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Lung disease network reveals impact 
of comorbidity on SARS‑CoV‑2 infection 
and opportunities of drug repurposing
Asim Bikas Das*   

Abstract 

Background:  Higher mortality of COVID-19 patients with lung disease is a formidable challenge for the health care 
system. Genetic association between COVID-19 and various lung disorders must be understood to comprehend the 
molecular basis of comorbidity and accelerate drug development.

Methods:  Lungs tissue-specific neighborhood network of human targets of SARS-CoV-2 was constructed. This net-
work was integrated with lung diseases to build a disease–gene and disease-disease association network. Network-
based toolset was used to identify the overlapping disease modules and drug targets. The functional protein modules 
were identified using community detection algorithms and biological processes, and pathway enrichment analysis.

Results:  In total, 141 lung diseases were linked to a neighborhood network of SARS-CoV-2 targets, and 59 lung 
diseases were found to be topologically overlapped with the COVID-19 module. Topological overlap with various lung 
disorders allows repurposing of drugs used for these disorders to hit the closely associated COVID-19 module. Further 
analysis showed that functional protein–protein interaction modules in the lungs, substantially hijacked by SARS-
CoV-2, are connected to several lung disorders. FDA-approved targets in the hijacked protein modules were identified 
and that can be hit by exiting drugs to rescue these modules from virus possession.

Conclusion:  Lung diseases are clustered with COVID-19 in the same network vicinity, indicating the potential threat 
for patients with respiratory diseases after SARS-CoV-2 infection. Pathobiological similarities between lung diseases 
and COVID-19 and clinical evidence suggest that shared molecular features are the probable reason for comorbidity. 
Network-based drug repurposing approaches can be applied to improve the clinical conditions of COVID-19 patients.
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Background
The novel coronavirus disease 2019 (COVID-19) cases, 
caused by SARS-CoV-2, crossed 189,000,000 globally as 
of July 16, 2021. Data show that the most affected groups 
had two or more pre-existing medical conditions such as 
hypertension, diabetes, and metabolic, cardiovascular, 
and digestive disorders [1–3]. Moreover, comorbidity (or 

existence of multiple disorders) in COVID-19 patients is 
associated with a higher risk of severe illness, poor prog-
nosis, and high mortality [4]. During viral infection, a 
virus hijacks the host cell machinery for its replication. 
Virus–host interactions perturb highly organized host 
cellular networks and reconstruct different networks 
favouring virus replication. The topology of molecular 
interactions is altered in a disease. Hence, the interac-
tion of SARS-CoV-2 with healthy human cells is different 
from that with disease cells, which thus leads to vari-
ous impacts on humans after SARS-CoV-2infection. 
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Human diseases are connected via defects in common 
genes [5, 6]. Moreover, the similarity in disease pheno-
types often indicates underlying genetic connections. 
Therefore, pre-existing medical conditions can facilitate 
the development of another disease if they share the 
same or functionally related genes [7, 8]. SARS-CoV-2 
has been associated with respiratory tract infections, 
and in some cases, it severely damages lungs in adult 
patients. Here, we investigated the underlying molecu-
lar link between COVID-19 and lung diseases to under-
stand the basis of comorbidity. In the present study, we 
have considered a disease in the lung or symptoms in 
the lung or diseases in other tissues or organs affecting 
the lungs as a "lung disease." Gordon et  al. [9] recently 
identified 26 of the 29 SARS-CoV-2 proteins that bind 
to 332 human proteins and hijack the host translational 
machinery. Here, we constructed a tissue (lungs)-spe-
cific neighborhood network of the 332 human targets of 
SARS-CoV-2. This network was integrated with lung dis-
eases to build a disease–gene network of the lung. Sub-
sequently, we constructed a lung disease network, which 
also includes COVID-19. In total, 141lung diseases were 
found to be associated with COVID-19. Among them, 
49 were directly linked to COVID-19, apparently justify-
ing the characteristics of a complex disorder. Further, we 
observed that 59 lung diseases topologically overlapped 
with COVID-19, indicating a higher risk of comorbid-
ity. This observation also presents the opportunity to 
repurpose drugs used to treat lung diseases because these 
drugs can simultaneously hit a lung disease and closely 
associated COVID-19 module. Moreover, we observed 
that genes in overlapping lung diseases and COVID-
19 are coexpressed and involved in a similar molecular 
function and biological processes, representing patho-
biological similarities between various lung disorders and 
COVID-19.

