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Abstract

Background: Advancements in transcriptomic profiling have led to the emergence of new challenges regarding
data integration and interpretability. Variability between measurement platforms makes it difficult to compare
between cohorts, and large numbers of gene features have encouraged the use black box methods that are not
easily translated into biologically and clinically meaningful findings. We propose that gene rankings and algorithms
that rely on relative expression within gene pairs can address such obstacles.

Methods: We implemented an innovative process to evaluate the performance of five feature selection methods on
simulated gene-pair data. Along with TSP, we consider other methods that retain more information in their score calculations,
including the magnitude of gene expression change as well as within-class variation. Tree-based rule extraction was also
applied to serum microRNA (miRNA) pairs in order to devise a noninvasive screening tool for pancreatic and ovarian cancer.

Results: Gene pair data were simulated using different types of signal and noise. Pairs were filtered using feature
selection approaches, including top-scoring pairs (TSP), absolute differences between gene ranks, and Fisher scores.
Methods that retain more information, such as the magnitude of expression change and within-class variance, yielded
higher classification accuracy using a random forest model. We then demonstrate two powerful applications of gene
pairs by first performing large-scale integration of 52 breast cancer datasets consisting of 10,350 patients. Not only did
we confirm known oncogenes, but we also propose novel tumorigenic genes, such as BSDC1 and U2AF1, that could
distinguish between tumor subtypes. Finally, circulating miRNA pairs were filtered and salient rules were extracted to
build simplified tree ensemble learners (STELs) for four types of cancer. These accessible clinical frameworks detected
pancreatic and ovarian cancer with 84.8 and 93.6% accuracy, respectively.
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Conclusion: Rank-based gene pair classification benefits from careful feature selection methods that preserve maximal
information. Gene pairs enable dataset integration for greater statistical power and discovery of robust biomarkers as
well as facilitate construction of user-friendly clinical screening tools.

Keywords: Gene pairs, Cancer, Top-scoring pair, Feature selection, Simplified tree ensemble learner

Background
Innovations in gene expression analysis have been
critical in understanding the basic biological mecha-
nisms underlying carcinogenesis as well as facilitating
patient screening and stratification. For instance, tran-
scriptomic profiling in breast and prostate cancer has
been used to discover oncogenic gene fusions, identify
at-risk patients, predict metastasis and recurrence,
and determine appropriate treatment strategies for
specific patient subgroups [1–7]. However, while gen-
omic data can promote new discoveries and effective
clinical decision-making, there are two major chal-
lenges regarding data integration and interpretability.
First, constantly evolving technology makes it difficult
to combine data across clinical trials and patient co-
horts. This has ultimately led to separate studies with
fewer patients, yielding a lack of reproducible, robust
findings. Secondly, genome-wide analysis produces
thousands of gene features, which can be challenging
to parse and present in an interpretable manner.
“Black box” techniques such as neural networks, sup-
port vector machines (SVM), and ensemble methods
have proven successful in accurately classifying tu-
mors and predicting patient prognosis, but such
methods produce complex, nonlinear decision bound-
aries that are dependent on platform and data pro-
cessing. Ultimately, additional effort is needed to
translate findings into biologically meaningful outputs
that can also be implemented in a clinical setting.
Utilizing gene pairs can enable rapid data integration

and can be easily incorporated into an interpretable clin-
ical framework. Gene pairs were first explored by
Geman et al. and later by Tan et al. in the top-scoring
pair (TSP) classifier [8]. The algorithm first makes
within-sample pairwise comparisons between genes and
then makes group comparisons by examining the num-
ber of relative reversals. Consider a set of p genes whose
expression is measured in a transcriptomic profile X =
{x1, x2,…, xp}. In this example, each X may belong to a
particular class C = {1, 2}. For the gene pair (xi, xj), the
calculation of the pair score proceeds by first observing
the probability of xi < xj in class 1 [pij (1) = P (xi < xj|c =
1)] and comparing it to the probability of xi < xj in class
2 [pij (2) = P (xi < xj|c = 2)]. The difference between the
two probabilities can then be calculated to get the pair
score: TSPij = |pij (1) − pij (2)|.

The benefits of the TSP algorithm lie in its simplicity.
The pair score is based on within-sample probabilities
that do not rely on actual expression values. Thus, only
within-sample gene ranks are necessary to perform the
calculations, eliminating the need for standardized gene
expression quantification techniques as well as data
normalization methods. This is particularly well-suited
for gene expression data. While laboratory values such
as blood pressure and serum hemoglobin have standard
units (e.g. mm Hg and g/dL), gene expression is rou-
tinely measured using several platforms and can be pre-
sented as microarray fluorescence intensity, sequencing
reads, or PCR cycle number. Gene pairs are invariant to
measurement platform or specific cutoffs. Additionally,
TSP provides an interpretable alternative to “black box”
methods. The algorithm simply identifies gene pairs
whose expression is inverted between classes. Thus,
there is no complex relationship between gene expres-
sion and class label. Overall, TSP is easy to implement
and can be interpreted to produce biologically and clin-
ically meaningful results.
Although several studies have used TSP to stratify pa-

tients and predict tumor progression, there are several
methodological improvements and applications that
have yet to be explored. One major limitation of TSP is
information loss. The pair score only compares expres-
sion between two genes to find which is higher but does
not take into account the magnitude of the difference.
Furthermore, the use of probabilities does not account
for the sample size of each class. It is desirable to retain
more information while preserving the simplicity of the
algorithm. This might be achieved through utilizing gene
ranks rather than the number of relative reversals. Tan
et al. applied this approach to break ties among pair
scores, but incorporating ranks into the pair score itself
could further improve reproducibility [9]. Wang et al.
also devised a method to utilize sample size information
in the calculation of the pair score, which improved clas-
sification accuracy on several cancer datasets [10]. Other
beneficial modifications to the TSP classifier involve
more powerful classification methods. While the TSP
classifier employs a simple voting scheme, a handful of
studies have paired TSP feature selection with more
complex classification algorithms. For instance, feature
selection via TSP has been used to train SVMs for pa-
tient stratification and prognostic prediction in cancer
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[11, 12]. By filtering noise and accounting for highly in-
tricate data structures, the combination of TSP and
SVM improved performance over each individual
method alone.
Here, we examine the efficacy of gene pairs in iden-

tifying robust cancer biomarkers and demonstrate
how they might be implemented for clinical use
(Fig. 1). We first evaluate the performance of five

feature selection methods on simulated gene-pair
data. Along with TSP, we consider other methods
that retain more information in their score calcula-
tions, including the magnitude of gene expression
change as well as within-class variation. We then
show two clinical applications of gene pairs (Fig. 1).
First, we validated known genetic biomarkers and
proposed novel tumorigenic genes by performing

