisms of SRP14 in AML by bioinformatics analy-
sis of a genome-wide expression profile dataset. Using 
genome-wide co-expression gene screening, we deter-
mined a large number of biological processes and sign-
aling pathways that were enriched through SRP14 and 
its co-expression genes, and which might be involved in 
the mechanisms of SRP14 functions in AML. Cell cycle 

and adhesion are the most common biological processes 
in tumor cells. Cell adhesion has been closely related to 
tumor metastasis and drug resistance, while the cell cycle 
is closely related to malignant phenotypes of tumor pro-
liferation [14–16]. Cellular adhesion molecules also affect 
the prognosis of AML and can be used as potential tar-
gets for AML-targeted therapy [17]. Abou et  al. also 
concluded that cell cycle inhibitors could be used as a 
complementary treatment for AML-targeted therapy and 
chemotherapy, to help improve the treatment outcomes 
of AML patients [18]. Regarding the MAPK signaling 
pathway in AML, mesenchymal stromal cells can regulate 
the apoptosis repressor with caspase recruitment domain 

Fig. 13  CMap analysis results for low and high SRP14 phenotypes in TCGA cohort. a phenazone; b benzydamine; c cinnarizine; d antazoline; and e 
CMap analysis results
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in AML by activating MAPK and PI3K signaling path-
ways, thereby affecting drug resistance and prognosis, 
and can thus be used as a potential therapeutic target for 
AML [19]. Dong et al. suggested that TNF-α expression 
was significantly increased in AML patients, and ROC 
curve analysis indicated that it could be used to differen-
tiate between AML and nonleukemia samples [20]. TCR 
is widely used in the treatment of hematologic malignan-
cies. T cells can be designed to express tumor-associated 
antigens derived from intracellular or cell surface pro-
teins for the treatment of hematologic malignancies [21]. 
TCR gene therapy targeting Wilms’ tumor antigen 1 pre-
vented the recurrence of AML after transplantation [22]. 
Mahmud et  al. investigated the molecular mechanisms 
of childhood AML by peptide microarray and found 
that DNA damage response and repair were involved in 
its recurrence [23]. DNA damage and changes in DNA 
damage response are important characteristics of genetic 
instability closely related to the pathogenesis of AML. In 
addition, DNA damage response kinase can be a poten-
tial therapeutic target for AML [24, 25]. NF-κB path-
ways, as an important tumor-related mechanism, play 
a key role in many cellular functions, including cancer 
cell apoptosis, proliferation, angiogenesis, and immune-
related functions [26], and can also be used as a thera-
peutic target for AML [26, 27].

NF-κB and TCR were also significantly enriched 
according to the GSEA enrichment results. The p53 

gene is critical for hematopoietic stem cell function 
and its dysfunction can affect the evolution, biological 
phenotype, treatment response, and prognosis of AML 
[28–31]. Evaluation of the function of p53 protein is 
conducive to accurate p53-based targeted therapy for 
AML [28]. Hayashi et al. found that drug-induced acti-
vation of the p53 gene in AML and the combination of 
immunosuppressive programmed death-ligand 1 could 
have a significant anti-AML effect [32]. p53 gene muta-
tions in AML patients often predict a poor prognosis, 
and are associated with a low chemotherapy-response 
rate and long-term survival after allogeneic hematopoi-
etic stem cell transplantation [33–35]. Folkerts et  al. 
developed a treatment strategy for AML patients with 
wild-type p53 by targeting autophagy- related genes 
[36]. Carey et al. found that IL-1 promoted the growth 
of myeloid progenitor cells in AML while inhibiting the 
proliferation of normal progenitor cells [37]. Hemat-
opoietic progenitor cell differentiation abnormalities 
can lead to the occurrence of AML. In this study, we 
found differences in genes related to hematopoietic 
progenitor cell differentiation between AML patients 
with different SRP14 expression phenotypes, suggesting 
that SRP14 may be related to the pathogenesis of AML. 
We also identified enrichment of numerous signaling 
pathways and biological processes closely related to 
cancers through GSEA in both cohorts. However, these 
results need further verification.

Fig. 14  Drug–gene interaction networks generated from STITCH
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Previous studies suggested that phenazone could be 
used as a marker of liver metabolic function and to eval-
uate the effects of chemotherapy in AML patients [38], 
and as a biomarker of liver metabolic efficiency in breast 
cancer [39]. Benzydamine has previously been reported 
to have a therapeutic role in patients with oral mucositis 
undergoing radiotherapy [40–44], while cinnarizine has 
been widely reported to be closely related to tumors. Fag-
one et al. identified cinnarizine as a potential therapeutic 
drug for metastatic uveal melanoma using drug-predic-
tion tools based on whole-genome datasets [45], while 
Astin et  al. screened cinnarizine in zebrafish models as 
a potential new inhibitor for cancer lymphangiogenesis 
and lymphatic-mediated cancer metastasis [46]. Cinnar-
izine also affected the function of radiation and could 
be used as a radiosensitizer for murine tumors [47, 48]. 
Allen et al. found that cinnarizine inhibited mammalian 
target of rapamycin (mTOR) protein and mTOR com-
plex 1 for anti-tumor therapy [49]. Deka et  al. screened 
and identified cinnarizine as an anti-cancer drug for 
breast cancer using an integrating virtual screening bio-
chemical experimental approach [50]. In the treatment 
of hematologic diseases, Schmeel et al. showed that cin-
narizine selectively induced apoptosis of myeloma and 
lymphoma cells by inhibiting Wnt signaling, but had no 
effect on normal cells [51]. However, we were unable to 
find any studies reporting on the function of antazoline 
in cancers.

This study had some limitations. First, we failed to 
screen eligible DEGs in the GSE12417 cohort for subse-
quent CMap analysis, and the screened drugs thus need 
to be verified in future studies. Second, the sample size 
was limited, and the prognostic value of SRP14 in AML 
needs to be verified in future large, multicenter studies. 
Third, the potential biological functions and mechanisms 
of SRP14 in AML identified in this study remain to be 
further validated by in vitro and in vivo experiments.

Conclusions
The results of the present study showed that high SRP14 
expression was significantly related to a poor prognosis 
and may serve as a prognostic biomarker in patients with 
AML. Genome-wide co-expression analysis suggested 
that SRP14 might play a role in AML by participating in 
the regulation of biological processes and signaling path-
ways such as cell cycle, cell adhesion, MAPK, TNF, TCR, 
DNA damage response, and NF-κB signaling. GSEA indi-
cated that SRP14 was significantly enriched in biological 
processes and signaling pathways, such as regulation of 
hematopoietic progenitor cell differentiation and stem 
cell differentiation, intrinsic apoptotic signaling by p53 
class mediator, IL-1, T cell-mediated cytotoxicity, and 
NIK/NF-κB signaling. Using the TCGA AML dataset, we 

also identified phenazone, benzydamine, cinnarizine, and 
antazoline as potential SRP-targeted therapeutic drugs in 
AML. However, the results of this study need to be veri-
fied by further in vitro and in vivo experiments.
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