Next, we identified functional protein modules that are 
maximally perturbed by SARS-CoV-2 and involved in 
RNA processing, export, and protein synthesis machin-
ery of the cell. Moreover, these modules are associated 
with various lung disorders, indicating the hotspots for 
comorbidity. Hence, we employed a network-based prox-
imity approach [10] and explored the DrugBank database 
[11] to identified approved targets in these protein mod-
ules that can be hit by existing drugs and rescued from 
virus possession. Studies have reported that a network-
based toolset can be effectively used to identify drugs for 
COVID-19 treatment [12, 13].We identified 56 druggable 
human proteins in proximity to the COVID-19 disease 
module and found that these proteins can be targeted 
by FDA-approved or investigational drugs. SARS-CoV-2 
has a very high mutation rate, which allows it to develop 
drug resistance [14]. Therefore, identifying and targeting 

host factors, rather than targeting viral proteins, will be 
an enduring approach. In summary, this work presents 
the risk of different lung disorders at COVID-19 onset 
and drug repurposing opportunities to treat patients with 
lung disorders.

Materials and methods
Construction of a lung‑specific PPI network of SARS‑CoV‑2 
targets
Human lung tissue-specific interactome data were 
retrieved from the TissueNet v.2 database. TissueNet 
v.2 synergizes between large-scale data of human PPIs 
and tissue-specific expression profiles to generate tissue-
specific PPIs. This database also consolidates PPI data 
from four major databases, BioGrid, IntAct, MINT, and 
DIP, and integrates resulting PPIs with RNA-sequencing 
profiles of the Genotype-Tissue Expression consortium 
(GTEx). We downloaded 168,296 lung-specific interac-
tions from TissueNet v.2 to construct a SARS-CoV-2 tar-
get interactome. Next, we obtained a list of 332 human 
proteins targeted by SARS-CoV-2, which were identi-
fied through affinity-purification mass spectrometry [9]. 
Using these 332 proteins, we built a subnetwork from 
168,296 lung-specific interactions, SARS-CoV-2 tar-
get network (STN). Nine SARS-CoV-2 targets (AATF, 
CEP43, CISD3, MTARC1, NUP62, SRP19, THTPA, 
TIMM10B, and TRIM59) showed no interaction in the 
lung.

Construction of a lung‑specific disease–gene and disease–
disease network
The disease-gene association data in the lungs were 
retrieved from the Gene ORGANizer [15], which is a 
phenotype-based curated database that links human 
genes to the body parts they affect. Phenotypes clas-
sified by Human Phenotype Ontology (HPO) were 
considered with certain modifications. After disease-
gene association data were pre-processed, disease–
gene pairs that were not included but matched with 
the HPO phenotype were manually added. Aspirin-
induced asthma and asthma were both considered as 
asthma. Pulmonary emphysema, sarcoidosis, and sili-
cosis and their associated genes were also added to the 
list. Finally, 6040 disease–gene pairs and 184 various 
lung diseases were listed. If a gene is associated with a 
known lung disorder, then the gene and lung disorder 
were connected via links. Subsequently, nodes in the 
STN were linked to the lung disorder to construct the 
disease–gene association map of the network. Of the 
5050 nodes of the STN, 618 were linked to 145 lung 
diseases. Of the 618 genes, 36 were the direct targets 
of SARS-CoV-2 and were connected to COVID-19 as 
a new disease–gene pair. Finally, a lung disease–gene 
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network (LDGN) consisting of 1815 disease–gene 
pairs, including that for COVID-19, was constructed. 
The disease–disease association network (DDAN) was 
derived from the lung disease–gene association net-
work; two diseases were connected if they shared one 
common gene. The disgenet2r package [16] was used to 
study the association between disease classes and func-
tional protein modules.

Network‑based separation measure between diseases
To identify the overlapping disease modules, a "separa-
tion" measure, Sab was calculated between COVID-19 
(a) and lung disease (b) using the following formula:

Sab compares the shortest distances between pro-
teins connected to each disease,< daa > and < dbb > , 
to those < dab > between a–b protein pairs. Positive 
Sab shows that the two disease modules are separated 
on the lung interactome, whereas a negative value indi-
cates overlapping modules. The statistical significance 
of module overlap between COVID-19 and the lung 
disease was evaluated using the full randomization 
model. The same number of proteins associated with 
two diseases was randomly sampled 1000 times, and 
the corresponding Sran

ab
 between the two gene sets was 

calculated. Next, z-score was calculated as follows:

where m and σ indicates the mean value and standard 
deviation of 1000 Sran

ab
 . Here, z-score < 0 indicates that 

the two diseases are closely overlapped than expected by 
chance [17].

Community detection
We applied fast-greedy, walktrap, louvain, leading 
eigenvector, and spinglass on the STN as an undirected, 
unweighted network. These community detection algo-
rithms segregate the nodes into higher-density modules 
and optimize an objective function, that is, modular-
ity. Communities separated by spinglass were selected 
for subsequent analysis based on the modularity score 
and community size. Spinglass uses a random number 
generator to find the communities. Therefore, we ran 
Spinglass 10 times with different seed values. We com-
pared the rand statistics between each run, and results 

Sab = < dab > −
< daa > − < dbb >

2

z− score =
Sab −m

σ

showed that the structures of these communities are 
highly similar (> 0.7) [18, 19].