Fig. 1 Strategies for using gene pairs to identify salient oncogenes and construct cancer screening tools. a Traditionally, differential gene
expression is measured by comparing group means of individual genes. Gene pair analysis uses within-patient pairwise comparisons to obtain
relative gene expression levels before making group comparisons. Thus, gene pairs only depend on gene rankings, not actual expression values.
b This ranking-based methodology allows for integration of data across platforms. Next-generation sequencing (NGS), microarray, and qPCR all
use different units for gene expression, but all three forms of data can be adapted to the gene pair framework. First, genes are ranked within
each sample, enabling datasets to be combined. Next, pairwise comparisons are made in an exhaustive manner and feature selection is
performed using filtering methods. The selected gene pairs can then be used for classification using ensemble methods. Also, the top features
can be examined for their role in carcinogenesis. The use of gene pairs facilitates dataset integration in order to increase sample size and
statistical power for robust oncogene detection. c Another application of gene pairs involves transparent and interpretable clinical screening
tools. Circulating miRNA pairs can be used for cancer screening. First, miRNA in blood samples are quantified and ordered by expression level
within each patient. Pairwise comparisons are made and feature selection is performed. Ensemble classifiers can then be built. In order to create
more interpretable models, important rules are extracted and simplified tree ensemble learners (STEL) are constructed. This test is highly practical
in a clinical setting because it is noninvasive, and the use of within-patient values is invariant to measurement platform and does not require the
use of specific cutoffs or standard values
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feature selection after large-scale dataset integration.
Using a ranking system, we were able to overcome
heterogeneity in gene expression measurement tech-
nology and combine a total of 52 datasets containing
over 10,000 breast tumors, which enabled us to iden-
tify robust tumor biomarkers. Finally, tree-based rule
extraction was applied to serum microRNA (miRNA)
pairs in order to devise a noninvasive screening tool
for pancreatic and ovarian cancer.

Results
Comparison of feature selection methods on simulated
data
While transcriptomic data contains thousands of gene
features, the use of gene pairs dramatically increases the
feature space. To avoid overfitting and minimize compu-
tational time, careful feature selection is critical. Data
were simulated to test classification accuracy using sev-
eral feature selection methods. Data structure was varied
in terms of the effect size of differentially expressed
genes, covariance structure, and number of genes with
low expression. Each simulation contained 1000 genes,
including 900 noise genes and 100 signal genes. The sig-
nal genes represented differentially expressed genes and
followed multivariate normal distributions: N(μ, Σ) for
class 1 and N(−μ, Σ) for class 2. Here, μ represents the
effect size of differentially expressed genes. To simulate
a moderate effect size, μ was set as a vector containing
10 unique values ranging from − 0.25 to 0.25 at incre-
ments of 0.05 (not including 0). Each value was repeated
10 times for a total of 100 values. A strong effect size
was simulated by setting half of the values in μ to − 0.25
and the other half to 0.25.
Two covariance (Σ) structures were formulated in

order to simulate oncogenes and tumor suppressor
genes from certain pathways that were concurrently
expressed. The covariance structure followed the
general form:

Σ ¼
1 ρ ρ … ρ
ρ 1 ρ … ρ
⋮ ⋮ ⋱ ⋱ ⋮
ρ ρ … ρ 1

2
664

3
775

The signal genes were drawn from either an independ-
ent model with ρ = 0 or a correlated model with ρ = 0.6.
Finally, data were generated to mimic different types

of noise. For the first scenario, all 900 noise genes were
independently drawn from N (0, 1) distributions for both
class 1 and class 2. For two other cases, we introduced
genes that were expressed at very low levels with a few
outliers. For these genes, 90% of the samples were drawn
from the right side of a N(− 3, 0.1) distribution to mimic
low or no expression, and 10% of the samples were

drawn from a N (0, 1) distribution to represent technical
error. Simulations were performed with 100 and 300
such genes, to simulate a dataset in which 10 and 30% of
genes were expressed at low levels. For each simulation,
a total of 400 samples were generated (200 per class).
Half of the samples from each class were randomly
chosen as the training set, leaving the other half as the
test set. Within each sample, genes were ranked in de-
scending order from 1 to 1000. Pairwise differences were
calculated, generating new gene pair features with nu-
meric values.
Five feature selection methods were used to identify

top pairs. First, TSP score as defined by Geman et al.
was employed. Absolute median (AM) and absolute
average (AA) were computed by taking the absolute dif-
ference between the class median/average ranks. Also,
Fisher median (FM) and Fisher average (FA) were calcu-
lated by first taking the weighted sum of the difference
between each class median/average and the total me-
dian/average, then dividing by the weighted sum of the
class variances. The methods were chosen because each
includes a different amount of information in its score
calculation. TSP is the most simplistic and only con-
siders the probability of a difference in gene rank be-
tween classes. AA and AM are slightly more advanced
and consider the magnitude of the difference. Finally,
Fisher scores are the most complex and consider both
the magnitude of the difference and the within-class co-
herence. Median was calculated as a counterpart to the
mean in order to avoid outlier effects. TSP, AM, AA,
FM, and FA scores were used to rank gene pairs such
that higher values represent more important genes. All
feature selection methods are described in detail in the
Methods section.
After feature selection, the gene-pair feature values

were then changed to a binary categorical variable repre-
senting either a negative or positive value. This was per-
formed in order to reflect the type of data that might be
observed in a clinical test. Random forest (RF) models
were trained and prediction on the test set was per-
formed. Model performance was evaluated using two
metrics. First, classification accuracy on the test set was
calculated using different numbers of gene pairs. Sec-
ondly, the percentage of selected features that contained
at least one signal gene was measured. Each simulation
was performed at least five times.
Model performance varied depending on effect size

and covariance structure of the simulated data. As ex-
pected, for all feature selection methods, classification
accuracy and identification of signal genes improved
when the effect size was stronger (Fig. 2). The maximum
accuracy for data with moderate versus strong effect size
was 0.748 and 0.938, respectively. Moreover, when the
effect size was strong, around 25% of gene pairs chosen
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by the feature selection methods (except TSP) contained
at least one signal gene (Fig. 2). When the effect size was
moderate, only around 20% of chosen features contained

at least one signal gene. Similarly, accuracy for all feature
selection techniques increased when signal genes were
more correlated (ρ = 0.6). Under strong conditions,

Fig. 2 Performance of feature selection methods on simulated data with different effect sizes and covariance structures. Signal genes were
simulated to follow one of four structures: a strong effect size and uncorrelated (ρ = 0), b strong effect size and correlated (ρ = 0.6), c moderate
effect size and uncorrelated, and d moderate effect size and correlated. Performance of a random forest classifier was evaluated using
classification accuracy on the test set as well as the percentage of identified gene pairs that contained at least one signal gene. All simulations
were performed five times and data are presented as mean ± SEM
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maximum accuracy increased from 0.868 in the inde-
pendent data to 0.938 in the correlated data, and under
moderate conditions, maximum accuracy increased from
0.692 in the independent data to 0.748 in the correlated
data. In all cases, TSP performed the worst, while AM,
AA, FM, and FA performed equally well (Fig. 2). TSP
consistently yielded accuracies 10 and 20% lower than
the other four methods on simulations with moderate
and strong effect sizes, respectively.
When lowly-expressed genes were introduced as noise,

FA performed significantly better than other selection
methods (Fig. 3). Gene expression depends on several
factors such as tissue type, developmental stage, environ-
mental stimuli, and metabolic demands. Thus, certain
genes are often completely turned off under particular
conditions. These genes can be considered as noise and
were simulated as 10% or 30% of total genes. For these
simulation, other parameters were held constant such
that the effect size was strong and the signal genes were
correlated (ρ = 0.6). FA was particularly robust against
genes with low expression, and was able to achieve max-
imum accuracy of over 0.95 and recovered significantly

more signal genes than the other four methods in both
simulations (Fig. 3). In terms of test accuracy, FM per-
formed better than AA, and AA performed better than
AM. This was particularly evident when there 30% of
the genes had low expression. TSP was significantly
worse than the other methods. FA also had higher ac-
curacy and recovered more signal genes when there was
30% low expression compared to 10%. FM, AA, and TSP
performed equally well on the 10 and 30% simulations.
AM performed worse on the 30% simulation compared
to the 10% simulation.

Novel oncogene discovery in breast cancer
The use of gene pairs has many benefits over traditional
gene expression values. Gene pairs remove the need for
normalization and enable integration of datasets across
platforms. Previous studies have been limited by sample
size, but we attempted to overcome this limitation by
combining 52 breast cancer gene expression datasets
using gene rankings based on within-sample expression.
This returned a total of 10,350 breast tumors and 1490
normal mammary tissue samples (Table 1). Next, the

Fig. 3 Performance of feature selection methods on simulated data with low gene expression. Noise was introduced to mimic genes with no or
very low expression, representing (a) 10% or (b) 30% of the total features. Performance of a random forest classifier was evaluated using
classification accuracy on the test set as well as the percentage of identified gene pairs that contained at least one signal gene. All simulations
were performed five times and data are presented as mean ± SEM

Moody et al. BMC Medical Genomics 2020, 13(Suppl 10):148 Page 6 of 20



five feature selection methods were used to identify the
top gene pairs between cancer and control. To validate
the performance of the gene pairs, a RF classifier was
built using the top 100 pairs. All five feature selection
methods were able to distinguish tumor and normal tis-
sue with at least 99% accuracy. Thus, it is correct to as-
sume that the top pairs are likely relevant to cancer.
We first examined the top pair from each method.

TSP identified FAT atypical cadherin 4 (FAT4) and leu-
cine rich repeat containing 42 (LRRC42), AM identified
ATPase H+ transporting V1 subunit B2 (ATP6V1B2)
and scavenger receptor class F1 (SCARF1), FM identified
suppressor of cytokine signaling 5 (SOCS5) and BSD do-
main containing 1 (BSDC1), and both AA and FA identi-
fied BSDC1 and mesenchyme homeobox 2 (MEOX2;
Fig. 4). The top 10 pairs identified by each feature selec-
tion method are listed in Table 2 and the top 100 pairs
are available in Supplementary file 1.
Next, we compared our results to traditional group-

comparison methods. Due to differences in data formats
as well as methods and platforms used for gene expres-
sion measurement, it is not accurate to combine datasets
for this analysis. Instead, we chose to evaluate one data-
set (GSE93601) that contained the most samples from
both tumor and control tissue. Fold change in gene ex-
pression in tumor versus control tissue was calculated
for the top genes identified by gene-pair analysis (Fig. 4).
False discovery rate p-values were used to determine sig-
nificant differences in gene expression. As expected,
FAT4, SCARF1, MEOX2, and SOCS5 were significantly
underexpressed in tumors (p = 1.48e-52, p = 6.31e-4, p =
4.43e-54, and p = 9.09e-4, respectively). Conversely,
LRRC42, ATP6V1B2, and BSDC1 were significantly over-
expressed (p = 1.79e-9, p = 8.35e-9, and p = 0.025,
respectively).
We then visualized the genes contained within the

top 100 pairs using each method (Fig. 5). Of the top
100 pairs, TSP pairs contained 60 unique genes, AM

pairs contained 67 genes, AA pairs contained 70
genes, FM pairs contained 63 genes, and FA pairs
contained 52 genes. In terms of genes included in the
top 100 pairs, there was considerable overlap between
feature selection methods. All five methods identified
BSDC1, LRRC42, MEOX2, and plekstrin homology do-
main containing A6 (PLEKHA6) as a gene in the top
100 pairs. Four out of five methods found gene pairs
containing rho guanine nucleotide exchange factor 15
(ARHGEF15), cysteine sulfinic acid decarboxylase
(CSAD), mesenchyme homeobox 1 (MEOX1), neure-
gulin 2 (NRG2), POU class 6 homeobox 1 (POU6F1),
SCARF1, semaphoring 3G (SEMA3G), and SOCS5
(AM, AA, FM, and FA), or cerebellar degeneration re-
lated protein 2 like (CDR2L), CUE domain containing
C1 (CUEDC1), cytochrome P450 family 26 subfamily
B1 (CYP26B1), and dystrophin (DMD) (TSP, AA, FM,
FA), or nuclear receptor subfamily 3 group C2
(NR3C2) (TSP, AM, AA, FM). Overall, TSP appeared
to be least similar to the other four methods, as 75%
of the identified genes were unique. The other four
methods shared 42.9% of their genes, and concord-
ance was particularly high between AA and FA, which
shared 37.1% of their genes.
We also examined the top five most represented

genes in each feature selection method. BSDC1 was
among the top five in all feature selection methods.
LRRC42 was observed in four of the methods,
CDR2L and PLEKHA6 were observed in three
methods, and NRG2 and MEOX2 were observed in
two methods. Finally, we report genes that were rep-
resented in at least 10% of the top 100 genes in at
least one feature selection method: BSDC1, chromo-
some 3 open reading frame 14 (C3orf14), CDR2L,
LRRC42, NRG2, PLEKHA6, and SCARF1 (Table 3).
Interestingly, C3orf14, CDR2L, LRRC42, MEOX2,
NRG2, and SCARF1 are known carcinogenic genes,
while BSDC1 and PLEKHA6 have not been described

Table 1 Breast cancer datasets. Transcriptomic data from tumor and normal mammary tissue were downloaded from GEO. All
datasets were combined to compare between cancer and control

Platform Data Type Control Tumor ER+ ER- HER2+ HER2- GSE ID

Affymetrix Array 804 4193 1391 732 449 797 GSE4611, GSE7904, GSE10780, GSE10797, GSE11121, GSE15852, GSE18728a,
GSE18864a, GSE20711a, GSE21653a, GSE22093b, GSE23988b, GSE26639a,
GSE42568b, GSE45827, GSE48091, GSE48390a, GSE53031a, GSE54002,
GSE65095a, GSE78958, GSE93601b, GSE124646, GSE129551a, GSE131027

Agilent Array 618 1295 701 259 178 743 GSE21974a, GSE22820, GSE35186, GSE40206a, GSE43973, GSE49175,
GSE49481a, GSE50939, GSE52604, GSE70905a, GSE70947a, GSE75678a,
GSE80999a, GSE111601

Illumina Array 0 1083 588 171 104 481 GSE20462, GSE36693, GSE37181a, GSE45725a, GSE46563a, GSE60785a,
GSE103744b, GSE111563

Illumina RNA-seq 68 3779 3186 337 524 3074 GSE47462, GSE81538a, GSE96058a, GSE99680a, GSE129508a

Total: 1490 10,350 5866 1499 1255 5095 52 datasets
aDataset used for classification based on ER and HER2 status. b Dataset used for classification based on ER status
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in previous cancer literature. Overall, we demonstrate
the ability of gene pairs to combine datasets and val-
idate the performance of feature selection methods
by identifying known tumorigenic genes and other
potential oncogenes.