Network‑based proximity measure
Network proximity between drug targets (A) and SARS-
CoV-2 targets in the host (B) was measured using the 
closest method (dc).

where d(a, b) represents the shortest distance between 
genes a and b in the lung interactome. The statistical sig-
nificance of proximity was evaluated using z-score (zc). 
zc was calculated by comparing the observed distance 
to a reference distance distribution. To compute refer-
ence distance distribution, the sets of proteins of size and 
degree similar to those of the drug targets and disease 
proteins were randomly selected for 1000 times from the 
lung interactome. The mean and standard deviation of 
distance distribution was calculated to compute zc [10, 
20].

Process and pathway enrichment analysis and gene 
ontology semantic similarity
Pathway and process enrichment analysis was per-
formed using Metascape [21]. Gene ontology biologi-
cal processes, KEGG Pathway, and Reactome were used 
as ontology sources. GO semantic similarity between 
genes was measured using Wang et al. [22] method with 
the GOSemSim package in R. Considering that two 
genes G1 and G2 are annotated by the GO term sets 
GO1 = [go11, go12, …, go1m] and GO2 = [go21, go22, 
…, go2n], respectively, their semantic similarity score, 
which is determined using Wang’s method, is defined as 
follows:

Correlation analysis
GTEx gene expression datasets of healthy human lung 
tissues were downloaded from the UCSC Xena pro-
ject [23]. log2(RSEM + 1) (RSEM: RNA-Seq by Expecta-
tion Maximization) transformed gene expression data 
(n = 288) were retrieved, and the Pearson correlation 
coefficient was computed to measure coexpression levels 
using the Hmisc package in R.

dc =
1

�A� + �B�

(

∑

a∈A

minb∈Bd(a, b)+
∑

b∈B

minb∈Ad(a, b)

)

Sim(G1,G2)

=

∑

1≤i≤m Sim
(

go1i,GO2

)

+
∑

1≤j≤n Sim
(

go2j,GO1

)

m+ n
.
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Computation of topological parameters
The largest connected component (LCC), dyadicity, and 
Jaccard similarity coefficient were measured using the 
igraph package in R. Dyadicity (D) is the number of same 
label edges divided by the expected number of same label 
edges, and D > 1 indicates higher connectedness between 
the nodes with the same label. The Jaccard similarity 
coefficient of two nodes was calculated as the number of 
common neighbors divided by the number of nodes that 
are neighbors of at least one of the two nodes.

Tools for data analysis, plotting, and statistical analysis
R packages tidyverse and stringr were used for data anal-
ysis, and graphs were plotted using ggplot2. Networks 
were visualized using Gephi. Statistical significance 
between the groups was analyzed using the non-para-
metric Mann–Whitney test in R, and that of the overlap 
between gene lists was analyzed using Fisher’s exact test.

Results
Construction of SARS‑CoV‑2–host interactome in the lung
To depict the SARS-CoV-2–host interaction network, the 
protein–protein interaction (PPI) network of the lungs 
(lung interactome) was obtained from the TissueNet v.2 
database [24]. We referred to Gordon et al. [9] for the list 
of 332 human targets of SARS-CoV-2 and constructed a 
subnetwork of these proteins from the PPI network. Of 
the 332 viral targets, 323 proteins were present in the sub-
network. The resulting subnetwork, named as the SARS-
CoV-2 target network (STN), has 5050 nodes and 11,256 
pairwise interactions (Fig. 1a, Additional file 2: Table S1). 
Next, 181 of the 323 viral targets form the LCC within 
the lung interactome. To determine the statistical signifi-
cance of the LCC, we randomly selected proteins with a 
matching degree and calculated the size of the LCC. We 
repeated the random selection 1000 times and found that 
the size of the random LCC was 136.28 ± 16.05 (Fig. 1b), 
and z-score = 2.78 (p-value = 5.36 × 10−3), indicating 

Fig. 1  a Neighbourhood interaction network of SARS-CoV-2 targets (STN) in the lung. The size of the node is proportional to its degree. b 
SARS-CoV-2 targets form a LCC of size 181 in the lung interactome. The size of the LCC is significantly larger than the random expectation
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that the SARS-CoV-2–host interaction network did not 
appear by chance and the target proteins were located 
in the same network vicinity [10, 13]. To confirm this 
result, we computed dyadicity (D) (a measure of the con-
nectedness of the nodes with the same label, see Materi-
als and Methods) among the SARS-CoV-2 targets in the 
STN to determine if they share more or fewer edges than 
expected in a random configuration of the network. We 
found D = 7.664, indicating high connectedness among 
SARS-CoV-2 targets. D > 1 signifies that the SARS-CoV-2 
targets form a community-like structure to hijack the 
host cellular machinery. If implicated in diseases, pro-
teins in a community confer a higher chance of comor-
bidity than those not in the community because proteins 
in a community frequently interact, coexpress, and are 
functionally interconnected [25]. Therefore, to under-
stand the link between COVID-19 and other lung dis-
eases, we constructed and analyzed the disease–gene and 
disease–disease association map linked to the STN.

Disease–gene and disease–disease association map 
of COVID‑19 in lungs
To construct a disease association map of the STN, we 
obtained the disease-gene association data from the 

ORGANizer database [15]. In total, 184 lung diseases, 
1957 genes, and 6040 disease–gene pairs were consid-
ered for further analysis (see Materials and Methods) 
(Additional file 3: Table S2). However, 1442 of the 1957 
genes are present in the lung interactome. To create the 
disease–gene association map, we screened the diseases 
associated with proteins (nodes) in the STN. A disease 
and gene are then connected if the gene is associated 
with the lung disorder. We observed that 618 proteins 
consisting of 36 SARS-CoV-2 targets were linked to 146 
disorders, which includes COVID-19 (Additional file  4: 
Table S3). The overlap between SARS-CoV-2 targets and 
1442 lung disease-associated genes was not statistically 
significant (Fisher’s exact test, value = 0.454). Gysi et  al. 
[13] reported a similar observation with a group of genes 
involved in various disease classes. However, the overlap 
between 5050 nodes in the STN and lung disease-asso-
ciated genes was statistically significant (Fisher’s exact 
test, p-value = 2.93 × 10−5). Figure 2a shows the resulting 
disease–gene association map of the STN, named as the 
lung disease–gene network (LDGN), consisting of1814 
disease–gene pairs.

The LCC within the LDGN consists of 141 lung 
diseases and 610 genes, indicating that many of the 

Fig. 2  Disease-gene association network. a Lung disease-gene network (LDGN), including COVID19 (yellow node). The network shows the 
SARS-CoV-2 targets (red) and neighborhood genes (green). b, c Dot plot shows the highly connected diseases (k > 20) and genes in LDGN, 
respectively
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disorders share a common genotype. For example, the 
SARS-CoV-2 targets, FBN1 (degree, k = 15), FBLN5 
(k = 11), and COMT (k = 9), and neighborhood nodes, 
OFD1 (k = 19), DNAAF2 (k = 16), and DNAAF5 (k = 16), 
are linked to multiple disorders (Fig. 2b). Similarly, a dis-
order in the LDGN is also connected with multiple genes 
[e.g., ventricular septal defect (k = 142), respiratory insuf-
ficiency (k = 133), congestive heart failure (k = 95), apnea 
(k = 63), and hypothyroidism (k = 60) (Fig. 2c, Additional 
file 1: Fig. S1 and Fig. S2)].

The disease-gene association pattern in the LDGN indi-
cates the presence of a molecular connection between 
COVID-19 and a wide range of lung disorders. To com-
prehend this connection, a disease-disease association net-
work, DDAN was constructed, where two diseases were 
linked if they share one associated gene (Fig.  3a). DDAN 
consists of 141 diseases (nodes) and 1326 links, indicating a 
higher clustering between diseases. Further, the degree dis-
tribution of the DDAN did not follow the scale-free prop-
erty (Fig.  3b). To determine the exact topological nature, 
we measured network transitivity ( TDDAN=0.4264) and 
average path length ( LDDAN=2.0585) of the DDAN and 
compared them with the equivalent 1000 Erdős − Rényi 
random graphs. The results showed that the average path 
length is significantly lower (p-value < 0.0001), whereas 

transitivity is significantly higher (p-value < 0.0001) than 
random graphs ( Lrandom = 2.44680 and Trandom = 0.0668) 
(Fig. 3c, d). Further, we calculated the small-worldness sca-
lar (S) for the DDAN as follows:

A network is considered a small-world network if S > 1 
[26]. Hence, the topology of the DDAN represents a 
small-world property, indicating that any two diseases in 
this network have a high tendency to be interconnected 
and may cause the overlapping disease pathogenesis.

Forty-nine diseases in the DDAN were directly con-
nected to COVID-19. Using the number of common 
genes, the Jaccard similarity coefficient was computed 
to identify the extent of molecular overlap between the 
49 lung diseases and COVID-19 (Additional file  1: Fig. 
S3). Several diseases, such as respiratory insufficiency, 

γ =
TDDAN

Trandom

= 6.383

� =
LDDAN

Lrandom
= 0.841

S =
γ

�
= 7.589

Fig. 3  Disease-disease association network (DDAN). a DDAN, including COVID19, red nodes represent the diseases that are directly direct linked 
to COVID19. b Scatter plot shows the degree distribution of DDAN, which does not follow the scale-free property. c The average path length 
between the diseases in DDNA and distribution of average path length of 1000 random networks (green). d Transitivity of DDNA and distribution of 
transitivity of 1000 random networks (pink)
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congestive heart failure, respiratory failure, ventricular 
septal defect, mitral regurgitation, and hyperthyroid-
ism, are closely associated with COVID-19. Of note, 
although molecular connections exist between COVID-
19 and various lung diseases, these overlaps are not 
statistically significant (considering only SARS-CoV-2 
targets). Nevertheless, these molecular connections are 
crucial for analyzing the effect of SARS-CoV-2 infection 
on lung patients; however, opportunities to comprehend 
disease comorbidity are limited with these molecular 
connections.