Classification of breast tumor subtypes
After showing that gene pairs could identify important
known and novel oncogenes, we then focused on the
ability of gene pairs to classify breast cancer subtypes.
There were 29 datasets that contained information

Fig. 4 Top gene pairs identified by feature selection to distinguish between tumor and normal mammary tissue. Breast cancer gene pairs were
filtered using feature selection. The highest scoring pair using a TSP, b AM, c AA and FA, and d FM are reported. Bar graphs depict the log (fold
change) in gene expression in tumor compared to control tissue
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regarding patients’ estrogen receptor (ER) status (Table
1). A total of 5866 ER-positive and 1499 ER-negative pa-
tients were surveyed. Genes were ranked within each
sample, and samples were divided into training (75%)
and testing (25%) sets. Feature selection was performed
using the five methods, and a RF classifier was con-
structed. Classification accuracy on the testing data was
evaluated using the top 100 pairs. Feature selection on
gene pairs was successful, as top gene pairs from each
method could classify patients with a maximum accur-
acy of least 0.80 (Fig. 6). AA pairs returned the best ac-
curacy (0.909), while AM performed the worst (0.808).
The top 100 gene pairs identified with each feature se-
lection method are listed in Supplementary file 2.
We expected that ER expression would be very differ-

ent between ER-positive and ER-negative patients, so it
is not surprising that TSP, AA, and FA each identified
estrogen receptor 1 (ESR1) as the most represented gene
in the top 100 pairs. Interestingly, ESR1 was not found
in any of the top 100 AM or FM pairs. Rather, U2 small
nuclear RNA auxiliary factor 1 (U2AF1) was the most
represented gene in top FM pairs, while both U2AF1
and ATPase H+ transporting accessory protein 2
(ATP6AP2) were present in more than 30% of the top
100 AM pairs. Also, seven genes were present in at least
10% of the top 100 pairs in at least one of the feature se-
lection methods: ATP6AP2, casein kinase 1 alpha 1
(CSNK1A1), ESR1, innate immunity activator (INAVA),
SRY-box 11 (SOX11), tropomyosin 3 (TPM3), and
U2AF1 (Table 4). We validated that feature selection
with TSP, AA, and FA could be used to identify ESR1 as
the primary gene by which to stratify ER-positive and
ER-negative tumors; however, our findings using AM
and FM also suggest that other highly represented genes
may play a role in determining ER status.
Patients were also stratified by HER2 status. For this

analysis, 24 datasets with 1255 HER2-positive and 5095
HER2-negative samples were used. The five feature se-
lection methods were used to find the top 100 pairs, and
RF was performed to classify samples. The feature

Table 2 Top ten gene pairs to distinguish between breast
cancer and normal mammary tissue

Method Gene 1 Gene 2 Score

TSP FAT4 LRRC42 0.8391

BTBD7 LRRC42 0.8381

C11orf63 LRRC42 0.8344

BSDC1 DENND3 0.8297

BSDC1 BTBD7 0.8277

CDR2L FAT4 0.8266

PLEKHA6 SPATA6 0.8241

LRRC42 ZHX3 0.8239

LRRC42 TEK 0.8228

BSDC1 GRK5 0.8219

AM ATP6V1B2 SCARF1 3948.5

BSDC1 NRG2 3837.0

PMPCA SCARF1 3722.0

ARHGEF5 BSDC1 3713.3

ATP6V1H NRG2 3708.5

BSDC1 CSAD 3684.3

ATP6V1B2 NRG2 3666.0

FAF1 SCARF1 3642.3

ERGIC2 SCARF1 3638.0

BSDC1 SEMA3G 3613.8

AA MEOX2 BSDC1 3127.9

NRG2 BSDC1 3088.2

SCARF1 BSDC1 3045.9

MEOX1 BSDC1 3039.5

GPRASP1 BSDC1 3019.9

PPP1R1A BSDC1 2980.3

SEMA3G BSDC1 2950.1

CSAD BSDC1 2930.1

BSDC1 ARHGEF15 2926.7

GNAZ BSDC1 2882.6

FM SOCS5 BSDC1 1.2573

NRG2 BSDC1 1.0630

SOCS5 LRRC42 1.0207

NRG2 LRRC42 1.0186

SEMA3G BSDC1 1.0146

RBM19 BSDC1 1.0085

TBC1D22A BSDC1 1.0067

DYRK3 BSDC1 0.9893

SEMA3G LRRC42 0.9783

NRG2 CDR2L 0.9721

TBC1D22A LRRC42 0.9663

FA BSDC1 MEOX2 0.7516

MEOX2 PLEKHA6 0.7231

Table 2 Top ten gene pairs to distinguish between breast
cancer and normal mammary tissue (Continued)

Method Gene 1 Gene 2 Score

CDR2L NRG2 0.6988

LRRC42 MEOX2 0.6822

BSDC1 SOCS5 0.6820

BSDC1 NRG2 0.6729

BSDC1 SEMA3G 0.6632

LRRC42 NRG2 0.6557

BSDC1 GJA4 0.6537

NRG2 PLEKHA6 0.6530
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selection methods performed similarly and all achieved a
maximum accuracy above 0.83. However, the best accur-
acy was found using AA pairs (0.861), while AM per-
formed the worst (0.826; Fig. 6). We then visualized the
top 100 pairs using each method (Fig. 6). Within the top
100 pairs, AM pairs contained 98 unique genes, AA
pairs contained 47 genes, and FM pairs contained 103
genes. TSP and FA pairs contained 101 unique genes
each and growth factor receptor bound protein 7
(GRB7) was present in every pair. The majority of the
top 100 AM and FM pairs contained U2AF1 (80 and
57%, respectively). Feature selection using AA was

similar to TSP and FA in that 20% of the top pairs con-
tained GRB7, but it was also unique in choosing 42 pairs
with phenylethanolamine N-methyltransferase (PNMT)
and 31 pairs containing titin-cap (TCAP). The top 100
gene pairs identified with each feature selection method
are listed in Supplementary file 3.
Surprisingly, HER2 was not observed among the top 100

pairs using any of the feature selection methods. Instead,
we identified five genes that were present in at least 10% of
the top 100 pairs in at least one of the feature selection
methods: GRB7, PNMT, TCAP, TPM3, and U2AF1
(Table 5). GRB7, PNMT, and TCAP are expected to be

Fig. 5 Gene pairs facilitate large-scale dataset integration to identify BSDC1 and LRRC42 as novel breast cancer biomarkers. Transcriptomic profiles
from 10,350 breast tumors were combined and the top 100 gene pairs were filtered using a TSP, b AM, c AA, d FM, and e FA. Connected genes
represent a pair. f Genes within the top 100 pairs were often common to multiple feature selection methods. The top five most represented
genes using g TSP, h AM, i AA, j FM, and k FA are reported. Y-axes represent the number of times the gene occurs in the top 100 pairs

Moody et al. BMC Medical Genomics 2020, 13(Suppl 10):148 Page 10 of 20



Table 3 Gene pair identification of novel tumorigenic genes to distinguish between breast cancer and control tissue. Genes
represent those that were present in at least 10% of the top 100 pairs in at least one of the feature selection methods. Feature
selection columns denote the number of occurrences in the top 100 gene pairs

Gene Symbol Gene Name TSP AM AA FM FA Function Location

BSDC1 BSD domain containing 1 29 30 63 47 33 Unknown 1p35.1

C3orf14 Chromosome 3 open reading frame 14 0 4 11 0 0 Unknown 3p14.2

CDR2L Cerebral degeneration related protein 2 like 11 0 1 11 16 Antigen for onconeural antibody (Yo) 17q25.1