Topological overlap between disease modules, 
pathobiological similarities, and opportunities for drug 
repurposing
For a greater understanding of comorbidity, we measured 
the network-based separation between two disease mod-
ules to comprehend their degree of overlap. The network-
based separation measure is primarily advantageous 
because it can predict disease–disease association, even if 
two diseases share no genes. If two disease modules over-
lap, then perturbations to one disease can cause distur-
bance to another, indicating that they have similar clinical 
characteristics. The magnitude of the overlap indicates 
the biological and pathobiological similarities between 
the two disease modules [17]. Network-based separation 
( Sab ) (see Materials and Methods) between COVID-19 
and all lung diseases was measured. Of the184 lung dis-
eases, 59 demonstrated overlapping modules ( Sab < 0 ) 
with COVID-19 (Additional file  5: Table  S4). The sta-
tistical significance of Sab for each disease pair, that is, 
COVID-19 and each lung disease, was evaluated using 
a full randomization model. We observed, for all 59 dis-
eases, the z-score was < 0, indicating that these diseases 
are closely overlapped with COVID-19 than expected by 
chance. Figure 4a–j shows the top 10 closely overlapping 
lung disease modules with COVID-19 (e.g., hemolytic-
uremic syndrome ( Sab = −0.2142 ), abnormal respiratory 
motile cilium morphology (ARMCM;Sab = −0.21138 ), 
obstructive lung disease ( Sab = −0.21022 ), pleu-
ral effusion ( Sab = −0.18216 ), patent foramen ovale 
(PFO,Sab = −0.1619 ), and pulmonary insufficiency 
( Sab = −0.15694 ). Thus, patients with these disorders 
are probably more vulnerable to COVID-19 symptoms or 
vice versa because of overlapping disease modules. The 
same set of genes induce ARMCM, absent respiratory cil-
iary axoneme radial spokes, and respiratory insufficiency, 
which are caused because of defective ciliary clearance; 
therefore, we considered only ARMCM in the top 10 list. 
According to the network-based separation measure, 
almost 32% of lung diseases have overlapping modules 
with COVID-19 and the remaining 68% are topologically 
separated. To understand the biological relationship and 

pathobiological similarities, the expression correlation 
and semantic similarity (molecular functions and bio-
logical processes) of genes involved in COVID-19 and 
overlapping lung diseases ( Sab < 0).) were measured. 
Gene coexpression and semantic similarity were signifi-
cantly (p-value < 0.0001) higher compared to those in the 
random control (Fig.  4k–m), indicating the biological 
and pathobiological similarities between COVID-19 and 
overlapping lung diseases. To further investigate the sim-
ilarities in clinical features, results from recent publica-
tions were explored. Reports have raised concerns about 
lung injuries linked to COVID-19 [27, 28]. A higher per-
centage of COVID-19 patients in severe conditions are 
more likely to develop chronic obstructive pulmonary 
disease (COPD) and impairment of diffusion capacity 
[4, 29]. Many lung diseases ( Sab < 0) (Additional file  5: 
Table S4) with a overlapping module with COVID-19 are 
linked to these aforementioned phenotypes. A disease 
closely associated with COVID-19, haemolytic-uremic 
syndrome (Sab < 0) (Fig.  4a), causes pulmonary hemor-
rhage, which is linked to kidney failure [30], and studies 
have recently reported that chronic kidney diseases and 
chronic pulmonary disease cause adverse outcomes in 
COVID-19 patients [4, 31]. Abnormal respiratory motile 
cilium (Fig.  4b) or ciliary dyskinesia ( Sab = −0.21138 ) 
causes chronic respiratory tract infections because 
the improper movement of mucus restricts the com-
plete elimination of fluid, bacteria, and particles from 
the lungs, leading to bronchitis (chronic bronchitis, 
Sab = −0.146)(www.​ghr.​nlm.​nih.​gov). Lack of respiratory 
clearance in a patient with ciliary dyskinesia could confer 
a higher risk of health hazard after SARS-CoV-2 infec-
tion. Another study showed that patients with obstruc-
tive lung disease ( Sab = −0.21 ) (Fig. 4c) and pulmonary 
emphysema ( Sab = −0.09) are at a higher risk of pneu-
mothorax after SARS-CoV-2 infection [32]. Rajendram 
et al. [33] predicted that PFO (Fig. 4e) may be common 
in COVID-19 patients because PFO causes pulmonary 
embolism [34]. Even the disease module of pulmonary 
embolism overlapped ( Sab = −0.008) with COVID-19. A 
clinical study in Wuhan, China [35] reported that almost 
5% COVID-19 patients had pleural effusion(Sab = −0.18) 
(Fig. 4d), which is often caused by congestive heart failure 
and blood clots in lung arteries. Importantly, pleural effu-
sion is commonly associated with age-related respiratory 
problems and cancer [36]. On the other hand, conges-
tive heart failure, which causes many lung-related dis-
eases [37], also overlapped with the COVID-19 disease 
module (Additional file 5: Table S4). A meta-analysis by 
Alqahtani et al. [38] demonstrated that the risk of more 
severe COVID-19 was higher in patients with COPD 
(risk of severity = 63%) than in those without (33.4%). 
Although these results suggest the clinical similarities 

http://www.ghr.nlm.nih.gov
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between COVID-19 and overlapping lung disorders, they 
are limited and cannot be extrapolated for all overlapping 
lung disorders without clinical evidence. Furthermore, a 
genome-wide association study has presented the genetic 
susceptibility locus in the chromosome of patients with 

COVID-19 and respiratory failure [39], and genes pre-
sent in this locus (SLC6A20, LZTFL1, and CCR9) were 
also associated with different lung disorders ( Sab < 0) 
such as pulmonary fibrosis, respiratory distress, asthma, 
and nephrotic syndrome.

Fig. 4  Network-based separation ( Sab ) and pathobiological similarities. a–j shows observed Sab , z-score (red arrow) and distribution of Sran
ab

 of top 
10 overlapping lung diseases with COVID-19 (here, ARMCM indicates abnormal respiratory motile cilium morphology). k Box plot represents the 
pairwise correlation between genes is significantly (p-value < 0.0001) higher than the random gene sets. l, m Box plots show the distribution of 
functional similarities (MF) and GO processes (BP) between the genes involved in lung disease and COVID-19. The GO processes and functional 
similarity between the genes are significantly high (p < 0.0001) compared to the random gene sets (note, in figures k, l, and m 1–10 indicates 
disease in a similar sequence as it is mentioned in figures a to j). n The strategy of drug repurposing to target the COVID19 module
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The availability of efficient drugs for the treatment of 
clinically characterized lung diseases having overlapping 
neighborhoods with COVID-19 has shown the scope for 
repurposing these drugs for COVID-19treatment. When 
two diseases are localized in the same network vicinity 
and overlap with each other, then targeting one disease 
can affect another disease module (Fig.  4n), leading to 
efficient clinical outcomes for both as they have com-
mon network neighborhoods [20]. Clinical data from the 
Clinicaltrials.gov database show that some drugs used for 
lung diseases, such as methylprednisolone for tracheal 
stenosis ( SAB = −0.14915 ) and ketamine and budesonide 
for COPD are in clinical trials for COVID-19 treatment 
[40]. Therefore, existing drugs that are presently used for 
treating lung disorders on COVID-19 patients must be 
tested for better clinical outcomes. Treating a comorbid 
patient is challenging, but an accurate clinical picture of 
patients, molecular signature of diseases, and drug target 
information can improve the present crisis.

Functional protein modules preferentially hijacked 
by SARS‑CoV‑2 are linked to a broad range of lung 
disorders
Modularity in the network refers to the pattern of con-
nectedness in which nodes are grouped into highly con-
nected subsets [41]. A key feature in the PPI network 
is that tightly connected proteins within a community 
are mostly involved in similar biological functions [42]. 
Similarly, genes involved in related diseases are highly 
connected; moreover, diseases linked to common genes 
result in the formation of disease modules and comor-
bidity [43]. We compared various community detection 
algorithms, that is, fast-greedy, walktrap, louvain, leading 
eigenvector, and spinglass, to identify protein modules 
in the STN [19, 44]. Spinglass showed good partition-
ing with a higher modularity score compared with other 
algorithms (see “Materials and Methods” section and 
Additional file 6: Table S5). Our findings are in agreement 
with those of the study by Rahiminejad et al. [18], where 
good partitioning of the functional protein module was 
observed using spinglass in eukaryotes. Of the 21 mod-
ules, the top 4 protein modules were selected according 
to the presence of a large number of SARS-CoV-2 tar-
gets (> 20) and a gene ontology semantic similarity score 
(> 0.2) of biological processes (Additional file 6: Table S6). 
Numerous viral targets were considered because these 
modules are largely hijacked and strongly perturbed 
after infection compared with other functional mod-
ules in the network. The modules were named as mod-
ules 1, 2, 3, and 4, and each module contains 63, 50, 28, 
and 23 SARS-CoV-2 target proteins, respectively (Fig. 5). 
The biological process and pathway enrichment analy-
sis showed that module1, the largest module, is mainly 