LRRC42 Leucine rich repeat containing 42 41 3 9 29 22 Nuclear protein 1p.32.3

NRG2 Neuregulin 2 0 14 6 8 8 Growth factor 5q31.2

PLEKHA6 Pleckstrin homology domain containing A6 10 1 5 5 13 Intracellular signaling 1q32.1

SCARF1 Scavenger receptor class F1 0 26 5 1 3 LDL receptor 17p13.3

Fig. 6 Gene pairs enable tumor stratification based on ER and HER2 status. a Patients were stratified based on ER status. Gene pair features were
filtered and a random forest classifier was built to measure classification accuracy. The top 100 gene pairs were identified using b TSP, c AM, d
AA, e FM, and f FA. g Patients were then divided by HER2 status. Gene pair features were filtered and a random forest classifier was built to
measure classification accuracy. The top 100 gene pairs were identified using h TSP, i AM, j AA, k FM, and l FA. Connected genes represent a pair
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amplified in HER2-positive breast cancers due to their loca-
tion within the HER2 amplicon on the long arm of
chromosome 17 (17q12) [13]. TPM3 and U2AF1 are per-
haps novel biomarkers of HER2 status. It is unclear why
HER2 was not identified as a top gene, however it may be
the case that the top genes possess characteristics that are
more conducive to discovery by gene-pair techniques, such
as lower within-group variation, greater between-group dif-
ferences, or a gene partner that displays inverse expression.

Blood-based cancer screening using miRNA pair trees
Another powerful application of gene pairs is cancer
screening. Not only do pairs remove methodology
constraints as well as the need for designating cutoffs,
but when combined with a simplified prediction
model, they may also provide the physician and pa-
tient with a transparent, highly interpretable screening
procedure. For this analysis, we utilized circulating
miRNA data from four cancer types. Blood miRNA
are ideal biomarkers because they are more stable
than mRNA and are collected in a noninvasive
manner.
Serum miRNA data were downloaded for bladder,

ovarian, pancreatic/biliary tract, and prostate cancer pa-
tients (Table 6). Gender-matched control serum samples
were included for each cancer type. Data were randomly
divided into training (75%) and testing sets (25%), and
the five feature selection methods were used to find the
top 100 miRNA pairs. RF and boosted tree (BT) models
were trained using the top pairs, and the best model for

each cancer type was chosen based on test accuracy
(Table 7). For ovarian and pancreatic cancer, FM and
FA produced higher accuracy than other methods. Pros-
tate cancer was best classified with an accuracy of 0.780
using a RF with 80 AM features. None of the feature se-
lection methods performed particularly well for bladder
cancer classification, as accuracy remained below 0.65;
however, a RF using 83 TSP features yielded an accuracy
of 0.643 and outperformed other methods.
While we show that pairs can be used to classify cer-

tain tumors with high accuracy using ensemble methods,
we wanted to examine whether simpler classification
schemes would also produce favorable results. By using
a transparent classification model, we hope to provide
physicians with a user-friendly tool that could easily be
implemented in the clinic. Thus, we performed rule ex-
traction on RF and BT models in order to build simpli-
fied tree ensemble learners (STEL). As expected, there
was some loss of accuracy in using STELs versus full en-
semble models (Table 7). For ovarian cancer, the highest
classification accuracy using a full BT model was 0.960
and was observed using 98 FA pairs. The highest STEL
accuracy was 2.4% lower at 0.936. Pancreatic cancer clas-
sified with an accuracy of 0.900 using 97 FM pairs in a
BT model, whereas the highest STEL accuracy was 5.2%
lower at 0.848. For prostate cancer, RF-STEL using AM
features yielded the highest accuracy in prostate cancer
(0.766), which was 1.4% lower than the most accurate
RF classifier. In bladder cancer, the RF-STEL gave the

Table 4 Top genes for classification of tumors based on ER status. Genes represent those that were present in at least 10% of the
top 100 pairs in at least one of the feature selection methods. Feature selection columns denote the number of occurrences in the
top 100 gene pairs

Gene Symbol Gene Name TSP AM AA FM FA Function Location

ATP6AP2 ATPase H+ transporting accessory protein 2 0 39 3 1 0 Vacuolar-ATPase, pH control Xp11.4

CSNK1A1 Casein kinase 1 alpha 1 0 13 3 0 0 Tumor suppressor, Wnt/β-catenin signaling 5q32

ESR1 Estrogen receptor 1 100 0 45 0 99 Estrogen signaling 6q25.1–2

INAVA Innate immunity activator 1 1 17 0 1 Adherens junctions 1q32.1

SOX11 SRY-box 11 0 0 12 0 2 Transcription factor, cell fate 2p25.2

TPM3 Tropomyosin 3 0 11 2 0 0 Stabilization of actin filaments 1q21.3

U2AF1 U2 small nuclear RNA auxiliary factor 1 1 34 22 93 1 Splicing 21q22.3

Table 5 Top genes for classification of tumors based on HER2 status. Genes represent those that were present in at least 10% of the
top 100 pairs in at least one of the feature selection methods. Feature selection columns denote the number of occurrences in the
top 100 gene pairs

Gene Symbol Gene Name TSP AM AA FM FA Function Location

GRB7 Growth factor receptor bound protein 7 100 0 20 0 100 HER2 signaling pathway 17q12

PNMT Phenolethanolamine N-methyltransferase 0 0 42 0 0 Catecholamine biosynthesis 17q12

TCAP Titin-cap 0 4 31 16 0 Scaffolding protein 17q12

TPM3 Tropomyosin 3 0 12 3 1 0 Stabilization of actin filaments 1q21.3

U2AF1 U2 small nuclear RNA auxiliary factor 1 0 80 1 57 0 Splicing 21q22.3
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highest classification accuracy (0.622), which was 2.1%
lower than the best RF classifier.
To demonstrate the interpretable nature of STEL

models, we report the top-performing STEL classifiers
for ovarian and pancreatic cancer. These simplified
schemes provide a natural workflow that can be easily
understood by physicians and patients. Furthermore,
they reduce the number of miRNA in the model, which
can expedite sample processing. Indeed, the STEL for
ovarian cancer consisted of five rules, 17 miRNA pairs,
and 23 unique miRNA (Fig. 7). The STEL for pancreatic
cancer was more complex and included 18 rules and 25
miRNA pairs, but included only 18 unique miRNA.
Overall, we provide an accessible framework by which
miRNA pairs can be used to identify patients with
tumors.