enriched with RNA metabolism, including transcription, 
mRNA processing, transport, mRNA de-adenylation, and 
surveillance. Presumably, biological processes linked to 
module1 are hijacked by SARS-CoV-2 in the early stage 
of infection for viral RNA production. Notably, the com-
ponents of module1 are linked to 64 disorders, among 
which the highly connected are respiratory insufficiency, 
ventricular septal defect, respiratory distress, pneumonia, 
and lung neoplasm (Fig. 5a, 3rd column, Additional file 7: 
Table S7). Most module 1-associated diseases are directly 
connected to COVID-19 (Fig.  3b, Additional file  1: Fig. 
S2). On the other hand, hijacking module2 can pre-
dominantly affect protein degradation (ERAD pathway, 
HRD1 complex, and regulation of the protein catabolic 
process), transport, folding, and stability (retrograde 
protein transport, regulation of protein stability, VCP-
VIMP-DERL1-DERL2-HRD1-SEL1L complex, regulation 
of intracellular transport, regulation of vesicle-mediated 
transport, and protein folding in the endoplasmic reticu-
lum). Module3 and module4 involve several processes, 
primarily cellular transport, localization, organization, 
and cell cycle. Modules 2, 3, and 4 were linked to 79, 
60, and 32 different disorders, respectively (Additional 
file 7: Table S7). The disease association of all four pro-
tein modules was significantly higher (p-value < 0.0001) 
than 1000 random gene sets. Moreover, a broad spec-
trum of disorders of various classes, such as neoplasms, 
neurological, and digestive systems, was associated with 
these modules (Additional file 1: Fig. S4). Gysi et al. [13] 
predicted that the manifestation of SARS-CoV-2 in dif-
ferent human tissues could cause various disorders. 
Therefore, not only lung-related disorders, but diseases in 
other organs can also be a potential threat for COVID-19 
patients. To confirm this observation, gene coexpression 
pattern in functional modules was analyzed. Genes in 
the same functional module often show a high coexpres-
sion profile, which indicates their involvement in similar 
biological processes. Therefore, we calculated Pearson 
correlation coefficients of gene pairs using gene expres-
sion data of healthy lung tissues from GTEx. The median 
value of the positive correlation between the genes in all 
modules was significantly higher (p-value < 0.0001) than 
that for the random gene set (Fig. 5, 4th column). There-
fore, these modules can be identified as coexpression 
modules that share core transcriptional programs in the 
lung, which indicates that their perturbation can lead to a 
similar disease phenotype. Next, we used drug repurpos-
ing to find the targets to hit functional modules.

Drug repurposing to target functional modules
We propose targeting functional protein modules 
hijacked by SARS-CoV-2, by drug repositioning. There 
are two main reasons to target these modules. First, the 
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Fig. 5  Community detection in STN and functional protein module. a–d show the modules 1 to 4, pathway and process enrichment analysis of 
each module, their disease associations, and positive correlation between genes in each module in healthy lung tissue. The pairwise correlation 
between genes in each module is significantly (p-value < 2.2 × e−16) higher than the random gene sets
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binding of a drug to its target in a module will prevent 
virus replication. Second, as a module is linked to sev-
eral lung diseases, targeting a module can reduce severity 
in patients. From Drug Bank, we identified 56 approved 
targets (red color nodes in Fig. 6) that can be hit by 144 
approved or investigational drugs in the clinical trial 
(Additional file  8: Table  S8) [11]. The list contains10 
approved drugs at different stages of clinical trials for 

COVID-19 treatment, including chloroquine targeting 
Glutathione S-transferase Mu 1 in module3 (Additional 
file  1: Fig. S5). However, the efficacy of chloroquine on 
COVID-19 patients is arguable. Coagulation factor X 
(F10) was observed in module2, which has recently been 
implicated as a target due to the potential role of coagu-
lopathy in COVID-19 [45]. To determine the effectiveness 
of targets, we applied network-based proximity measures 