Discussion
In the current study, we utilize rank-based method-
ology and gene pairs to integrate genomic datasets,
identify novel oncogenes, and devise interpretable
classifiers for cancer screening. First, we tested feature
selection methods on simulated gene-pair data. Per-
formance was dependent on covariance structure and
the presence of genes with low expression; however,
methods that preserved more information were gener-
ally better able to identify signal genes and produce
higher accuracy using a random forest classifier. Next,
we demonstrated the utility of gene pairs on real can-
cer data. We combined 52 datasets with over 10,000
breast tumors in order to discover novel oncogenes
and robust biomarkers of tumor subtype. To our
knowledge, we are the first to integrate gene expres-
sion datasets on such a large scale. We then capital-
ized on the simplicity of gene pairs and used
circulating miRNA to create simplified tree ensemble
learners for ovarian and pancreatic cancer screening.
We first conducted simulations to test five feature se-

lection methods. Limiting the number of genes needed
for classification not only reduces the risk of overfitting
and improves model performance, but it could also
lower clinical costs and streamline screening and diag-
nosis. Thus, feature selection is optimal. Although wrap-
per and embedded feature selection methods can
account for feature dependencies and typically produce

better classification results, they are computationally ex-
pensive because they interact with the classifier [14].
This is particularly important in our case because of the

Table 6 Circulating miRNA datasets

Cancer Type GSE ID Control
Train

Cancer
Train

Control
Test

Cancer
Test

Bladder GSE113486 294 294 98 98

Ovary GSE106817 2069 240 690 80

Pancreas GSE59856, GSE106817 516 235 172 78

Prostate GSE112264 211 607 71 202

Table 7 Performance of feature selection methods and ensemble
classifiers used to build STELs from circulating miRNA pairs

Cancer Feature Selection Model Accuracy Pairs STEL Accuracy

Bladder TSP RF 0.643 83 0.622

AM RF 0.622 97 0.556

AA RF 0.628 91 0.577

FM RF 0.628 87 0.566

FA RF 0.638 94 0.577

TSP BT 0.633 99 0.602

AM BT 0.612 82 0.536

AA BT 0.622 96 0.531

FM BT 0.617 92 0.536

FA BT 0.617 97 0.541

Ovary TSP RF 0.901 90 0.896

AM RF 0.909 82 0.896

AA RF 0.905 59 0.896

FM RF 0.958 77 0.936

FA RF 0.956 87 0.927

TSP BT 0.899 96 0.896

AM BT 0.906 96 0.896

AA BT 0.904 78 0.896

FM BT 0.957 66 0.896

FA BT 0.960 98 0.896

Pancreas TSP RF 0.832 93 0.772

AM RF 0.712 81 0.688

AA RF 0.696 23 0.688

FM RF 0.868 69 0.848

FA RF 0.864 80 0.828

TSP BT 0.796 93 0.744

AM BT 0.708 39 0.688

AA BT 0.700 97 0.688

FM BT 0.900 97 0.772

FA BT 0.872 96 0.748

Prostate TSP RF 0.762 83 0.740

AM RF 0.780 80 0.766

AA RF 0.755 100 0.740

FM RF 0.747 8 0.740

FA RF 0.747 8 0.740

TSP BT 0.762 94 0.740

AM BT 0.762 36 0.740

AA BT 0.740 1 0.740

FM BT 0.740 1 0.740

FA BT 0.740 1 0.740
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Fig. 7 Simplified tree ensemble learners for ovarian and pancreatic cancer. Circulating miRNA were used to build STELs for (a) ovarian and (b)
pancreatic cancer screening. Frequency refers to the frequency of cases in the dataset that satisfy the corresponding rule. Error refers to the error
rate of the rule when the corresponding outcome is chosen
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extremely large number of features. The use of gene

pairs increases the number of features from n to nðn − 1Þ
2 .

In our case, the combined breast cancer dataset contained
a total of 3435 genes, which amounted to 5,897,895 pairs.
We therefore opted to use filter methods to reduce com-
putational cost. Filter methods are typically univariate in
that they assume features are independent, but by consid-
ering gene pairs, we capture pairwise feature interactions
while maintaining computational efficiency.
In our simulations, we found that feature selection

methods that preserve more information typically yield
better classification accuracy. We tested five feature se-
lection methods that incorporated different amounts of
information in their score calculation. TSP only con-
siders whether or not there is a difference in gene rank
between classes, AA and AM consider the magnitude
of the difference, and Fisher scores consider the magni-
tude of the difference as well as the within-class coher-
ence. While AA and FA consider rank average, we also
included AM and FM, which use rank median. By using
the median, we hoped to avoid any outlier effects. First,
we simulated data and varied in the effect size and
covariance structure of the signal genes. Effect size and
covariance structure did not change the relative per-
formance of each method, but overall, prediction accur-
acy was higher when signal genes were stronger and
more correlated. Interestingly, TSP was consistently the
worst feature selection method. This may be due to the
classification scheme of the RF algorithm. RF favors
nodes with high purity, which is indicated by low
within-class variation. Conversely, TSP considers
between-class differences, but does not directly com-
pute within-class variation. Poor performance of TSP
was also observed when we introduced a specific type
of noise, consisting of genes with very low expression
and a few normally-distributed outliers. Such genes
simulate those that are naturally expressed at very low
levels, such as tissue- or sex-specific genes. Fisher
methods outperformed AM and AA, and TSP was the
worst. This points to the importance of more feature
information in building an accurate RF. Additionally,
methods that used average rank were better than
methods that used median rank, suggesting that the
feature selection methods are not highly sensitive to
outliers and skewed data.
After demonstrating the effectiveness of feature selec-

tion methods on simulated gene pairs, we then applied the
methodology to real cancer data. First, we used the rank-
ing system to combine breast tumor transcriptomic data-
sets. Previous large-scale meta-analyses have looked
across 8 to 15 datasets with 1000–3000 patients [15–17],
but we more than triple the sample size by combining 52
datasets for a total of over 10,000 samples. Gene pairs

were used to validate known tumorigenic genes. When
examining the top 100 gene pairs, BSDC1, C3orf14,
CDR2L, LRRC42, MEOX2, NRG2, and PLEKHA6, and
SCARF1 were consistently identified by feature selection
methods to be associated with cancer status. C3orf14,
CDR2L, LRRC42, MEOX2, NRG2, and SCARF1 have been
previously associated with cancer. C3orf14 has been
shown to be differentially methylated in cervical and pros-
tate cancer [18, 19] while CDR2L and SCARF1 have been
proposed to mediate immune response in ovarian and
liver cancer, respectively [20–22]. LRRC42 is a nuclear
protein that is highly expressed in lung tumors and is indi-
cative of heightened proliferation in vitro [23]. LRRC42 is
hypothesized to stabilize the methyl-CpG binding protein
1 (MeCP1) complex and regulate p21 transcription. Thus,
it is not surprising that we observed high LRRC42 in
breast tumors. MEOX2 is a transcription factor that has
also been studied in cancer due to its growth arresting
properties. MEOX2 has been shown to inhibit cell migra-
tion via p21, induce apoptosis via BAX, and negatively
regulate angiogenesis via nuclear factor kappa B (NF-κB)
[24–27]. Our results support previous literature, as we ob-
served a reduction inMEOX2 expression in breast tumors.
Finally, NRG2 is a member of the neuregulin growth fac-
tor family that can bind HER2 to induce metastasis and
modulate drug response [28–31]. Identification of known
tumorigenic genes validates the ability of the feature selec-
tion methods to accurately filter gene pairs to return bio-
logically relevant results.
In addition to confirming known carcinogenic genes,

we also discovered new potential oncogenes. The role of
PLEKHA6 and BSDC1 in carcinogenesis has not been
fully uncovered. Evidence suggests that pleckstrin hom-
ology domain-containing proteins such as PLEKHA6 are
involved in intracellular signaling via G-protein-coupled
receptors, protein kinase C, and phosphatidylinositol-3-
kinase (PI3K) [32, 33]. Therefore, it is possible that aber-
rant PLEKHA6 expression impacts cellular processes
such as metabolism and apoptosis via PI3K activation or
proliferation and differentiation by mitogen-activated
protein kinase signaling. Similarly, little is known about
the involvement of BSDC1 in breast cancer. Initially dis-
covered in 2002, BSD domains were first found in tran-
scription factors and synaptic proteins [34]. The specific
function of BSDC1 remains unknown; however, copy
number variations in BSDC1 have been observed in ER-
negative breast tumors [35], and sequence mutations in
the gene have been associated with glioblastoma tumori-
genesis [36]. We found that BSDC1 was overexpressed
in breast tumors, suggesting that BSDC1 may be an im-
portant driver of carcinogenesis. Further experimenta-
tion should explicitly assess the biological function of
BSDC1 in order to validate its role as an oncogene and
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examine its potential as a molecular target in breast
cancer.
We then divided patients by ER and HER2 status in