Fig. 6  Targetable protein in functional modules: The red nodes in each module indicate the FDA-approved targets
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to calculate the proximity between the COVID-19 dis-
ease module (network among SARS-CoV-2 targets) and 
FDA-approved targets in the functional module. We used 
the "closest" (dc) measure, representing the closest path 
length between a target and the nearest SARS-CoV-2 tar-
get protein. Then, we calculated z-score (zc) to validate 
the proximity by comparing the observed target–disease 
protein distance to the random expectation [10]. All 56 
targets were proximal (zc <  − 2) to the COVID-19 disease 
module (Additional file 9: Table S9) compared to the ran-
dom expectation. Next, approved drugs in clinical trials 
for COVID-19 treatment (Additional file 1: Fig. S5) were 
also significantly closer to the COVID-19 disease module 
(zc < − 2) (Additional file 10: Table S10). The highly con-
nected (hub) targets in the functional module, such asN-
TRK1 (k = 43) and IMPDH2 (k = 37) in module1, as well 
as PLAT (k = 17) and COMT (k = 10) in module2, can be 
considered as potential targets for COVID-19 treatment 
(Additional file 1: Fig. S5). Considering the complexity of 
COVID-19, different locations in the STN must be tar-
geted as this may help efficiently rewire the cellular net-
work [46] and rescue these functional modules from the 
virus, thereby reducing virus growth [20]. Many of the 
target proteins suggested do not directly interact with 
SARS-CoV-2; instead, they are neighborhood nodes. The 
binding of drugs to these targets present in the same net-
work vicinity may efficiently perturb the network mod-
ules, including viral growth [47]. Notably, this article 
presents the computation analysis; therefore all drug-
target combinations should be tested on SARS-CoV-2-in-
fected cell lines and validated through clinical trials.

Discussion
Currently, a speedy drug discovery is urgently required 
to stop the infection and rapid transmission of SARS-
CoV-2. Aged COVID-19 patients with comorbidity 
are at severe health risks worldwide. The present study 
evidenced the risk of COVID-19 at the onset of vari-
ous lung-related disorders and the molecular basis of 
comorbidity by applying the principle of network biol-
ogy. COVID-19 can be considered as complex disease 
because of wide-ranging SARS-CoV-2 targets in the host 
cell, which thus establishes the molecular connection 
with various lung-related disorders. The disease-gene, 
disease–disease association map, and network separa-
tion analysis have revealed molecular links and cluster-
ing of diseases in the same network vicinity, indicating a 
pathobiological similarity between COVID-19 and vari-
ous lung disorders. Some diseases closely associated with 
COVID-19 are haemolytic-uremic syndrome, obstruc-
tive lung disease, pleural effusion, and chronic bronchi-
tis. Because of the close association, the pre-existence of 
these diseases can lead to higher mortality of COVID-19 

patients. Severity of one of the common respiratory 
problems, asthma, which has an overlapping disease 
module and is directly connected to COVID-19, becomes 
moderate to high with SARS-CoV-2 infection (www.​cdc.​
gov). These observations provide a detailed understand-
ing of the molecular basis of severe illness in COVID-19 
patients with specific lung disorders and help us decipher 
the patient-specific etiology of COVID-19. Because of 
multiple molecular connections and overlapping disease 
modules of COVID-19 with various lung disorders, find-
ing specific targets and potential drugs for COVID-19 
patients with pre-existing medical conditions is challeng-
ing. The present crisis cannot wait until new drugs arrive; 
therefore, we proposed two approaches for drug reposi-
tioning. The first approach is testing drugs approved for 
lung diseases having modules overlapping with COVID-
19. These drugs can simultaneously affect two disease 
modules, leading to much-improved treatment out-
comes. The second approach is targeting host functional 
protein modules that are linked with many lung disorders 
and are primarily hijacked by SARS-CoV-2. Perturbing 
these modules by repurposing FDA-approved (or inves-
tigational) drugs may rescue the host cellular machinery 
utilized for virus replication. Considering the complex-
ity of SARS-CoV-2 infection, we suggest hitting multi-
ple targets in different functional modules to improve 
clinical outcomes. However, systematic studies through 
clinical trials for identifying drug combinations and their 
targets are highly recommended to increase clinical effi-
cacy and lower toxicity [20]. Moreover, patient-specific 
high-throughput transcriptomics data or construction of 
a weighted gene expression networks from SARS-CoV-
2-infected lung tissues can further the possibility of tar-
get identification, like in other human diseases [48, 49]. 
In addition, Mendelian randomization study can be per-
formed to understand the causal relationships between 
lung diseases and susceptibility and severity of COVID-
19 [50, 51]. Lastly, the experimental validation of our 
observation and in  vitro or in  vivo assays of drug com-
bination and study of pharmacokinetics are warranted to 
establish a proper treatment strategy.

Conclusion
In summary, this study used the network biology frame-
work to elucidate the molecular link between lung dis-
orders and COVID-19. The network-based separation 
measure identified 59 lung diseases topologically over-
lapped with the COVID-19 module. In addition, the 
Disease-disease association network showed forty-nine 
diseases were directly connected to COVID-19. This 
revealed the cause of severe illness of patients with res-
piratory problems after SARS-CoV-2 infection. Genes in 

http://www.cdc.gov
http://www.cdc.gov
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functional protein modules, hijacked by SARS-CoV-2, 
are coexpressed and connected to several lung dis-
eases. The perturbation of these modules may block the 
virus growth in the host cells. Therefore, existing FDA-
approved drugs can target the hijacked protein mod-
ules to avoid the life-threatening situation of COVID-19 
patients with lung disorders.
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