order to validate the performance of feature selection
methods in identifying relevant oncogenes as well as to
test the ability of gene pairs to correctly stratify patients.
First, we found that several genes were indicative of ER
status, including ESR1 itself as well as ATP6AP2,
CSNK1A1, INAVA, SOX11, TPM3, and U2AF1. SOX11
has been associated with ER status, as ER-negative tu-
mors were shown to have lower levels of DNA methyla-
tion around the SOX11 promoter was as well as higher
gene expression [37]. Conversely, the tumorigenic roles
of ATP6AP2, CSNK1A1, INAVA, TPM3, and U2AF1
have been described, but it is unclear how they contrib-
ute to ER-positive and ER-negative phenotypes.
ATP6AP2 is a vacuolar proton pump that is commonly
mutated in granular tumors, resulting in reduced acidifi-
cation of endosomal compartments and acquisition of
oncogenic traits [38]. CSNK1A1 is a tumor suppressor
gene that is involved in Wnt/β-catenin signaling [39].
Primarily studied in colon cancer, INAVA stabilizes
adherens junctions and participates in inflammatory sig-
naling [40, 41]. TPM3 is a tropomyosin protein that
binds actin filaments and stabilizes the cytoskeleton, and
it has been shown to participate in epithelial-
mesenchymal transition (EMT) [42]. Mutations in U2AF1
in leukemia have been shown to impact splicing of hun-
dreds of genes and have widespread consequences [43].
Future experimentation should focus on defining the roles
of ATP6AP2, CSNK1A1, INAVA, TPM3, and U2AF1 in
ER signaling and understanding how the ER pathway in-
teracts with general carcinogenic mechanisms.
For patient classification based on HER2 status, we

found that HER2 was not identified by any feature selec-
tion method as a strong indicator of tumor status. HER2
status is often determined by protein levels measured by
immunohistochemistry. Thus, our findings might sug-
gest that HER2 protein levels are not strictly correlated
with mRNA levels; however, this is not supported by a
majority of the current literature [44–47]. Although
HER2 alone may be a valid biomarker, other genes may
have qualities that make them better suited for patient
stratification using the feature selection techniques. The
feature selection approaches favored genes with large
between-class differences and within-class concordance.
Furthermore, the methods were performed on gene
pairs. Thus, selection as a top gene was highly
dependent on the existence of a gene with inverse ex-
pression levels, such as a repressor or a protein involved
in negative feedback. We hypothesize that the identified
top genes fit these criteria. Specifically, GRB7, PNMT,
TCAP, TPM3, and U2AF1 gene expression were better
indicators of HER2 status. Previous reports have

identified co-amplification of GRB7, PNMT, and TCAP
in HER2-positive breast cancer, specifically due to their
location in the 17q12 region [13]. In particular, GRB7
overexpression has been shown to potentiate HER2
amplification such that silencing the gene decreased pro-
liferation and facilitated drug response to anti-HER2
drugs [48, 49]. On the other hand, TPM3 and U2AF1
have not been previously associated with HER2 status. It
is interesting that these two genes were also identified as
indicators of ER status. Previous literature has pointed
to an inverse relationship between ER and HER2 status
[50], so it is possible that TPM3 and U2AF1 represent a
common mechanism that accounts for dysregulation in
both systems.
After applying gene pairs to large-scale data integra-

tion, we next attempted to formulate a simple workflow
for patient screening. In order to optimize treatment ef-
ficacy and patient prognosis, detection should preferably
occur before the tumor becomes inoperable or the can-
cer has metastasized. We specifically examined bladder,
ovarian, pancreatic, and prostate cancers because they
are difficult to detect or have minimal screening proce-
dures for asymptomatic individuals. Given their presence
in biological fluids and relatively high stability, miRNA
are promising biomarkers that have been previously ex-
plored in bladder [51, 52], ovarian [53], pancreatic [54],
and prostate cancer [55]; however, few studies have pre-
sented circulating miRNA in a simplistic framework that
can be readily translated to a clinical setting. We
propose that miRNA pairs are ideal for clinical use. Un-
like other biomarkers that use standardized units and
defined cutoffs, miRNA pairs rely solely on relative
within-patient values. This eliminates the need for spe-
cific measurement equipment, which is particularly con-
venient for gene expression. We first used feature
selection to filter miRNA pairs then constructed full RF
and BT models. However, our primary goal was to de-
vise a transparent screening system, so we used salient
rules from the full ensemble models to build STELs with
clear, sequential decision rules. Simplifying the classifier
slightly compromised accuracy, but for ovarian and pan-
creatic cancer, accuracy remained relatively high at
0.936 and 0.848, respectively. We provide preliminary
evidence that miRNA pairs are suitable for cancer classi-
fication. Furthermore, STELs are not only highly inter-
pretable, but they can also be updated to incorporate
other demographic and clinical data to improve decision
rules and classification accuracy.
Gene pairs have strengths and limitations that should

be addressed in future investigation. As opposed to trad-
itional methodology, the use of gene pairs in clinical
practice has the potential to eliminate the need for stan-
dardized measurement techniques, validated cutoffs, and
data normalization. Researchers can also utilize gene
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pairs and rank-based methodology to integrate datasets
across platforms and experimental cohorts. One major
weakness of gene pairs is the huge expansion of the fea-
ture space and the corresponding increase in computa-
tional time and susceptibility to overfitting. Genomic
data already suffers from high dimensionality, where fea-
tures vastly outnumber observations (p > > n). Gene
pairs amplify this problem. We use feature selection
strategies that exhaustively calculate scores for every
gene pair, but other approaches might reduce computa-
tional time either by eliminating single genes before
pairs are queried or by sampling gene pairs in a non-
exhaustive manner. Alternatively, future work might
focus on parallelizing calculations to increase computa-
tional efficiency. Although there are still several avenues
by which to improve and apply gene pair analysis, we
provide foundational insight into the performance of fea-
ture selection methods on gene pair data and demon-
strate two powerful applications.

Conclusion
In the current study, we examined feature selection ap-
proaches and novel biological and clinical applications
for gene pairs. We first found that classification using
gene pairs benefited from retaining maximal information
during feature selection. Incorporating the magnitude of
gene expression change as well as the within-class vari-
ance using Fisher scores improved classification accuracy,
especially when data contained many genes with low ex-
pression. We then demonstrated the effectiveness of using
gene ranking by combining breast cancer datasets to cre-
ate a large cohort of 10,350 tumors. Gene pairs were then
used to discover new oncogenes related to both carcino-
genesis and ER/HER2 status, including BSDC1 and
U2AF1. Lastly, we constructed STELs using circulating
miRNA pairs in order to provide a transparent framework
for pancreatic and ovarian cancer screening. Our ap-
proach is highly adaptable for clinical use because it is in-
variant to measurement platform, normalization, and
specific cutoff values. Collectively, we show that gene pairs
can overcome the limitations presented by genomic data
and accurately classify tumors in an interpretable manner.

Methods
Feature selection methods
The goal of feature selection for gene pairs was to reduce
the feature space to avoid overfitting and increase computa-
tional efficiency. We used five filter methods that retained
different amounts of information in their score calculation.
For each approach, we can consider a cohort of N samples,
each having set of p genes whose expression is measured in
a transcriptomic profile Xn = {x1, x2,…, xp}. For all ap-
proaches, within-sample pairwise comparisons are made,
such that the within-sample rankings are sufficient to

perform all calculations. The ranks of {x1, x2,…, xp} can be
denoted as {r1, r2,…, rp}. Additionally, each X may belong to
a particular class C = {c1, c2}. We only consider binary clas-
sification in this study, but these methods can be extended
to multi-class problems.

Top-scoring pairs (TSP)
The TSP algorithm makes within-sample pairwise com-
parisons, calculates the probability that rank is higher in
one gene or the another, and compares probabilities be-
tween classes [8]. For the gene pair (xi, xj) having
within-samples ranks (ri, rj), the calculation of the TSP
score proceeds by first observing the probability of ri < rj
in class 1: pij(1) = P(ri < rj| c1). The same calculation is
performed for the probability of ri < rj in class 2: pij(2) =
P(ri < rj| c2). The difference between the two probabilities
can then be calculated to get the pair score:

TSPij ¼ pij 1ð Þ − pij 2ð Þ
���

���:

Absolute average (AA) and absolute median (AM)
TSP is quite simplistic in that it calculates probabilities
but does not consider any other information about the
nature of the within-sample gene expression differences.
Instead, we can consider the magnitude of the rank dif-
ference between two genes. This can be achieved by first
calculating the within-sample pairwise differences be-
tween gene ranks. For (ri, rj) the rank difference can be
calculated as Rij = ri − rj. This is repeated for all samples.
Then we can call Rij(1) the set of rank differences for
samples in class 1 samples, and Rij(2) the set of rank dif-
ferences for the samples in class 2. The AA score can be
computed by taking the average rank difference for each
class and then calculating the absolute difference:

AAij ¼ Rij 1ð Þ − Rij 2ð Þ
���

���:

The AM score can be computed by taking the absolute
difference between the class medians:

AMij ¼ median Rij 1ð Þ� �
−median Rij 2ð Þ� ��� ��:

By using the median, we attempt to minimize the ef-
fect of outliers.

Fisher average (FA) and fisher median (FM)
In addition to considering the magnitude of the rank
change, we can also incorporate the within-class vari-
ance. This can be achieved via calculation of Fisher
scores, which favor features with large distances between
data points from different classes and small distances be-
tween data points from the same class [56]. We calculate
a classic Fisher score using average ranks:
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FAij ¼
n1 Rij 1ð Þ − Rij

� �
þ n2 Rij 2ð Þ − Rij

� �

n1σ2ij 1ð Þ þ n2σ2ij 2ð Þ :

We also account for outliers and skewed data by using
median ranks:

FMij ¼
n1 median Rij 1ð Þ� �

−median Rij
� �� �þ n2 median Rij 2ð Þ� �

−median Rij
� �� �

n1σ2ij 1ð Þ þ n2σ2ij 2ð Þ :

In both equations, Rij is the average rank difference for
all samples in both classes. n1 and n2 represent the num-
ber of samples in class 1 and class 2, respectively. σ2ijð1Þ
and σ2ijð2Þ represent the variance in rank differences in

class 1 and class 2, respectively.

Classifiers
After feature selection, classification was performed
using ensemble classifiers. Although gene ranks were
used to choose features, we transformed values into bin-
ary categorical variables before classification. Each fea-
ture, fij, represented a gene pair. When ri < rj, a value of
1 was assigned, and when ri < rj a value of − 1 was
assigned. This transformation was performed in order to
minimize data processing and broadly represent mea-
surements that could be taken on a variety of platforms.
Instead of requiring the exact expression values or rank-
ings across a large spectrum of genes, using a binary
variable only requires knowledge of the relative expres-
sion between two genes. We proposed that this would
be particularly beneficial for use in a clinical setting.

Random forest (RF)
Random forest is an ensemble method that fits a collec-
tion of de-correlated decision trees on bootstrapped
training samples and then tallies votes over the entire
forest to get a prediction for each observation [57]. We
tuned our models by using the ‘caret’ package in R. Spe-
cifically, at each split in a tree, we considered m predic-
tors (mtry), for which we tried values ranging from 1 to
10. The best fit was chosen based on out-of-bag error
and was used to classify test data.

Boosted tree (BT)
Gradient boosting improves robustness of a decision tree
by sequentially growing trees based on the residuals of
the previous tree [58]. We tuned three model parame-
ters, including the total number of trees, the shrinkage
parameter, and the number of splits (depth) in each tree.
The number of trees took values of 100, 500, or 1000,
shrinkage was set at 0.01 or 0.1, and the number of splits
ranged from 1 to 5. The model with the best accuracy
using was chosen using 5-fold cross validation was used
to predict on the testing data.

Simplified tree ensemble learner (STEL)
Finally, we attempted to reduce ensemble classifiers into
simplified tree ensemble learners (STELs). Although en-
semble methods are robust and provide better classifica-
tion accuracy than single decision trees, they are not
highly interpretable because they average over a collec-
tion of trees. On the other hand, the structure of single
decision trees is easy to explain, can be presented in
graphical format, and mirrors stepwise processes used
for clinical decision-making. Thus, we built full ensem-
ble learners, extracted non-redundant decision rules,
and compiled them into STELs.
In order to extract rules, the R package ‘inTrees’ was

used [59]. The extracted rules are combinations of rules
from each decision tree of the ensemble. Starting at the
root of a tree, the first decision rule is extracted. The al-
gorithm moves to the second rule and combines it with
the first rule to create a new rule. These steps are re-
peated until a leaf is reached. The process is then re-
peated until all paths from root to leaves have been
traversed for every tree of the ensemble (Fig. 8).
Rules are then prioritized based on their frequency,

error, and length. Frequency refers to the proportion
of cases that satisfy a rule. Error indicates the classifi-
cation error by the single rule. Length refers to the
number of features included in the rule. Rules with
high frequency and low error and length are prefera-
ble to avoid overfitting, increase accuracy, and facili-
tate interpretability. Thus, rules with frequency less

Fig. 8 Rule extraction from a decision tree. Starting at the root of a
tree, the first decision rule is extracted (labeled ‘1’). The algorithm
moves one level deeper in the tree and combines the first rule with
each of the nodes at the current level to create new extracted rules.
These steps are repeated until a leaf is reached and all paths from
root to leaves have been traversed. Individual decision rules are
denoted as yellow nodes. Leaves are blue and red circles, denoting
a binary outcome. Each extracted rule is numbered and consists of
the combination of rules along its path
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than 0.01 and length greater than 6 were not
considered.
Finally, STELs can be built by iteratively adding ex-

tracted rules to a tree. The set of rules is first evaluated
to find the one with the minimum error. Ties are broken
using frequency and then using length. Observations sat-
isfying the current rule are removed and the next rule is
chosen using the remaining data. The algorithm stops
when all remaining rules return an error that is greater
than the error produced by simply choosing the most
frequent class. The output is an ordered rule list that
can be easily depicted as a series of well-defined steps
and resulting outcomes.
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